Skip to main content
Erschienen in: European Journal of Pediatrics 9/2023

Open Access 17.07.2023 | RESEARCH

Impact of patent ductus arteriosus on non-invasive assessments of lung fluids in very preterm infants during the transitional period

verfasst von: Silvia Martini, Italo Francesco Gatelli, Ottavio Vitelli, Francesca Vitali, Francesca De Rienzo, Roberta Parladori, Luigi Corvaglia, Stefano Martinelli

Erschienen in: European Journal of Pediatrics | Ausgabe 9/2023

Abstract

This prospective observational study aimed to evaluate whether lung fluids, assessed by lung ultrasonography and transthoracic electrical bioimpedance (TEB), may be influenced by the presence of a haemodynamically significant patent ductus arteriosus (hsPDA) in very preterm infants during the transitional period. Infants < 32 weeks of gestational age (GA) admitted to the neonatal intensive care units of IRCCS AOU Bologna and Niguarda Metropolitan Hospital of Milan (Italy) underwent a daily assessment of a lung ultrasound score (LUS) and of a TEB-derived index of thoracic fluid contents (TFC) during the first 72 h after birth. Echocardiographic scans were simultaneously performed to evaluate the concomitant ductal status (hsPDA vs. restrictive or closed duct). The correlation between LUS, TFC, and the ductal status was tested using generalized estimating equations. Forty-six infants (median GA: 29 [interquartile range, IQR: 27–31] weeks; median birth weight: 1099 [IQR: 880–1406] g) were included. At each daily evaluation, the presence of a hsPDA was associated with significantly higher LUS and TFC compared with a restrictive or closed ductus (p < 0.01 for all comparisons). These results were confirmed significant even after adjustment for GA and for the ongoing modality of respiratory support.
 Conclusion: Even during the first 72 h of life, the presence of a hsPDA determines a significant increase in pulmonary fluids which can be non-invasively detected and monitored over time using lung ultrasonography and TEB.
What is Known:
• Lung ultrasonography provides a non-invasive assessment of lung fluids and is widely used in neonatal settings.
In preterm infants, the persistence of a haemodynamically significant patent ductus arteriosus (hsPDA) over the first weeks can negatively affect pulmonary outcomes.
What is New:
The presence of aan hsPDA is associated with increased lung fluids since early postnatal phases.
Lung ultrasonography and transthoracic electrical bioimpedance can effectively monitor lung fluid clearance in preterm infants with a hsPDA during the transitional period, with potential clinical implications.
Hinweise
Communicated by Daniele De Luca
Silvia Martini and Italo Francesco Gatelli contributed equally as co-first authors; Luigi Corvaglia and Stefano Martinelli contributed equally as co-senior authors.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
CI
Confidence interval
GA
Gestational age
GEEs
Generalized estimating equations
HsPDA
Haemodynamically significant patent ductus arteriosus
IQR
Interquartile range
LUS
Lung ultrasound score
LVO
Left ventricular output
NICUs
Neonatal Intensive Care Units
RDS
Respiratory distress syndrome
TEB
Transthoracic electrical bioimpedance
TFC
Thoracic fluid contents

Introduction

The reabsorption of lung fluids is crucial for the respiratory adaptation to extrauterine life. Together with the primary surfactant deficit, fluid retention in the alveoli ensuing from the immaturity of the related clearance systems is a major contributor to the development of respiratory distress syndrome (RDS) in preterm neonates.
The presence of a haemodynamically significant patent ductus arteriosus (hsPDA) with an excess left-to-right transductal shunting is frequent among very preterm infants during early postnatal phases. Consistently with the resulting pulmonary overflow, which contributes to the accumulation of alveolar fluids, hsPDA has been associated with a fourfold increase of RDS risk [1].
Monitoring lung fluid clearance in preterm infants with RDS and hsPDA may provide potentially useful information for their therapeutic management. Lung ultrasonography is widely used for non-invasive assessment of lung fluids in preterm neonates [2]. Recently, transthoracic electrical bioimpedance (TEB) has also been adopted to monitor thoracic fluid contents (TFC) in the neonatal population [35]. Nevertheless, the impact of an hsPDA on pulmonary fluids during early postnatal phases, which are at greatest risk for RDS development, has not been investigated using these techniques.
This study aimed to evaluate whether the presence of a hsPDA in very preterm infants during the transitional period may influence lung fluids, assessed non-invasively by lung ultrasonography and TEB.

