Skip to main content
Erschienen in: Journal of Translational Medicine 1/2022

Open Access 01.12.2022 | Research

Identifying patterns of immune related cells and genes in the peripheral blood of acute myocardial infarction patients using a small cohort

verfasst von: Peng-Fei Zheng, Qiong-Chao Zou, Lu-Zhu Chen, Peng Liu, Zheng-Yu Liu, Hong-Wei Pan

Erschienen in: Journal of Translational Medicine | Ausgabe 1/2022

Abstract

Background

The immune system plays a vital role in the pathophysiology of acute myocardial infarction (AMI). However, the exact immune related mechanism is still unclear. This research study aimed to identify key immune-related genes involved in AMI.

Methods

CIBERSORT, a deconvolution algorithm, was used to determine the proportions of 22 subsets of immune cells in blood samples. The weighted gene co-expression network analysis (WGCNA) was used to identify key modules that are significantly associated with AMI. Then, CIBERSORT combined with WGCNA were used to identify key immune-modules. The protein–protein interaction (PPI) network was constructed and Molecular Complex Detection (MCODE) combined with cytoHubba plugins were used to identify key immune-related genes that may play an important role in the occurrence and progression of AMI.

Results

The CIBERSORT results suggested that there was a decrease in the infiltration of CD8 + T cells, gamma delta (γδ) T cells, and resting mast cells, along with an increase in the infiltration of neutrophils and M0 macrophages in AMI patients. Then, two modules (midnightblue and lightyellow) that were significantly correlated with AMI were identified, and the salmon module was found to be significantly associated with memory B cells. Gene enrichment analysis indicated that the 1,171 genes included in the salmon module are mainly involved in immune-related biological processes. MCODE analysis was used to identify four different MCODE complexes in the salmon module, while four hub genes (EEF1B2, RAC2, SPI1, and ITGAM) were found to be significantly correlated with AMI. The correlation analysis between the key genes and infiltrating immune cells showed that SPI1 and ITGAM were positively associated with neutrophils and M0 macrophages, while they were negatively associated with CD8 + T cells, γδ T cells, regulatory T cells (Tregs), and resting mast cells. The RT-qPCR validation results found that the expression of the ITGAM and SPI1 genes were significantly elevated in the AMI samples compared with the samples from healthy individuals, and the ROC curve analysis showed that ITGAM and SPI1 had a high diagnostic efficiency for the recognition of AMI.

Conclusions

Immune cell infiltration plays a crucial role in the occurrence and development of AMI. ITGAM and SPI1 are key immune-related genes that are potential novel targets for the prevention and treatment of AMI.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12967-022-03517-1.
Peng-Fei Zheng and Qiong-Chao Zou are Contributed equally

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
WGCNA
Weighted gene co-expression network analysis
CAD
Coronary artery disease
GS
Gene significance
AMI
Acute myocardial infarction
γδ
Gamma beta
Tregs
Regulatory T cells
NO
Nitric oxide
TNF-α
Tumor necrosis factor-alpha
IL
Interleukin
CRP
C-reactive protein
MACEs
Major adverse cardiovascular events
DAVID
Database for annotation, visualization and integrated discovery
T2DM
Type 2 diabetes mellitus
GO
Gene Ontology
HDL-C
High-density lipoprotein cholesterol
IS
Ischemic stroke
KEGG
Kyoto Encyclopedia of Genes and genomes
LDL-C
Low-density lipoprotein cholesterol
MCODE
Molecular Complex Detection
Apo
Apolipoprotein
PPI
Protein–protein interaction
GEO
Gene Expression Omnibus
BMI
Body mass index
TG
Triglyceride
RT-qPCR
Quantitative real time polymerase chain reaction
TC
Total cholesterol
PCI
Percutaneous coronary intervention
ECG
Electrocardiogram
TOM
Topological overlap matrix
Mes
Module eigengenes
MM
Module membership
STRING
Search Tool for the Retrieval of Interacting Genes
CK-MB
Creatine kinase-MB
cTns
Cardiac troponins
cTnT
Cardiac troponin T
ITGAM
Integrin subunit alpha M
CVD
Cardiovascular diseases
Mes
Module eigengenes
CKD
Chronic kidney disease
BMI
Body mass index
CK
Creatine kinase
IS
Ischemic stroke
AML
Acute myeloid leukemia
LRRC18
Leucine rich repeat containing 18
ASCC2
Activating signal cointegrator 1 complex subunit 2
SLC25A37
Solute carrier family 25 member 37
PBMCs
Peripheral blood monocytes
SPI1
Spi-1 proto-oncogene
AUCs
Areas under the curves
Tfhs
Follicular helper T cells
IL1B
Interleukin 1 beta
CCL22
C–C motif chemokine ligand 22
TAMs
Tumor-associated macrophages
RAC2
Rac family small GTPase 2
EEF1B2
Eukaryotic translation elongation factor 1 beta 2

Background

Coronary artery disease (CAD) is a common chronic heart disease worldwide. The accumulation of a large number of lipids under the intima of the coronary artery leads to the formation of atherosclerotic plaque, which gradually leads to the narrowing of the vascular lumen, finally resulting in impaired blood perfusion of the myocardium [1]. CAD usually presents with a variety of different symptoms, including ischemic cardiomyopathy, stable and unstable angina, acute myocardial infarction (AMI), and even sudden accidental death [2]. Emergency percutaneous coronary intervention (PCI) can quickly restore cardiac perfusion and makes a great contribution in improving the prognosis of AMI patients. Nevertheless, AMI has becomea main cause of hospitalization and mortality in patients, especially in China, and its incidence is increasing annually [3]. Previous studies have shown that AMI is a complex disease that is influenced by multiple factors, such as inflammation responses [4], immune mechanisms [5], hypertension, hyperglycaemia, smoking, obesity and dyslipidemia [6]. Accumulating evidence also shows that total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) exert a synergistic effect on the immune inflammatory response, which can increase oxidative stress and vascular inflammation, leading to reduced bioavailability of nitric oxide (NO), and ultimately the formation of atherosclerotic plaque [7]. Several researches have indicated that atorvastatin therapy can effectively reduce levels of LDL-C, interleukin (IL)-1, tumour necrosis factor-alpha (TNF-α), C-reactive protein (CRP), and IL-6 in patients with high cholesterol, compared with dietary control alone [8]. At present, lipid-lowering therapy has become the cornerstone of drug therapy for CAD or AMI. We can effectively reduce the occurrence of major adverse cardiovascular events (MACEs) by downregulating LDL-C level. However, even if the level of LDL-C is reduced significantly, even until levels close to that at birth, MACEs cannot be completely eliminated. Immune inflammatory responses may partially account for this residual risk. Clear inflammatory intervention can be expected to effectively further improve the prognosis of patients, compared with only a reduction in LDL-C levels. Recently, Fernandez et al. provided the first overview of the human immune cell landscape during atherosclerosis and provided insights into the identity of immune cells that reside in the plaque and described their different activation states, which has opened the door for the study of atherosclerosis caused by autoimmune response [9]. Furthermore, Yang et al. suggested that the activation of signal cointegrator 1 complex subunit 2 (ASCC2), solute carrier family 25 member 37 (SLC25A37), and leucine rich repeat containing 18 (LRRC18), can be used as diagnostic markers of CAD, while immune cell infiltration plays a crucial role in the occurrence and development of CAD [10]. However, the pattern of immune cell infiltration in AMI has not been fully elucidated. Therefore, clarifying immune infiltration in AMI and identifying the key genes associated with immune cells may provide a novel perspective on the prevention and treatment of AMI.
Along with increased popularization and application of gene chip gene-chip sequencing technology, microarray analysis has become a practical and novel method of identifying susceptive genes correlated with AMI [11], thus helping clinicians gain a deeper understanding of the relationship between genes and disease [12, 13]. However, the sensitivity and reproducibility of microarray analysis based on differentially expressed genes may be limited [14, 15]. Weighted gene co-expression network analysis (WGCNA) is used increasingly widely to analyse a large number of gene expression data and is a powerful systematic biological approach to analyse network relationships and molecular mechanisms [16]. WGCNA is often used to identify co-expressed gene modules that are of specific biological significance and explore the association between gene modules and interesting sample characteristics [17].
For the past few years, an increased number of studies have indicated that immune cell infiltration may play a critical role in the pathogenesis and progression of CAD. Yang et al. have suggested that there is an increased in the infiltration of monocytes coupled with the decreased infiltration of CD8 + T cells in patients with CAD [10]. However, immune cell infiltration in AMI has not been fully elucidated. CIBERSORT, is an analysis tool that is used widely to explore the infiltration ratio of 22 immune cells in the samples based on the expression profiles of microarray data or RNA-seq data [18]. At present, a few studies have combined WGCNA with CIBERSORT to identify key immune related genes involved in AMI. Therefore, to meet this demand, in this study, CIBERSORT was used to calculate the proportions of 22 types of immune cells in AMI patients, while WGCNA was used to identify key modules that are significantly associated with AMI. Thereafter, the CIBERSORT results were combined with WGCNA to identify immune-related key modules and genes in patients with AMI to help elucidate the immune related molecular mechanism of AMI and lay the foundation for the development of immunomodulatory therapy for AMI.