Methods

The present study involves a sub-analysis of a prospective observational research conducted at the neonatal intensive care units (NICUs) of IRCCS AOU Bologna (Bologna, Italy) and Grande Ospedale Metropolitano Niguarda (Milan, Italy) from May 2020 to January 2022. Infants < 32 weeks’ gestational age (GA) with RDS, defined by an acute respiratory failure with onset within the first 24 h of life, accompanied by evidence of the presence of diffuse, bilateral, irregular lung opacities or infiltrates at chest radiography (if performed) and responsive to lung-recruiting ventilatory strategies and/or to surfactant treatment [6], were included in this sub-analysis. Major congenital malformations, congenital heart disease, perinatal asphyxia, meconium aspiration and pneumothorax were exclusion criteria. Both centers adopted similar protocols for fluid intakes, for the ventilatory management and for surfactant administration in preterm neonates, based on the European Consensus Guidelines on RDS management [7]. The study centers also shared a similar approach for hsPDA pharmacological closure, which was considered if echocardiographic evidence of a hsPDA persisted after 72 h of life or earlier, in case of systemic hypotension requiring inotropic support. The study was conducted in conformity with the Helsinki Declaration principles and approved by the local Ethic Committees (Area Vasta Emilia Centro-AVEC, approval ID:092/201/Oss/AOUBo; Comitato Etico Milano Area3, approval ID:48-12022020). Written, informed consent was obtained from the infants’ parents.
During the first 72 h of life, the enrolled infants underwent daily assessments of lung ultrasonography and echocardiography. Lung ultrasound findings were classified using a validated lung ultrasound score (LUS) assigning the following scores to six pulmonary fields: 0: only A-lines or < 3 B-lines; 1: ≥ 3 B-lines; 2: crowded and confluent B-lines with or without consolidations; 3: significant consolidations [8]. Echocardiographic assessments evaluated the presence of a patent ductus arteriosus and the related echocardiographic features (i.e., diameter, transductal pattern and shunts, left atrial-to-aortic root ratio). A hsPDA was defined by an internal diameter ≥ 1.5 mm or a ductal diameter-to-left pulmonary artery ratio ≥ 0.5 and ≥ 1 of the following criteria: left atrium-to-aortic root ratio ≥ 1.6; ductus flow velocity ≤ 2.5 m/sec or mean transductal pressure gradient ≤ 8 mmHg; left pulmonary artery diastolic flow velocity > 0.2 m/sec; reversed diastolic flow in the descending aorta.
Simultaneously to the sonographic assessments, a 1-h monitoring of TFC and left ventricular output (LVO) was performed using TEB (ICON®, Osypka Medical GmbH, Berlin, Germany) with a beat-to-beat sampling frequency. After the recording, the traces were checked to rule out potential artifacts; the signal goodness was also assessed to improve artifact detection as previously described [9]. Averaged TFC and LVO values were indexed for the infants’ weight and used for statistical analysis.
The modality of respiratory support ongoing at each daily assessment was classified as non-invasive (continuous or bilevel positive airway pressure, nasal intermittent positive pressure ventilation) or invasive (conventional or high-frequency oscillatory ventilation via an endotracheal tube) and used as a proxy of RDS severity.

Statistical analysis

Data distribution was tested using the Shapiro–Wilk test. Categorical variables were summarized as frequencies and percentages. Since the data did not follow normal distribution, numerical variables were summarized as median (interquartile range [IQR]), and between-group comparisons of daily LUS, TFC, and LVO values were performed using the Mann–Whitney U test. To account for repeated measurements on each subject, the independent effect of hsPDA on TFC and LUS, net of such influencing covariates as GA and the modality of respiratory support, was evaluated using generalized estimating equations (GEEs). Since the ductal features and the modality of respiratory support changed over the study period, these variables were handled as time-dependent covariates, and their daily status was included in the GEEs. Statistical analysis was performed using SPSS version 27 (IBM, Armonk, NY). Significance level was set at p < 0.05.

Results

Forty-six preterm infants (median GA 29 [interquartile range, IQR: 27–31] weeks; median birth weight 1099 [IQR 880–1406] g) were included. All the included infants were longitudinally sampled on days 1, 2, and 3. The prevalence of a hsPDA on days 1, 2, and 3 was 26/46 (56.5%), 14/46 (30.4%), and 8/46 (17.4%), respectively; in 4 infants, pharmacological closure of the hsPDA was undertaken on day 3 due to the occurrence of systemic hypotension requiring inotropes. Forty-three (93.5%) out of 46 infants had echocardiographic evidence of a foramen ovale. Invasive ventilation was required by 14/46 infants (30.4%) on day 1, 12/46 (26.1%) on day 2, and 11/46 (23.9%) on day 3. Of the 14 infants who required an invasive respiratory support on day 1, 7 were placed on conventional modalities and 7 on high-frequency oscillatory ventilation with a median MAP of 11 cmH2O. All the infants requiring invasive ventilation received endotracheal surfactant before the first LUS and TFC assessment; for this reason, this variable was not included in the multivariable analysis.
As detailed in Table 1, compared to those with a restrictive or a closed duct, infants with a hsPDA showed significantly higher LUS and TFC values as well as a significantly increased LVO on days 1, 2, and 3.
Table 1
Comparison of daily lung ultrasound scores (LUS), thoracic fluid contents (TFC), and left ventricular output (LVO) between infants with a haemodynamically significant patent ductus arteriosus (hsPDA) and those with a restrictive or closed duct
 
HsPDA
Restrictive or closed duct
P-value
LUS, median (IQR)
Day 1
10 (7–12)
4 (2–9)
0.004
Day 2
12 (10–12)
5 (2–10)
< 0.001
Day 3
12 (11–12)
7 (2–11)
0.004
TFC (KOhm−1), median (IQR)
Day 1
49 (41–57)
36 (29–44)
< 0.001
Day 2
49 (43–57)
40 (31–48)
0.008
Day 3
54 (50–58)
36 (30–44)
< 0.001
LVO (ml/kg/min), median (IQR)
Day 1
300 (282–400)
257 (230–308)
0.014
Day 2
343 (297–398)
279 (230–310)
0.014
Day 3
307 (240–482)
264 (235–323)
0.045
The GEE results confirmed that the presence of a hsPDA significantly increased LUS (β = 2.821 [95%CI 1.315–4.326], p < 0.001) and TFC (β = 6.183 [95%CI 2.422–9.944], p < 0.001) compared with a restrictive or closed ductus; estimated mean values of both parameters in relation to the ductal status are illustrated in Fig. 1. Ongoing invasive ventilation was also associated with significantly higher LUS (β = 2.194 [95%CI 0.382–4.006], p = 0.018) and TFC (β = 4.762 [95%CI 0.234–9.289], p = 0.039), whereas an inverse relationship between TFC and GA was observed (β = − 2.099 [95% CI–3.003; − 1.195], p < 0.001).