Materials and methods

AMI microarray datasets

The gene expression matrix of the GSE61144 dataset, which included ten normal and fourteen AMI samples was extracted from Gene Expression Omnibus (GEO, http://​www.​ncbi.​nlm.​nih.​gov/​geo) public database, which is based on the GPL6106 Illumina human-6 v2.0 expression beadchip platform. The ‘Normalize Between Arrays’ function of the limma package was used to normalize the gene expression matrix [19]. When a probe corresponded with multiple gene names, it was removed, and when multiple probes corresponded with the same gene, the average value of multiple probes was used as the true expression value of the gene. The specific workflow is shown in Fig. 1.

WGCNA analysis identified modules that were significantly associated with AMI

As one of the most commonly used tools in systems biology, WGCNA can be used to construct a scale-free network based on gene expression data [20]. The genes with the top 25% of variance were selected for the WGCNA analysis. In this study, the appropriate soft threshold was defined as 18, and the WGCNA analysis was carried out according to methods detailed in our latest publication [21].

Evaluation of immune cell subtype distribution and identification of modules significantly associated with immune cells

The CIBERSORT.R script was downloaded from the CIBERSORT website and was used to explore the immune infiltration pattern of AMI [18]. After the expression matrix of immune cells was obtained according to instructions given on the CIBERSORT website, the “ggplot2” software package was used to draw a histogram, heat map, and boxplot diagrams. The histogram showed the proportion of 22 immune cells infiltration in AMI patients, while the heat map and boxplot diagrams showed the difference in immune cell infiltration in control and AMI subjects. The "corrplot" software package in R software was used to calculate the Pearson correlation coefficient between each type of immune cells and display the results through the relevant heat map. Using the previously described method, the correlation between genes and immune cells was further explored based on the gene expression profiles of key modules to identify several novel key modules that were significantly associated with immune cells.

Enrichment analysis of interesting modules

Kyoto Encyclopaedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analysis of the genes in biologically significant modules was conducted using the clusterProfler and DOSE package in R [22]. The threshold was determined as p.adjust < 0.05.

Identification of key genes and the correlation between key genes and immune cells

The Search Tool for the Retrieval of Interacting Genes (STRING) online database (version 11.0; http://​www.​string-db.​org) was used to construct a protein–protein interaction (PPI) network based on genes in modules that were significantly associated with immune cells [23]. The PPI network was visualized using Cytoscape software [24]. The MCODE combined with cytoHubba plug-ins in Cytoscape software were used to identify hub genes. The Pearson correlation coefficient between the identified hub genes and each type of immune cell was calculated using the "corrplot" software package in R software and the results were visualized using a heat map.

Study population

A total of 444 subjects with chest pain, which included 230 patients with AMI and 214 controls, collected from the Cardiovascular Department of Hunan Provincial People's Hospital. All cases suffering from AMI enrolled in this study received percutaneous coronary intervention (PCI) within 12 h after the onset of chest pain. AMI was diagnosed according to the 2018 diagnostic guidelines for AMI patients [25]: an electrocardiogram (ECG) showing new ischemic changes, echocardiogram indicating the loss of viable myocardium and/or new localized ventricular wall dyskinesia and serum levels of cardiac troponin T (cTnT) above the upper limit of 99% of the reference value. Sex- and age- matched healthy participants with no history of cardiovascular or other systemic diseases were also enrolled in this study based on ECG tests, blood, physical examination, and coronary angiography. Exclusion criteria are as follows: (1) active inflammation; (2) subjects treated with thrombolytic therapy and subjects suffering from cardiovascular and cerebrovascular diseases (such as cardiomyopathy, severe valvular abnormalities, atrial fibrillation, congenital heart disease or ischemic stroke); and (3) subjects with autoimmune diseases, tumours, renal and/or hepatic dysfunction. Laboratory findings, angiographic results and baseline clinical features of all subjects were collected and recorded in detail. Blood samples were obtained from AMI patients within hours of admission with an episode of chest pain and before an antiplatelet or anticoagulant was administered. The diagnostic criteria for hypertension and diabetes and the normal range of biochemical examinations were conducted as previously described [26, 27]. Study protocols were developed based on instructions from the Ethics Committee of Hunan Provincial People's Hospital and the 2008 revision of the Declaration of Helsinki of 1975 (http://​www.​wma.​net/​en/​30publications/​10policies/​b3/​). All subjects provided written and informed consent.

RT-qPCR

Whole blood samples were obtained from all subjects and placed in a heparin vacuum tube for preservation. Subsequently, peripheral blood monocytes (PBMCs) were isolated using Ficoll‐Hypaque density gradient centrifugation by following the manufacturer's instructions. Total RNA was isolated from the isolated PBMCs using TRIzol reagent, according to the manufacturer’s instructions. cDNA was then reverse-transcribed using a PrimeScript RT reagent kit (Takara Bio, Japan). A Taq PCR Master Mix Kit (Takara) was used to perform the RT-qPCR based on an ABI Prism 7500 sequence-detection system (Applied Biosystems, USA). The proprietary of the qPCR primers used in this experiment were designed and validated by Songon Biotech (Songon Biotech, Shanghai, China). Statistical significance was considered to be indicated by a p-value < 0.05.

Statistical analysis

SPSS (Version 22.0) was used for all statistical analyses in this study. Continuous data with a normal distribution between the AMI and normal groups were analysed using an independent sample t-test. Non normal distribution data, such as TG level, were expressed as median and quartile ranges, and were analysed using the Wilcoxon-Mann–Whitney test. The chi-square test was used to analyse measurement data, such as the number of drinkers and smokers, and the sex ratio. Based on previous studies [21], MedCalc software (MedCalc Software, Mariakerke, Belgium, version 19.7.4) was used to perform nonparametric receiver operating characteristic (ROC) curve analysis. R software (version 4.1.0) was used to perform the bioinformatics analysis. All tests were two-sided, and a p < 0.05 was considered to indicate statistical significance.

Results

Data pre-processing

The data were pre-processed by adding missing values, deleting outliers, and standardizing the data format. A total of 24,958 different gene symbols were screened in the 24 samples. The expression profiles of the 24,958 genes and the clinical features of the 24 samples are also shown in Additional file 2: Tables S1 and Additional file 3: Table S2.

Weighted gene co‑expression networks

After calculation, we found that when the correlation coefficient was greater than 0.8, the corresponding soft threshold was 18. Therefore, a soft threshold of 18 was selected to construct several gene modules (Fig. 2A). A topological overlap matrix was constructed by calculating the adjacency and correlation matrices of the gene expression profiles. Figure 2B depicts the gene cluster tree. Then, hierarchical mean linkage clustering combined with TOM were used to identify gene modules in each gene network. The heat map is shown in Fig. 2C. The dynamic tree cutting algorithm describes the 12 gene modules and is shown in Fig. 2D.

Identification of the modules of interest

Modules closely associated with disease characteristics are often found to maintain several specific and very important biological functions. As depicted in Fig. 3A, the midnightblue (r 2 = 0.67, p = 4e-04) and lightyellow (r 2 = -0.67, p = 3e-04) modules appeared to be highly correlated with AMI. Further in-depth calculations were performed to calculate the correlation coefficient between the colour module and gene significance. The correlation coefficient between the midnightblue module and gene significance was 0.61 (p = 4.3e-130) (Fig. 3B), while the correlation coefficient between the lightyellow module and gene significance was 0.42 (p = 1.1e-74) (Fig. 3C). A total of 2,993 gene symbols in the midnightblue and lightyellow modules and their GS values as well as corresponding p values are also shown in the Additional file 4: Tables S3.

Profile of the immune cell subtype distribution pattern

The CIBERSORT algorithm was used to evaluate the differential expression of immune fractions between the control and AMI subjects. The cumulative histogram visually demonstrates the relative proportion of various immune cell subtypes (Fig. 4A). As shown in Fig. 4B, the heatmap showed that there were significant differences in the proportion of immune cells between the control and AMI samples. Using a correlation matrix, we found that neutrophils were positively correlated with M0 macrophages; and negatively correlated with Tregs, γδ T cells, CD8 + T cells, and resting mast cells (Fig. 4C). Compared with normal subjects, AMI samples generally had decreased infiltration of CD8 + T cells, resting mast cells, and γδ T cells, and increased infiltration of neutrophils and M0 macrophages (Fig. 4D). Due to the limitations of the CIBERSORT algorithm, the distribution of several immune cell subsets, including activated NK cells, follicular helper T cells (Tfhs), eosinophils, M1 macrophages, and resting dendritic cells, that have a low level of expression in AMI have not been fully elucidated. In addition, the immune cell infiltration pattern in AMI is also shown in Additional file 5: Tables S4.

Identification of modules that are significantly associated with immune cells

Based on the expression profile of genes in the midnightblue and lightyellow modules (Additional file 6: Tables S5) and the results of immune cell infiltration in the 24 samples, we identified that the salmon (r 2 = 0.64, p = 7E-04) module was highly correlated with memory B cells (Fig. 5A). Further in-depth calculations were performed to calculate the correlation coefficient between the colour module and gene significance. Figure 5B demonstrates that the correlation coefficient between the salmon module and gene significance was 0.66 (p = 2.2e-147). A total of 1,171 gene symbols in the salmon module and their GS values and corresponding P values are also shown in Additional file 7: Tables S6.

Enrichment analysis of the salmon module

KEGG pathway and GO functional enrichment analysis of genes in the salmon module were conducted to explore their biological functions. Table 1 and Fig. 6A show the top 10 KEGG pathways. Table 2 shows the results of the GO enrichment analysis, meanwhile Fig. 6B–D show the top 8 biological processes, cellular components, and molecular functions, respectively. The details of these analyses are presented in Additional file 8: Tables S7 and Additional file 9: Table S8.
Table 1
KEGG analysis for genes (top 10 significantly enriched terms)
Item
ID
Description
P.adjust
geneID
KEGG
hsa04666
Fc gamma R-mediated phagocytosis
3.28E-10
1785/5594/7454/3055/5595/10094/5337/6850/9846/5335/4082/5894/4067/1398/10097/5293/10552/10451/5880/5058/3985/3635/5580/5296
KEGG
hsa05152
Tuberculosis
1.30E-08
4802/5868/5594/3684/7099/5595/51135/5534/26253/533/6850/3460/7097/3459/5993/1378/5894/2033/1051/929/10333/535/1432/3117/7132/818/9114/11151/1509/5603/3126
KEGG
hsa04664
Fc epsilon RI signaling pathway
1.77E-08
5594/241/5595/6850/9846/5335/5894/4067/240/5293/10451/5880/1432/6655/2205/3635/5603/5296
KEGG
hsa05167
Kaposi sarcoma-associated herpesvirus infection
2.21E-08
5594/3055/2783/1147/5595/5534/6850/2787/7311/57580/5335/3459/6774/3454/5894/2033/4067/6233/3661/5293/3455/7297/1432/7132/2793/2932/5603/2790/4792/5296/7538/3133
KEGG
hsa05164
Influenza A
6.29E-08
3836/5594/1147/7099/5595/51135/3460/3459/3454/5894/9021/2033/5611/293/23633/3661/5293/10241/3455/7297/6041/3117/7132/29108/3126/51284/896/4792/5296
KEGG
hsa05417
Lipid and atherosclerosis
8.04E-08
4318/5594/1147/7099/3305/5595/51135/5534/3326/5335/7097/6774/4067/4689/22926/3661/5293/6648/929/10333/10451/6256/1432/7132/818/3310/29108/2932/19/5603/3304/4792/5296
KEGG
hsa05135
Yersinia infection
1.07E-07
5594/7454/1147/7099/5595/10094/51135/391/5335/6195/1398/10097/3661/5293/10552/10451/5880/1432/3678/29108/2932/5603/920/4792/5296
KEGG
hsa04380
Osteoclast differentiation
1.14E-07
126014/5594/1147/5595/5534/6688/6850/11025/9846/3460/3459/7305/3454/9021/4689/5293/3455/7297/1432/7132/5603/7048/4792/5296
KEGG
hsa04620
Toll-like receptor signaling pathway
1.93E-07
5594/1147/51311/7099/5595/51135/7097/3454/7100/3661/5293/54472/3455/929/10333/1432/6696/5603/51284/4792/5296
KEGG Kyoto Encyclopedia of Genes and Genome pathway enrichment analyses
Table 2
GO analysis for genes (top 8 significantly enriched terms)
Item
ID
Description
GeneRatio
P.adjust
geneID
BP
GO:0042119
neutrophil activation
95/816
1.32E-31
8993/55276/978/338339/79930/2548/10970/961/199675/51646/4318/126014/5594/11031/124583/10555/51316/8694/6556/8972/5005/3101/3684/51719/5724/101/25797/27180/5337/391/1992/10533/6850/11025/3326/57580/7097/9545/7305/5023/2268/116844/3482/5236/383/64386/83716/2357/353189/201294/8876/53831/1378/84106/53917/5686/57153/5004/5611/240/6515/410/728/10097/8807/1084/290/51382/54472/929/23200/5265/11010/158747/4126/57126/535/1432/28988/2821/3310/5701/2150/9961/966/51411/1509/29108/3614/10694/8635/2219/5580/3304/7133
BP
GO:0002446
neutrophil mediated immunity
94/816
3.20E-31
8993/55276/978/338339/79930/2548/10970/961/199675/51646/4318/126014/5594/11031/124583/10555/51316/8694/6556/8972/5005/3101/3684/51719/5724/101/25797/27180/51135/5337/391/1992/10533/6850/11025/3326/7097/9545/7305/5023/2268/116844/3482/5236/383/64386/83716/2357/353189/201294/8876/53831/1378/84106/53917/5686/57153/5004/5611/240/6515/410/728/10097/1084/290/51382/54472/929/23200/5265/11010/158747/4126/57126/535/1432/28988/2821/3310/5701/2150/9961/966/51411/1509/29108/3614/10694/8635/2219/5580/3304/7133
BP
GO:0043312
neutrophil degranulation
92/816
6.51E-31
8993/55276/978/338339/79930/2548/10970/961/199675/51646/4318/126014/5594/11031/124583/10555/51316/8694/6556/8972/5005/3101/3684/51719/5724/101/25797/27180/5337/391/1992/10533/6850/11025/3326/7097/9545/7305/5023/2268/116844/3482/5236/383/64386/83716/2357/353189/201294/8876/53831/1378/84106/53917/5686/57153/5004/5611/240/6515/410/728/10097/1084/290/51382/54472/929/23200/5265/11010/158747/4126/57126/535/1432/28988/2821/3310/5701/9961/966/51411/1509/29108/3614/10694/8635/2219/5580/3304/7133
BP
GO:0002283
neutrophil activation involved in immune response
92/816
8.12E-31
8993/55276/978/338339/79930/2548/10970/961/199675/51646/4318/126014/5594/11031/124583/10555/51316/8694/6556/8972/5005/3101/3684/51719/5724/101/25797/27180/5337/391/1992/10533/6850/11025/3326/7097/9545/7305/5023/2268/116844/3482/5236/383/64386/83716/2357/353189/201294/8876/53831/1378/84106/53917/5686/57153/5004/5611/240/6515/410/728/10097/1084/290/51382/54472/929/23200/5265/11010/158747/4126/57126/535/1432/28988/2821/3310/5701/9961/966/51411/1509/29108/3614/10694/8635/2219/5580/3304/7133
BP
GO:0045088
regulation of innate immune response
45/816
1.65E-09
338339/11213/8454/5721/149628/3055/1147/51311/7099/101/26253/6850/4068/3460/3326/3459/7305/2268/383/3148/1378/5894/9021/2033/5686/5699/4067/1398/3661/8807/11126/56339/3455/5591/6041/7294/5058/10623/5701/29108/5691/2219/9252/5580/3133
BP
GO:0031349
positive regulation of defense response
47/816
1.26E-08
338339/961/8454/5721/149628/3055/1147/51311/7099/101/5595/1050/26253/6850/4068/7097/7305/383/3148/5894/2033/5686/5699/4067/1051/3661/8807/11126/5591/63940/7132/7294/5058/10623/5701/2150/29108/5008/64332/5691/5603/2219/9252/5580/51284/4792/3133
BP
GO:0002831
regulation of response to biotic stimulus
50/816
6.38E-08
338339/11213/8454/5721/149628/3055/1147/51311/10269/7099/101/5595/26253/6850/4068/3460/3326/3459/7305/2268/383/3148/1378/5894/9021/2033/5686/5699/4067/1398/3661/10221/8807/11126/56339/3455/5591/6041/7294/5058/10623/5701/2150/29108/5691/2219/9252/5580/81545/3133
BP
GO:0002833
positive regulation of response to biotic stimulus
36/816
3.08E-07
338339/8454/5721/149628/3055/1147/51311/7099/101/26253/6850/4068/7305/383/3148/5894/2033/5686/5699/4067/3661/8807/11126/5591/7294/5058/10623/5701/2150/29108/5691/2219/9252/5580/81545/3133
CC
GO:0101002
ficolin-1-rich granule
40/836
5.86E-15
55276/978/338339/79930/2548/51646/4318/5594/124583/6556/8972/3101/51719/101/25797/10533/3326/116844/5236/83716/2357/1378/5686/240/6515/10097/5265/535/1432/28988/2821/3310/5701/9961/51411/1509/3614/10694/2219/3304
CC
GO:1904813
ficolin-1-rich granule lumen
30/836
1.39E-12
55276/978/51646/4318/5594/124583/3101/51719/25797/10533/3326/116844/5236/83716/5686/240/10097/5265/1432/28988/2821/3310/5701/9961/51411/1509/3614/10694/2219/3304
CC
GO:0030667
secretory granule membrane
47/836
3.16E-12
338339/79930/2548/10970/961/199675/11031/134957/10555/8694/6556/8972/3684/5724/101/27180/5337/391/11025/762/7097/9545/7305/5023/3482/64386/2357/353189/8876/53831/1378/53917/57153/6515/728/1084/290/51382/929/23200/11010/158747/4126/57126/535/966/7133
CC
GO:0042581
specific granule
32/836
2.64E-11
8993/338339/10970/961/199675/126014/124583/10555/8694/5005/3684/101/25797/5337/5023/116844/383/64386/353189/53831/57153/5004/311/6515/1084/51382/54472/158747/57126/966/1509/7133
CC
GO:0005774
vacuolar membrane
53/836
4.34E-10
2548/10970/51296/2629/79901/528/206358/9842/2783/55062/51311/5337/533/89849/9516/7311/3326/9545/523/58528/8408/2357/353189/9043/8876/6272/57153/51310/7805/11342/526/7056/10241/290/51382/23200/11010/10211/23531/4126/535/3117/7942/1175/4864/219931/9528/9114/1509/28962/9583/3126/51284
CC
GO:0034774
secretory granule lumen
44/836
7.37E-10
8993/55276/978/2153/126014/5594/124583/51316/5005/3101/51719/25797/1992/10533/3326/2268/116844/383/83716/201294/5686/5004/5611/240/410/10097/54472/81/5265/3959/1432/28988/2821/3310/5701/9961/51411/1509/29108/3614/10694/8635/2219/5580
CC
GO:0070820
tertiary granule
30/836
8.41E-10
8993/978/338339/79930/2548/961/199675/51646/4318/126014/124583/6556/8972/3684/5724/101/25797/5337/116844/5236/2357/53831/1378/5004/6515/57126/535/28988/966/1509
CC
GO:0060205
cytoplasmic vesicle lumen
44/836
8.41E-10
8993/55276/978/2153/126014/5594/124583/51316/5005/3101/51719/25797/1992/10533/3326/2268/116844/383/83716/201294/5686/5004/5611/240/410/10097/54472/81/5265/3959/1432/28988/2821/3310/5701/9961/51411/1509/29108/3614/10694/8635/2219/5580
MF
GO:0004674
protein serine/threonine kinase activity
46/831
5.86E-15
55276/978/338339/79930/2548/51646/4318/5594/124583/6556/8972/3101/51719/101/25797/10533/3326/116844/5236/83716/2357/1378/5686/240/6515/10097/5265/535/1432/28988/2821/3310/5701/9961/51411/1509/3614/10694/2219/3304
MF
GO:0038187
pattern recognition receptor activity
9/831
1.39E-12
55276/978/51646/4318/5594/124583/3101/51719/25797/10533/3326/116844/5236/83716/5686/240/10097/5265/1432/28988/2821/3310/5701/9961/51411/1509/3614/10694/2219/3304
MF
GO:0004722
protein serine/threonine phosphatase activity
16/831
3.16E-12
338339/79930/2548/10970/961/199675/11031/134957/10555/8694/6556/8972/3684/5724/101/27180/5337/391/11025/762/7097/9545/7305/5023/3482/64386/2357/353189/8876/53831/1378/53917/57153/6515/728/1084/290/51382/929/23200/11010/158747/4126/57126/535/966/7133
MF
GO:0106306
protein serine phosphatase activity
13/831
2.64E-11
8993/338339/10970/961/199675/126014/124583/10555/8694/5005/3684/101/25797/5337/5023/116844/383/64386/353189/53831/57153/5004/311/6515/1084/51382/54472/158747/57126/966/1509/7133
MF
GO:0106307
protein threonine phosphatase activity
13/831
4.34E-10
2548/10970/51296/2629/79901/528/206358/9842/2783/55062/51311/5337/533/89849/9516/7311/3326/9545/523/58528/8408/2357/353189/9043/8876/6272/57153/51310/7805/11342/526/7056/10241/290/51382/23200/11010/10211/23531/4126/535/3117/7942/1175/4864/219931/9528/9114/1509/28962/9583/3126/51284
MF
GO:0001784
phosphotyrosine residue binding
10/831
7.37E-10
8993/55276/978/2153/126014/5594/124583/51316/5005/3101/51719/25797/1992/10533/3326/2268/116844/383/83716/201294/5686/5004/5611/240/410/10097/54472/81/5265/3959/1432/28988/2821/3310/5701/9961/51411/1509/29108/3614/10694/8635/2219/5580
MF
GO:0106310
protein serine kinase activity
27/831
8.41E-10
8993/978/338339/79930/2548/961/199675/51646/4318/126014/124583/6556/8972/3684/5724/101/25797/5337/116844/5236/2357/53831/1378/5004/6515/57126/535/28988/966/1509
MF
GO:0004715
non-membrane spanning protein tyrosine kinase activity
10/831
8.41E-10
8993/55276/978/2153/126014/5594/124583/51316/5005/3101/51719/25797/1992/10533/3326/2268/116844/383/83716/201294/5686/5004/5611/240/410/10097/54472/81/5265/3959/1432/28988/2821/3310/5701/9961/51411/1509/29108/3614/10694/8635/2219/5580
BP biological processes, CC cellular components, MF molecular functions