Discussion

According to the present results, a combined monitoring of lung ultrasonography and TEB in very preterm neonates during the transitional period may effectively detect the effects of a hsPDA on lung fluids. Compared to a closed or restrictive ductus, the presence of a hsPDA was independently associated with significantly higher LUS and TFC values, suggestive of increased lung fluids. As reflected by the increased LVO observed in hsPDA infants, this finding is consistent with the effects of the pulmonary overflow resulting from the excess left-to-right transductal shunting.
Lung ultrasonography has been largely adopted in neonatal care to assess infants with RDS [10, 11]. TEB has also been used to monitor thoracic fluids in RDS neonates and can provide a continuous trend monitoring of their clearance [35]. Recently, Savoia et al. combined both techniques to assess LUS and LVO in infants with a hsPDA undergoing surgical ligation and reported a significant LUS and LVO drop after the procedure, consistently with the cessation of pulmonary overflow [12]. To the best of our knowledge, however, this is the first study assessing the impact of a hsPDA on pulmonary fluids during the early postnatal phase using a combined serial monitoring of lung ultrasonography and TEB.
Evidence of lung fluids accumulation in infants with a hsPDA since the early postnatal phase may entail potentially relevant clinical implications. Since the lung fluid accumulation ensuing from the transductal shunting may contribute to the severity of respiratory distress or to its persistence, infants with RDS and echocardiographic evidence of a hsPDA may benefit from a careful balance of fluid intakes during the postnatal transition. A recent survey investigating fluid management in preterm infants with a hsPDA has highlighted a lack of standardization and wide variability among Italian NICUs [13]; in this regard, serial evaluations of LUS and TFC could provide useful information on lung fluid clearance and could be used to monitor the response to fluid-targeted (e.g., intravenous fluid restriction, diuretics) or ventilatory treatment strategies (e.g., increased positive end-expiratory pressure) in these infants. However, whether this information could be used to assist clinicians in the decision-making process on pharmacological hsPDA closure falls outside the aims of our study.
The association between hsPDA persistence and later BPD development has been largely documented [14]. We have previously reported an increased BPD risk in association with TFC values > 41 and LUS > 9 during the transitional period. In the present study, infants with a hsPDA maintained TFC and LUS values above these thresholds throughout the whole monitoring period. Although our findings may suggest a role for early lung fluid overload secondary to hsPDA on later BPD development, this correlation cannot be directly established from the present data.
The small study sample represents needs to be acknowledged as a main limitation. Although similar criteria for fluid management, hsPDA closure, mechanical ventilation, extubation, and surfactant administration were adopted in the two centers, the bicentric nature of the study may limit the generalizability of the present results, which, therefore, need to be validated on larger samples. Moreover, the possible impact of ventilation parameters on LUS and hsPDA could not be assessed in the present study, thus posing a potential bias.
In conclusion, the presence of a hsPDA can have a significant impact on pulmonary fluids since the early postnatal phase. Lung fluid clearance in preterm infants with RDS and a hsPDA can be quantitatively monitored using such non-invasive techniques as lung ultrasounds and TEB, which may add potentially useful information for an individualized management of this population. Nevertheless, further targeted studies are required to validate these findings and to assess their pathophysiological impact on later pulmonary outcomes.

Declarations

Ethics approval

The study protocol was approved by the local Ethics Committees (Area Vasta Emilia Centro-AVEC, approval ID:092/201/Oss/AOUBo; Comitato Etico Milano Area3, approval ID:48-12022020).
The consent for participation was obtained from the parents or legal guardians of the enrolled infants.
N/A.

Conflict of interest

The authors declare no competing interests.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Pädiatrie