Construction of the PPI network and identification of hub-genes

As shown in Additional file 1: Figure S1, a PPI network with 1,088 nodes and 5,960 edges was built using the STRING tool. The MCODE plug-in in Cytohubba software was used to analyse the PPI network. Module-1 (Fig. 7A) had a score of 10.44, the module-2 (Fig. 7B) score was 7.306, module-3 (Fig. 7C) score was 6.827, while module-4 (Fig. 7D) score was 6.263. In addition, the eukaryotic translation elongation factor 1 beta 2 (EEF1B2) with a degree of 30 in module-1, the Rac family small GTPase 2 (RAC2) with a degree of 46 in module-2, SPI1 with a degree of 38 in module-3, and ITGAM with a degree of 40 in module-4 were identified as hub genes closely associated with AMI.

The correlation between key genes and immune cells

As shown in Fig. 8, a correlation matrix was used to determine the correlation between key genes and immune cells. EEF1B2 was found to be positively correlated with γδ T cells, CD8 + T cells, Tregs, and resting mast cells, but negatively correlated with neutrophils and M0 macrophages. RAC2 was negatively correlated with γδ T cells, CD8 + T cells and resting mast cells, while SPI1 and ITGAM were positively correlated with neutrophils and M0 macrophages but negatively correlated with γδ T cells, CD8 + T cells, resting mast cells, and Tregs.

RT-qPCR

The results of the RT-qPCR indicated that the expression levels of SPI1 and ITGAM were significantly elevated in AMI patients compared with controls (Fig. 9A).

ROC curve for AMI patients

As shown in Fig. 9B, C, the ROC curve analysis was used to calculate the predictive values of SPI1 and ITGAM for AMI patients. The AUC values of SPI1 and ITGAM were 0.808 (95% CI 0.765–0.851; p < 0.001) and 0.764 (95% CI 0.717–0.811; p < 0.001) for the prediction of AMI risk, respectively.

Demographic and biochemical characteristics

Several clinical features have no significant differences between AMI patients and controls, including heart rate, age, diastolic blood pressure, sex ratio, apolipoprotein (Apo) B, height and the proportion of alcohol consumed (Table 3). However, compared with controls, AMI cases had a higher proportion of smoke, and had higher pulse pressure, uric acid, glucose levels, systolic blood pressures, levels of triglyceride (TG), LDL-C and TC levels, weight, cardiac troponin T (cTnT) levels, creatinine levels, creatine kinase (CK), CK-MB and body mass index (BMI). Moreover, the levels of serum ApoA1, high-density lipoprotein cholesterol (HDL-C), and the ApoA1/ApoB ratio were remarkably higher in controls than in AMI patients.
Table 3
Comparison of demographic, lifestyle characteristics and serum lipid levels of the participants
Characteristic
Control(n = 214)
AMI
(n = 230)
Test‑statistic
P
Male/female c
158/56
169/61
0.007
0.933
Age (years)a
57.51 ± 11.07
58.98 ± 11.87
0.002
0.195
Height (cm)a
162.68 ± 7.64
163.30 ± 7.82
1.110
0.394
Weight (kg)a
56.72 ± 8.17
62.62 ± 11.60
28.115
 < 0.001
BMI (kg/m2)a
20.93 ± 3.09
23.39 ± 3.50
1.824
 < 0.001
Smoking [n (%)]c
50(32.9)
79 (41.5)
6.488
0.011
Alcohol [n (%)]c
57(26.7)
67(26.2)
0.343
0.558
SBP (mmHg)a
121.51 ± 15.61
136.77 ± 20.34
24.528
 < 0.001
DBP (mmHg)a
76.36 ± 9.32
77.85 ± 11.90
8.232
0.145
PP (mmHg)a
45.15 ± 11.10
58.92 ± 19.47
59.144
 < 0.001
Glu (mmol/L)a
6.05 ± 1.57
6.45 ± 1.76
8.646
0.009
TC (mmol/L)a
4.36 ± 0.80
4.62 ± 0.92
6.716
0.002
TG (mmol/L)b
0.88(0.43)
1.23(0.66)
-7.141
 < 0.001
HDL-C (mmol/L)a
1.82 ± 0.45
1.24 ± 0.36
9.799
 < 0.001
LDL-C (mmol/L)a
2.68 ± 0.68
3.14 ± 0.96
14.149
 < 0.001
ApoA1 (g/L)a
1.41 ± 0.28
1.01 ± 0.23
1.654
 < 0.001
ApoB (g/L)a
0.85 ± 0.18
0.84 ± 0.25
10.485
0.803
ApoA1/ApoBa
1.72 ± 0.46
1.30 ± 0.50
0.449
 < 0.001
Heart rate (beats/minutes)a
73.08 ± 9.76
73.53 ± 7.61
7.097
0.582
Creatinine, (μmol/L)a
70.72 ± 11.39
74.32 ± 12.64
1.043
0.002
Uric acid, (μmol/L)a
258.57 ± 70.12
274.89 ± 80.99
7.625
0.024
Troponin T, (μg/L)a
0.06 ± 0.03
3.56 ± 1.90
216.138
 < 0.001
CK, (U/L)a
72.40 ± 40.58
1055.62 ± 538.35
271.429
 < 0.001
CK-MB, (U/L)a
12.11 ± 3.11
133.41 ± 37.74
824.115
 < 0.001
SBP Systolic blood pressure, DBP Diastolic blood pressure, PP Pulse pressure, Glu Glucose, HDL-C high-density lipoprotein cholesterol, LDL-C low-density lipoprotein cholesterol, Apo Apolipoprotein, TC Total cholesterol, TG Triglyceride
aContinuous data were presented as means ± SD and determined by two side t-test
bA chi-square analysis was used to evaluate the difference of the rate between the groups

Discussion

In the past, the formation of atherosclerotic plaque as a result of dyslipidemia it was considered as a major cause of arteriosclerosis. However, during recent years further research has shown that arteriosclerosis is actually a chronic inflammatory process that induces strong immune activity [28]. Previous studies have suggested that a variety of immune cells play a key part in atherosclerosis. Dounousi et al. suggested that monocyte subsets play a crucial role in atherogenesis and inflammatory cascades in cardiovascular disease. Increasing counts and activity of monocytes are closely related to the clinical indexes of chronic kidney disease (CKD), atherosclerosis, and heart failure [29]. T lymphocytes are the most critical immune cells found in vivo. Based on their surface markers and functions, T lymphocytes can be classified as CD4 + and CD8 + cell subgroups. CD8 + T cells play a dual role in atherosclerosis. A compelling study pointed out that CD8 + T cells could secrete a variety of inflammatory cytokines, which could aggravate the inflammatory response and increase the instability of atherosclerotic plaques [30]. Inversely, cytotoxic activity that targets antigen presenting cells and regulatory CD8 + T cell subsets could effectively suppressed the progression of atherosclerosis by alleviating the immune reaction [30]. Other immune cell types, including neutrophils [31] and mast cells [32], also play a key part in the progression of cardiovascular disease. Notably, Han et al. suggested that the proportion of activated dendritic cells and Tfhs in CAD was remarkably higher and that the proportion of Tregs, resting CD4 + T cells, and γδ T cells was remarkably lower than in the control group. In addition, Yang et al. also identified an increase in the infiltration of monocytes but a decrease in the infiltration of CD8 + T cells in CAD subjects [10]. This data indicates that CAD exhibits inflammatory microenvironment patterns. On the contrary, persistent T-cell responses induced by myocardial infarction are significantly correlated with subsequent left ventricular remodelling, which ultimately leads to cardiac arrest and heart failure [33]. These results indicate that the immune system plays a very complex role in the pathophysiology of CAD. However, the pattern of immune cell infiltration in AMI has not been fully elucidated. To further explore the proportions and types of immune cells in AMI patients, the CIBERSORT package of R software was used to conduct a comprehensive assessment of 22 types of immune cell infiltration in AMI cases. We noticed that there was a decrease in the infiltration of CD8 + T cells, resting mast cells, and γδ T cells but an increase in the infiltration of neutrophils and M0 macrophages in AMI patients. These results indicate that there may be a difference in the immune cell infiltration pattern between AMI and CAD. These differences can better help us understand which immune cells play a vital part in processes from the deterioration of CAD to AMI. As previously mentioned, compared with normal samples, the proportion of neutrophils, which are involved in ischemic injury after stroke in ischemic stroke (IS) samples is generally higher. Neutrophils may be a promising target for IS therapies [34]. In addition, CD8 + T cells have pleural effects on atherosclerosis, and our study showed that the proportion of neutrophils were higher and that the proportion of CD8 + T cells were lower in the AMI group than in the control group. This indicates that neutrophils can accelerate but CD8 + T cells inhibit the occurrence and progression of AMI. Nevertheless, it is not clear whether the number of CD8 + T cells and neutrophils in peripheral blood samples reflect their infiltration into the vascular wall. Additionally, the current study also revealed that there were several different interactions between different immune cells in AMI. We noticed that neutrophils were negatively related to Tregs, CD8 + T cells, γδ T cells, and resting mast cells, while CD8 T + cells were positively related to resting mast cells. The immune cells infiltration analysis suggested a complicated network in AMI. Nevertheless, the potential mechanism of these relationship between infiltrated immune cells needs to be verified using in vivo and in vitro studies.
To further identify immune-related key genes involved in AMI, we conducted WGCNA combined with CIBERSORT to screen key modules that were remarkably associated with immune cells, and it was indicated that the salmon module was remarkably related to the memory B cells. Then, KEGG and GO enrichment analyses were conducted to further confirm that the genes in the salmon module were mainly involved in immune related signalling pathways and biological processes. A PPI network was built based on genes in the salmon module. Following the MCODE analysis, four different MCODE complexes were identified in the salmon module, and four hub genes (EEF1B2, RAC2, SPI1 and ITGAM) that were significantly correlated with AMI were identified. External validation showed that the expression levels of ITGAM and SPI1 were significantly different between AMI and the control group, while the expression levels of the EEF1B2 and RAC2 genes were not significantly different between the two groups. These results suggest that ITGAM and SPI1 genes may act as key immune-related genes involved in AMI.
Previous research has revealed that ITGAM is a member of the β2 integrin family of adhesion molecules, and adhesion molecules play an indispensable role in the recruitment and activation of neutrophils, macrophages, and monocytes during the process of inflammation [35]. Zirlik et al. proved that ITGAM plays a key role in inflammatory processes, such as the neutrophils and monocytes adhesion to injured endothelial cells and trans-endothelial migration, and is also involved in CD40 ligand-mediated atherosclerotic inflammation [36]. Previous studies have shown that the transcription profiles of monocytes following AMI in mice and human share common biological characteristics. ITGAM is one of the most common inflammation-related genes, has been shown to play a key role in monocyte inflammation, intercellular signal transduction, and cell proliferation [37]. On the other hand, Wang et al. found that ITGAM expression was correlated with various immune cells, including Tregs, M2 Macrophages, and that ITGAM plays an important role in acute myeloid leukaemia (AML) related immune regulation. Elevated ITGAM expression levels could predict poor overall survival and poor initial treatment response in patients with AML [38]. In addition, Ayari et al. found that ITGAM was significantly overexpressed in human carotid plaque [39]. Similarly, in our previous study, it was found that the expression levels of ITGAM were significantly upregulated in patients with CAD, and that high expression levels of ITGAM showed high diagnostic efficiency for the recognition ability of CAD [40]. However, to our knowledge, no reports have been published on the relationship between ITGAM and the immune microenvironment in AMI. In the current study, we noticed that ITGAM is positively correlated with neutrophils and negatively correlated with CD8 + T cells and resting mast cells. Meanwhile, we also noted that ITGAM was significantly overexpressed in patients with AMI. Based on these results, we speculated that the level of ITGAM overexpression is significantly correlated with the occurrence and development of AMI, and that ITGAM is expected to be a novel immune-related target for the prevention and treatment of AMI.
SPI1 encodes an ETS-domain transcription factor, PU.1, which is essential for the development of myeloid cells and B lymphocytes, and is the primary regulator of cell-to-cell communication in the immune system [41]. Pulugulla et al. noticed that the expression level of SPI1 mRNA is upregulated in activated T cells, and it may play a role in regulating the expression of interleukin 1 beta (IL1B) following the activation of CD4 T cells [42]. Yashiro et al. found that SPI1 could activate the C–C motif chemokine ligand 22 (CCL22) gene in dendritic cells and macrophages by directly binding to two key elements in the promoter, thereby mediating the migration of different subsets of leukocytes during the immune response [43]. The continuous overexpression of SPI1 in hematopoietic cells leads to the differentiation of macrophages, and SPI1 is an important regulatory factor for all states of tumour-associated macrophages (TAMs). Inhibition of the expression of SPI1 can effectively reduce the maturation and polarization of TAMs to play an anti-tumour role [44]. Previous studies have suggested that SPI1 acts as a key transcription factor that regulates the expression of several inflammatory genes, and has been found to be significantly overexpressed in advanced plaques. High expression levels of SPI1 showed modest efficiency in distinguishing the capacity of CAD [45]. Similarly, Qiao found that SPI1 plays a key role in the occurrence and development of ischemic cardiomyopathy and dilated cardiomyopathy by regulating apoptosis- and inflammation-related genes [46]. In addition, SPI1 has been predicted to regulate the expression of key genes that lead to heart failure following AMI [47]. However, the correlation between SPI1 and the immune microenvironment of AMI has not been reported on. Fortunately, in this research study, we noted that SPI1 is positively correlated with ITGAM and neutrophils but negatively correlated with Tregs, CD8 + T cells, and resting mast cells. Meanwhile, the gene expression level of SPI1 in AMI patients was also significantly higher than those in the control group. This suggests that SPI1 may be a novel potential molecular target for the diagnosis and treatment of AMI.
The current research study has several limitations. First, the validation samples included in this study were recruited from a single centre and had a small sample size. It is not clear whether the findings of this study are similar among individuals in other regions and ethnic groups. Therefore, the validity of the results of this study need to be further tested using multi-centre and larger samples. Second, it is not clear whether SPI1 acts as a transcription factor to regulate the expression of ITGAM. Third, further in vivo and in vitro research is needed to clarify the underlying mechanism of the correlations between ITGAM and SPI1expression levels and the infiltration of immune cells in AMI.