Kombi-Abonnement

Mit e.Med Pädiatrie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Pädiatrie, den Premium-Inhalten der pädiatrischen Fachzeitschriften, inklusive einer gedruckten Pädiatrie-Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Liu C, Zhu X, Li D, Shi Y (2020) Related factors of patent ductus arteriosus in preterm infants: a systematic review and meta-analysis. Front Pediatr 8:605879CrossRefPubMed Liu C, Zhu X, Li D, Shi Y (2020) Related factors of patent ductus arteriosus in preterm infants: a systematic review and meta-analysis. Front Pediatr 8:605879CrossRefPubMed
2.
Zurück zum Zitat Raimondi F, Yousef N, Migliaro F, Capasso L, De Luca D (2021) Point-of-care lung ultrasound in neonatology: classification into descriptive and functional applications. Pediatr Res 90(3):524–531CrossRefPubMed Raimondi F, Yousef N, Migliaro F, Capasso L, De Luca D (2021) Point-of-care lung ultrasound in neonatology: classification into descriptive and functional applications. Pediatr Res 90(3):524–531CrossRefPubMed
3.
Zurück zum Zitat Yoon SJ, Han JH, Cho KH, Park J, Lee SM, Park MS (2022) Tools for assessing lung fluid in neonates with respiratory distress. BMC Pediatr 22(1):354CrossRefPubMedPubMedCentral Yoon SJ, Han JH, Cho KH, Park J, Lee SM, Park MS (2022) Tools for assessing lung fluid in neonates with respiratory distress. BMC Pediatr 22(1):354CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Paviotti G, De Cunto A, Moressa V, Bettiol C, Demarini S (2017) Thoracic fluid content by electric bioimpedance correlates with respiratory distress in newborns. J Perinatol 37(9):1024–1027CrossRefPubMed Paviotti G, De Cunto A, Moressa V, Bettiol C, Demarini S (2017) Thoracic fluid content by electric bioimpedance correlates with respiratory distress in newborns. J Perinatol 37(9):1024–1027CrossRefPubMed
5.
Zurück zum Zitat Martini S, Gatelli IF, Vitelli O, Galletti S, Camela F, De Rienzo F et al (2023) Prediction of respiratory distress severity and bronchopulmonary dysplasia by lung ultrasounds and transthoracic electrical bioimpedance. Eur J Pediatr 182(3):1039–1047CrossRefPubMed Martini S, Gatelli IF, Vitelli O, Galletti S, Camela F, De Rienzo F et al (2023) Prediction of respiratory distress severity and bronchopulmonary dysplasia by lung ultrasounds and transthoracic electrical bioimpedance. Eur J Pediatr 182(3):1039–1047CrossRefPubMed
6.
Zurück zum Zitat De Luca D, van Kaam AH, Tingay DG, Courtney SE, Danhaive O, Carnielli VP et al (2017) The Montreux definition of neonatal ARDS: biological and clinical background behind the description of a new entity. Lancet Respir Med 5:657–666CrossRefPubMed De Luca D, van Kaam AH, Tingay DG, Courtney SE, Danhaive O, Carnielli VP et al (2017) The Montreux definition of neonatal ARDS: biological and clinical background behind the description of a new entity. Lancet Respir Med 5:657–666CrossRefPubMed
7.
Zurück zum Zitat Sweet DG, Carnielli V, Greisen G, Hallman M, Ozek E, Te Pas A et al (2019) European consensus guidelines on the management of respiratory distress syndrome - 2019 update. Neonatology 115:432–450CrossRefPubMed Sweet DG, Carnielli V, Greisen G, Hallman M, Ozek E, Te Pas A et al (2019) European consensus guidelines on the management of respiratory distress syndrome - 2019 update. Neonatology 115:432–450CrossRefPubMed
8.
Zurück zum Zitat Brat R, Yousef N, Klifa R, Reynaud S, Shankar Aguilera S, De Luca D (2015) Lung ultrasonography score to evaluate oxygenation and surfactant need in neonates treated with continuous positive airway pressure. JAMA Pediatr 169(8):e151797CrossRefPubMed Brat R, Yousef N, Klifa R, Reynaud S, Shankar Aguilera S, De Luca D (2015) Lung ultrasonography score to evaluate oxygenation and surfactant need in neonates treated with continuous positive airway pressure. JAMA Pediatr 169(8):e151797CrossRefPubMed
9.