Conclusions

Immune cell infiltration plays a crucial role in the occurrence and development of AMI. ITGAM and SPI1 are the key immune-related genes that have the potential to become targets for the prevention and treatment of AMI.

Acknowledgements

We thank all the participants of this study.

Declarations

The study design was approved by the Ethics Committee of Hunan Provincial People's Hospital (No: LL-20210615–144). Written informed consent was obtained from all participants.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Kishi S, Magalhães TA, Cerci RJ, Matheson MB, Vavere A, Tanami Y, et al. Total coronary atherosclerotic plaque burden assessment by CT angiography for detecting obstructive coronary artery disease associated with myocardial perfusion abnormalities. J Cardiovasc Comput Tomogr. 2016;10:121–7.PubMedPubMedCentralCrossRef Kishi S, Magalhães TA, Cerci RJ, Matheson MB, Vavere A, Tanami Y, et al. Total coronary atherosclerotic plaque burden assessment by CT angiography for detecting obstructive coronary artery disease associated with myocardial perfusion abnormalities. J Cardiovasc Comput Tomogr. 2016;10:121–7.PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Wong ND. Epidemiological studies of CHD and the evolution of preventive cardiology. Nat Rev Cardiol. 2014;11:276–89.PubMedCrossRef Wong ND. Epidemiological studies of CHD and the evolution of preventive cardiology. Nat Rev Cardiol. 2014;11:276–89.PubMedCrossRef
3.
Zurück zum Zitat Xu H, Li W, Yang J, Wiviott SD, Sabatine MS, Peterson ED, et al. The China Acute Myocardial Infarction (CAMI) Registry: a national long-term registry-research-education integrated platform for exploring acute myocardial infarction in China. Am Heart J. 2016;175:193-201.e3.PubMedCrossRef Xu H, Li W, Yang J, Wiviott SD, Sabatine MS, Peterson ED, et al. The China Acute Myocardial Infarction (CAMI) Registry: a national long-term registry-research-education integrated platform for exploring acute myocardial infarction in China. Am Heart J. 2016;175:193-201.e3.PubMedCrossRef
4.
Zurück zum Zitat Ong S-B, Hernández-Reséndiz S, Crespo-Avilan GE, Mukhametshina RT, Kwek X-Y, Cabrera-Fuentes HA, et al. Inflammation following acute myocardial infarction: multiple players, dynamic roles, and novel therapeutic opportunities. Pharmacol Ther. 2018;186:73–87.PubMedPubMedCentralCrossRef Ong S-B, Hernández-Reséndiz S, Crespo-Avilan GE, Mukhametshina RT, Kwek X-Y, Cabrera-Fuentes HA, et al. Inflammation following acute myocardial infarction: multiple players, dynamic roles, and novel therapeutic opportunities. Pharmacol Ther. 2018;186:73–87.PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Andreadou I, Cabrera-Fuentes HA, Devaux Y, Frangogiannis NG, Frantz S, Guzik T, et al. Immune cells as targets for cardioprotection: new players and novel therapeutic opportunities. Cardiovasc Res. 2019;115:1117–30.PubMedPubMedCentralCrossRef Andreadou I, Cabrera-Fuentes HA, Devaux Y, Frangogiannis NG, Frantz S, Guzik T, et al. Immune cells as targets for cardioprotection: new players and novel therapeutic opportunities. Cardiovasc Res. 2019;115:1117–30.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Yandrapalli S, Nabors C, Goyal A, Aronow WS, Frishman WH. Modifiable risk factors in young adults with first myocardial infarction. J Am Coll Cardiol. 2019;73:573–84.PubMedCrossRef Yandrapalli S, Nabors C, Goyal A, Aronow WS, Frishman WH. Modifiable risk factors in young adults with first myocardial infarction. J Am Coll Cardiol. 2019;73:573–84.PubMedCrossRef
7.
Zurück zum Zitat Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation. 2004;109:Iii27-32.PubMed Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation. 2004;109:Iii27-32.PubMed
8.
Zurück zum Zitat Ascer E, Bertolami MC, Venturinelli ML, Buccheri V, Souza J, Nicolau JC, et al. Atorvastatin reduces proinflammatory markers in hypercholesterolemic patients. Atherosclerosis. 2004;177:161–6.PubMedCrossRef Ascer E, Bertolami MC, Venturinelli ML, Buccheri V, Souza J, Nicolau JC, et al. Atorvastatin reduces proinflammatory markers in hypercholesterolemic patients. Atherosclerosis. 2004;177:161–6.PubMedCrossRef
9.
Zurück zum Zitat Fernandez DM, Rahman AH, Fernandez NF, Chudnovskiy A, Amir ED, Amadori L, et al. Single-cell immune landscape of human atherosclerotic plaques. Nat Med. 2019;25:1576–88.PubMedPubMedCentralCrossRef Fernandez DM, Rahman AH, Fernandez NF, Chudnovskiy A, Amir ED, Amadori L, et al. Single-cell immune landscape of human atherosclerotic plaques. Nat Med. 2019;25:1576–88.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Yang Y, Xu X. Identification of key genes in coronary artery disease: an integrative approach based on weighted gene co-expression network analysis and their correlation with immune infiltration. Aging (Albany NY). 2021;13:8306–19.CrossRef Yang Y, Xu X. Identification of key genes in coronary artery disease: an integrative approach based on weighted gene co-expression network analysis and their correlation with immune infiltration. Aging (Albany NY). 2021;13:8306–19.CrossRef
11.
Zurück zum Zitat Su J, Gao C, Wang R, Xiao C, Yang M. Genes associated with inflammation and the cell cycle may serve as biomarkers for the diagnosis and prognosis of acute myocardial infarction in a Chinese population. Mol Med Report. 2018;18:1311–22. Su J, Gao C, Wang R, Xiao C, Yang M. Genes associated with inflammation and the cell cycle may serve as biomarkers for the diagnosis and prognosis of acute myocardial infarction in a Chinese population. Mol Med Report. 2018;18:1311–22.
12.
Zurück zum Zitat Jaiswal S, Natarajan P, Silver AJ, Gibson CJ, Bick AG, Shvartz E, et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N Engl J Med. 2017;377:111–21.PubMedPubMedCentralCrossRef Jaiswal S, Natarajan P, Silver AJ, Gibson CJ, Bick AG, Shvartz E, et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N Engl J Med. 2017;377:111–21.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Haemmig S, Simion V, Yang D, Deng Y, Feinberg MW. Long noncoding RNAs in cardiovascular disease, diagnosis, and therapy. Curr Opin Cardiol. 2017;32:776–83.PubMedPubMedCentralCrossRef Haemmig S, Simion V, Yang D, Deng Y, Feinberg MW. Long noncoding RNAs in cardiovascular disease, diagnosis, and therapy. Curr Opin Cardiol. 2017;32:776–83.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Ntzani EE, Ioannidis JP. Predictive ability of DNA microarrays for cancer outcomes and correlates: an empirical assessment. Lancet. 2003;362:1439–44.PubMedCrossRef Ntzani EE, Ioannidis JP. Predictive ability of DNA microarrays for cancer outcomes and correlates: an empirical assessment. Lancet. 2003;362:1439–44.PubMedCrossRef
15.
Zurück zum Zitat Ein-Dor L, Kela I, Getz G, Givol D, Domany E. Outcome signature genes in breast cancer: is there a unique set? Bioinformatics. 2005;21:171–8.PubMedCrossRef Ein-Dor L, Kela I, Getz G, Givol D, Domany E. Outcome signature genes in breast cancer: is there a unique set? Bioinformatics. 2005;21:171–8.PubMedCrossRef
16.
Zurück zum Zitat Miller JA, Woltjer RL, Goodenbour JM, Horvath S, Geschwind DH. Genes and pathways underlying regional and cell type changes in Alzheimer’s disease. Genome Med. 2013;5:48.PubMedPubMedCentralCrossRef Miller JA, Woltjer RL, Goodenbour JM, Horvath S, Geschwind DH. Genes and pathways underlying regional and cell type changes in Alzheimer’s disease. Genome Med. 2013;5:48.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Radulescu E, Jaffe AE, Straub RE, Chen Q, Shin JH, Hyde TM, et al. Identification and prioritization of gene sets associated with schizophrenia risk by co-expression network analysis in human brain. Mol Psychiatry. 2020;25:791–804.PubMedCrossRef Radulescu E, Jaffe AE, Straub RE, Chen Q, Shin JH, Hyde TM, et al. Identification and prioritization of gene sets associated with schizophrenia risk by co-expression network analysis in human brain. Mol Psychiatry. 2020;25:791–804.PubMedCrossRef
18.
Zurück zum Zitat Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12:453–7.PubMedPubMedCentralCrossRef Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12:453–7.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43: e47.PubMedPubMedCentralCrossRef Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43: e47.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Zheng PF, Chen LZ, Liu P, Pan HW. A novel lncRNA-miRNA-mRNA triple network identifies lncRNA XIST as a biomarker for acute myocardial infarction. Aging (Albany NY). 2022;14:4085–106.CrossRef Zheng PF, Chen LZ, Liu P, Pan HW. A novel lncRNA-miRNA-mRNA triple network identifies lncRNA XIST as a biomarker for acute myocardial infarction. Aging (Albany NY). 2022;14:4085–106.CrossRef
22.
23.
Zurück zum Zitat Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43:D447–52.PubMedCrossRef Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43:D447–52.PubMedCrossRef
24.
Zurück zum Zitat Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics. 2011;27:431–2.PubMedCrossRef Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics. 2011;27:431–2.PubMedCrossRef
25.
Zurück zum Zitat Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, et al. Fourth universal definition of myocardial infarction (2018). Circulation. 2018;138:e618–51.PubMedCrossRef Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, et al. Fourth universal definition of myocardial infarction (2018). Circulation. 2018;138:e618–51.PubMedCrossRef
26.
Zurück zum Zitat Zheng PF, Yin RX, Deng GX, Guan YZ, Wei BL, Liu CX. Association between the XKR6 rs7819412 SNP and serum lipid levels and the risk of coronary artery disease and ischemic stroke. BMC Cardiovasc Disord. 2019;19:202.PubMedPubMedCentralCrossRef Zheng PF, Yin RX, Deng GX, Guan YZ, Wei BL, Liu CX. Association between the XKR6 rs7819412 SNP and serum lipid levels and the risk of coronary artery disease and ischemic stroke. BMC Cardiovasc Disord. 2019;19:202.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Zheng PF, Liao FJ, Yin RX, Chen LZ, Li H, Nie RJ, et al. Genes associated with inflammation may serve as biomarkers for the diagnosis of coronary artery disease and ischaemic stroke. Lipids Health Dis. 2020;19:37.PubMedPubMedCentralCrossRef Zheng PF, Liao FJ, Yin RX, Chen LZ, Li H, Nie RJ, et al. Genes associated with inflammation may serve as biomarkers for the diagnosis of coronary artery disease and ischaemic stroke. Lipids Health Dis. 2020;19:37.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Dounousi E, Duni A, Naka KK, Vartholomatos G, Zoccali C. The innate immune system and cardiovascular disease in ESKD: monocytes and natural killer cells. Curr Vasc Pharmacol. 2021;19:63–76.PubMedCrossRef Dounousi E, Duni A, Naka KK, Vartholomatos G, Zoccali C. The innate immune system and cardiovascular disease in ESKD: monocytes and natural killer cells. Curr Vasc Pharmacol. 2021;19:63–76.PubMedCrossRef
30.
Zurück zum Zitat van Duijn J, Kuiper J, Slütter B. The many faces of CD8+ T cells in atherosclerosis. Curr Opin Lipidol. 2018;29:411–6.PubMedCrossRef van Duijn J, Kuiper J, Slütter B. The many faces of CD8+ T cells in atherosclerosis. Curr Opin Lipidol. 2018;29:411–6.PubMedCrossRef
31.
Zurück zum Zitat Grégory F. Role of mechanical stress and neutrophils in the pathogenesis of plaque erosion. Atherosclerosis. 2021;318:60–9.CrossRef Grégory F. Role of mechanical stress and neutrophils in the pathogenesis of plaque erosion. Atherosclerosis. 2021;318:60–9.CrossRef
32.
Zurück zum Zitat Varricchi G, Marone G, Kovanen PT. Cardiac mast cells: underappreciated immune cells in cardiovascular homeostasis and disease. Trends Immunol. 2020;41:734–46.PubMedCrossRef Varricchi G, Marone G, Kovanen PT. Cardiac mast cells: underappreciated immune cells in cardiovascular homeostasis and disease. Trends Immunol. 2020;41:734–46.PubMedCrossRef
33.
Zurück zum Zitat Tang TT, Zhu YC, Dong NG, Zhang S, Cai J, Zhang LX, et al. Pathologic T-cell response in ischaemic failing hearts elucidated by T-cell receptor sequencing and phenotypic characterization. Eur Heart J. 2019;40:3924–33.PubMedCrossRef Tang TT, Zhu YC, Dong NG, Zhang S, Cai J, Zhang LX, et al. Pathologic T-cell response in ischaemic failing hearts elucidated by T-cell receptor sequencing and phenotypic characterization. Eur Heart J. 2019;40:3924–33.PubMedCrossRef
34.
Zurück zum Zitat Li Z, Cui Y, Feng J, Guo Y. Identifying the pattern of immune related cells and genes in the peripheral blood of ischemic stroke. J Transl Med. 2020;18:296.PubMedPubMedCentralCrossRef Li Z, Cui Y, Feng J, Guo Y. Identifying the pattern of immune related cells and genes in the peripheral blood of ischemic stroke. J Transl Med. 2020;18:296.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Avery JT, Jimenez RV, Blake JL, Wright TT, Leόn-Ruiz B, Schoeb TR, et al. Mice expressing the variant rs1143679 allele of ITGAM (CD11b) show impaired DC-mediated T cell proliferation. Mamm Genome. 2019;30:245–59.PubMedPubMedCentralCrossRef Avery JT, Jimenez RV, Blake JL, Wright TT, Leόn-Ruiz B, Schoeb TR, et al. Mice expressing the variant rs1143679 allele of ITGAM (CD11b) show impaired DC-mediated T cell proliferation. Mamm Genome. 2019;30:245–59.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Zirlik A, Maier C, Gerdes N, MacFarlane L, Soosairajah J, Bavendiek U, et al. CD40 ligand mediates inflammation independently of CD40 by interaction with Mac-1. Circulation. 2007;115:1571–80.PubMedCrossRef Zirlik A, Maier C, Gerdes N, MacFarlane L, Soosairajah J, Bavendiek U, et al. CD40 ligand mediates inflammation independently of CD40 by interaction with Mac-1. Circulation. 2007;115:1571–80.PubMedCrossRef
37.
Zurück zum Zitat Ruparelia N, Godec J, Lee R, Chai JT, Dall’Armellina E, McAndrew D, et al. Acute myocardial infarction activates distinct inflammation and proliferation pathways in circulating monocytes, prior to recruitment, and identified through conserved transcriptional responses in mice and humans. Eur Heart J. 2015;36:1923–34.PubMedPubMedCentralCrossRef Ruparelia N, Godec J, Lee R, Chai JT, Dall’Armellina E, McAndrew D, et al. Acute myocardial infarction activates distinct inflammation and proliferation pathways in circulating monocytes, prior to recruitment, and identified through conserved transcriptional responses in mice and humans. Eur Heart J. 2015;36:1923–34.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Wang J, Hao J-P, Uddin MN, Wu Y, Chen R, Li D-F, et al. Identification and validation of inferior prognostic genes associated with immune signatures and chemotherapy outcome in acute myeloid leukemia. Aging. 2021;13:16445–70.PubMedPubMedCentralCrossRef Wang J, Hao J-P, Uddin MN, Wu Y, Chen R, Li D-F, et al. Identification and validation of inferior prognostic genes associated with immune signatures and chemotherapy outcome in acute myeloid leukemia. Aging. 2021;13:16445–70.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Ayari H, Bricca G. Identification of two genes potentially associated in iron-heme homeostasis in human carotid plaque using microarray analysis. J Biosci. 2013;38:311–5.PubMedCrossRef Ayari H, Bricca G. Identification of two genes potentially associated in iron-heme homeostasis in human carotid plaque using microarray analysis. J Biosci. 2013;38:311–5.PubMedCrossRef
40.
Zurück zum Zitat Zheng P-F, Chen L-Z, Guan Y-Z, Liu P. Weighted gene co-expression network analysis identifies specific modules and hub genes related to coronary artery disease. Sci Rep. 2021;11:6711.PubMedPubMedCentralCrossRef Zheng P-F, Chen L-Z, Guan Y-Z, Liu P. Weighted gene co-expression network analysis identifies specific modules and hub genes related to coronary artery disease. Sci Rep. 2021;11:6711.PubMedPubMedCentralCrossRef
41.
42.
Zurück zum Zitat Pulugulla SH, Packard TA, Galloway NLK, Grimmett ZW, Doitsh G, Adamik J, et al. Distinct mechanisms regulate IL1B gene transcription in lymphoid CD4 T cells and monocytes. Cytokine. 2018;111:373–81.PubMedPubMedCentralCrossRef Pulugulla SH, Packard TA, Galloway NLK, Grimmett ZW, Doitsh G, Adamik J, et al. Distinct mechanisms regulate IL1B gene transcription in lymphoid CD4 T cells and monocytes. Cytokine. 2018;111:373–81.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Yashiro T, Nakano S, Nomura K, Uchida Y, Kasakura K, Nishiyama C. A transcription factor PU.1 is critical for Ccl22 gene expression in dendritic cells and macrophages. Sci Rep. 2019;9:1161.PubMedPubMedCentralCrossRef Yashiro T, Nakano S, Nomura K, Uchida Y, Kasakura K, Nishiyama C. A transcription factor PU.1 is critical for Ccl22 gene expression in dendritic cells and macrophages. Sci Rep. 2019;9:1161.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Cui X, Wang Q, Zhou J, Wang Y, Xu C, Tong F, et al. Single-cell transcriptomics of glioblastoma reveals a unique tumor microenvironment and potential immunotherapeutic target against tumor-associated macrophage. Front Oncol. 2021;11: 710695.PubMedPubMedCentralCrossRef Cui X, Wang Q, Zhou J, Wang Y, Xu C, Tong F, et al. Single-cell transcriptomics of glioblastoma reveals a unique tumor microenvironment and potential immunotherapeutic target against tumor-associated macrophage. Front Oncol. 2021;11: 710695.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Liu C, Zhang H, Chen Y, Wang S, Chen Z, Liu Z, et al. Identifying RBM47, HCK, CD53, TYROBP, and HAVCR2 as hub genes in advanced atherosclerotic plaques by network-based analysis and validation. Front Genet. 2021;11: 602908.PubMedPubMedCentralCrossRef Liu C, Zhang H, Chen Y, Wang S, Chen Z, Liu Z, et al. Identifying RBM47, HCK, CD53, TYROBP, and HAVCR2 as hub genes in advanced atherosclerotic plaques by network-based analysis and validation. Front Genet. 2021;11: 602908.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Qiao A, Zhao Z, Zhang H, Sun Z, Cui X. Gene expression profiling reveals genes and transcription factors associated with dilated and ischemic cardiomyopathies. Pathol Res Pract. 2017;213:548–57.PubMedCrossRef Qiao A, Zhao Z, Zhang H, Sun Z, Cui X. Gene expression profiling reveals genes and transcription factors associated with dilated and ischemic cardiomyopathies. Pathol Res Pract. 2017;213:548–57.PubMedCrossRef
47.
Zurück zum Zitat Niu X, Zhang J, Zhang L, Hou Y, Pu S, Chu A, et al. Weighted gene co-expression network analysis identifies critical genes in the development of heart failure after acute myocardial infarction. Front Genet. 2019;10:1214.PubMedPubMedCentralCrossRef Niu X, Zhang J, Zhang L, Hou Y, Pu S, Chu A, et al. Weighted gene co-expression network analysis identifies critical genes in the development of heart failure after acute myocardial infarction. Front Genet. 2019;10:1214.PubMedPubMedCentralCrossRef
Metadaten
Titel
Identifying patterns of immune related cells and genes in the peripheral blood of acute myocardial infarction patients using a small cohort
verfasst von
Peng-Fei Zheng
Qiong-Chao Zou
Lu-Zhu Chen
Peng Liu
Zheng-Yu Liu
Hong-Wei Pan
Publikationsdatum
01.12.2022
Verlag
BioMed Central
Erschienen in
Journal of Translational Medicine / Ausgabe 1/2022
Elektronische ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-022-03517-1