Zurück zum Zitat Boet A, Jourdain G, Demontoux S, De Luca D (2016) Stroke volume and cardiac output evaluation by electrical cardiometry: accuracy and reference nomograms in hemodynamically stable preterm neonates. J Perinatol 36(9):748–752CrossRefPubMed Boet A, Jourdain G, Demontoux S, De Luca D (2016) Stroke volume and cardiac output evaluation by electrical cardiometry: accuracy and reference nomograms in hemodynamically stable preterm neonates. J Perinatol 36(9):748–752CrossRefPubMed
10.
Zurück zum Zitat Corsini I, Parri N, Gozzini E, Coviello C, Leonardi V, Poggi C et al (2019) Lung ultrasound for the differential diagnosis of respiratory distress in neonates. Neonatology 115(1):77–84CrossRefPubMed Corsini I, Parri N, Gozzini E, Coviello C, Leonardi V, Poggi C et al (2019) Lung ultrasound for the differential diagnosis of respiratory distress in neonates. Neonatology 115(1):77–84CrossRefPubMed
11.
Zurück zum Zitat Raimondi F, Migliaro F, Corsini I, Meneghin F, Dolce P, Pierri L et al (2021) Lung ultrasound score progress in neonatal respiratory distress syndrome. Pediatrics 147(4) Raimondi F, Migliaro F, Corsini I, Meneghin F, Dolce P, Pierri L et al (2021) Lung ultrasound score progress in neonatal respiratory distress syndrome. Pediatrics 147(4)
12.
Zurück zum Zitat Savoia M, McNamara PJ, Titolo A, Cattarossi L (2022) Lung ultrasound score parallels trends in systemic haemodynamics after PDA ligation: a case series. Eur J Pediatr 181(6):2541–2546CrossRefPubMed Savoia M, McNamara PJ, Titolo A, Cattarossi L (2022) Lung ultrasound score parallels trends in systemic haemodynamics after PDA ligation: a case series. Eur J Pediatr 181(6):2541–2546CrossRefPubMed
13.
Zurück zum Zitat Francescato G, Capolupo I, Cerbo RM, Doni D, Ficial B, Fiocchi S et al (2023) Fluid restriction in management of patent ductus arteriosus in Italy: a nationwide survey. Eur J Pediatr 182(1):393–401CrossRefPubMed Francescato G, Capolupo I, Cerbo RM, Doni D, Ficial B, Fiocchi S et al (2023) Fluid restriction in management of patent ductus arteriosus in Italy: a nationwide survey. Eur J Pediatr 182(1):393–401CrossRefPubMed
14.
Zurück zum Zitat Mirza H, Garcia J, McKinley G, Hubbard L, Sensing W, Schneider J et al (2019) Duration of significant patent ductus arteriosus and bronchopulmonary dysplasia in extremely preterm infants. J Perinatol 39(12):1648–1655CrossRefPubMed Mirza H, Garcia J, McKinley G, Hubbard L, Sensing W, Schneider J et al (2019) Duration of significant patent ductus arteriosus and bronchopulmonary dysplasia in extremely preterm infants. J Perinatol 39(12):1648–1655CrossRefPubMed
Metadaten
Titel
Impact of patent ductus arteriosus on non-invasive assessments of lung fluids in very preterm infants during the transitional period
verfasst von
Silvia Martini
Italo Francesco Gatelli
Ottavio Vitelli
Francesca Vitali
Francesca De Rienzo
Roberta Parladori
Luigi Corvaglia
Stefano Martinelli
Publikationsdatum
17.07.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Pediatrics / Ausgabe 9/2023
Print ISSN: 0340-6199
Elektronische ISSN: 1432-1076
DOI
https://doi.org/10.1007/s00431-023-05106-w

Weitere Artikel der Ausgabe 9/2023

European Journal of Pediatrics 9/2023 Zur Ausgabe

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Medizinstudium Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Häufigste Gründe für Brustschmerzen bei Kindern

06.05.2024 Pädiatrische Diagnostik Nachrichten

Akute Brustschmerzen sind ein Alarmsymptom par exellence, schließlich sind manche Auslöser lebensbedrohlich. Auch Kinder klagen oft über Schmerzen in der Brust. Ein Studienteam ist den Ursachen nachgegangen.

Endlich: Zi zeigt, mit welchen PVS Praxen zufrieden sind

IT für Ärzte Nachrichten

Darauf haben viele Praxen gewartet: Das Zi hat eine Liste von Praxisverwaltungssystemen veröffentlicht, die von Nutzern positiv bewertet werden. Eine gute Grundlage für wechselwillige Ärztinnen und Psychotherapeuten.

Durch übermäßige Internetnutzung wird oft die Schule verpasst

Häufige Fehlzeiten in der Schule können durch physische und psychische Probleme verursacht werden. Wie in einer Studie aus Finnland nun belegt wird, führt auch die exzessive Nutzung des Internets gehäuft zu Abwesenheiten.

Update Pädiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.