Weitere Artikel der Ausgabe 1/2022

Journal of Translational Medicine 1/2022 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Echinokokkose medikamentös behandeln oder operieren?

06.05.2024 DCK 2024 Kongressbericht

Die Therapie von Echinokokkosen sollte immer in spezialisierten Zentren erfolgen. Eine symptomlose Echinokokkose kann – egal ob von Hunde- oder Fuchsbandwurm ausgelöst – konservativ erfolgen. Wenn eine Op. nötig ist, kann es sinnvoll sein, vorher Zysten zu leeren und zu desinfizieren. 

Umsetzung der POMGAT-Leitlinie läuft

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

Proximale Humerusfraktur: Auch 100-Jährige operieren?

01.05.2024 DCK 2024 Kongressbericht

Mit dem demographischen Wandel versorgt auch die Chirurgie immer mehr betagte Menschen. Von Entwicklungen wie Fast-Track können auch ältere Menschen profitieren und bei proximaler Humerusfraktur können selbst manche 100-Jährige noch sicher operiert werden.

Die „Zehn Gebote“ des Endokarditis-Managements

30.04.2024 Endokarditis Leitlinie kompakt

Worauf kommt es beim Management von Personen mit infektiöser Endokarditis an? Eine Kardiologin und ein Kardiologe fassen die zehn wichtigsten Punkte der neuen ESC-Leitlinie zusammen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.