Skip to main content
Erschienen in: BMC Oral Health 1/2020

Open Access 01.12.2020 | Research article

Impacts of contracted endodontic cavities compared to traditional endodontic cavities in premolars

verfasst von: Juan Xia, Weidong Wang, Zhengmao Li, Bingpeng Lin, Qian Zhang, Qianzhou Jiang, Xuechao Yang

Erschienen in: BMC Oral Health | Ausgabe 1/2020

Abstract

Background

This study aims to compare the percentage of dentin removed, instrumentation efficacy, root canal filling and load at fracture between contracted endodontic cavities, and traditional endodontic cavities on root canal therapy in premolars.

Methods

Forty extracted intact human first premolars were imaged with micro-CT and randomly assigned to the contracted endodontic cavity (CEC) or traditional endodontic cavity (TEC) groups. CEC was prepared with the aid of a 3D-printed template, canals were prepared with a 0.04 taper M-Two rotary instrument, and cavities were restored with resin. Specimens were loaded to fracture in an Instron Universal Testing Machine after a fatigue phase. The data were analyzed by the independent samples T test and Mann-Whitney U test, appropriate post hoc tests.

Results

In the premolars tested in vitro, the percentage of dentin removed in the premolars with two dental roots in the CEC group (3.85% ± 0.42%) was significantly smaller (P < 0.05) than in the TEC group (4.94% ± 0.5%). The untouched canal wall (UCW) after instrumentation for TECs (16.43% ± 6.56%) was significantly lower (P < .05) than the UCW (24.42% ± 9.19%) for CECs in single-rooted premolars. No significant differences were observed in the increased canal volume and surface areas in premolars between the TEC and CEC groups (P > 0.05). CECs conserved coronal dentin in premolars with two dental roots but no impact on the instrument efficacy.
There were no differences between the CEC groups and the TEC groups in the percentage of filling material and voids (P > 0.05). In addition, the mean load at failure of premolars did not significantly differ between the CEC and TEC groups and there was no significant difference in the type of fracture (P > 0.05).

Conclusion

The results of this study suggest that CEC could not improve the fracture resistance of the endodontically treated premolars. The instrumentation efficacy and the percentage of filling material did not significantly differ between CECs and TECs in premolars.
Hinweise
Juan Xia and Weidong Wang contributed equally to this work.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
CEC
Contracted endodontic cavity
TEC
Traditional endodontic cavity
3D
Three-dimensional
MIE
Minimally invasive endodontics
PCD
Pericervical dentin
CBCT
Cone-beam computed tomography
RCT
Root canal therpy
Micro-CT
Micro computed tomography

Background

Endodontic treatment is a procedure that consists of several steps aiming to retain the normal function of the treated tooth or prevent or heal the periapical periodontitis. The principle of access and coronal cavity preparation is the straight-line pathways into root canals to enhance instrumentation efficacy and prevent complications [1, 2]. The treatment associated loss of tooth structure could undermine the biomechanical responses of the tooth [3], especially in endodontically treated teeth [4].
Today, materials and novel concepts, including the development of nickel-titanium instruments and the concept of minimally invasive endodontics (MIE), are rapidly changing. MIE is characterized by “systematic respect for the original tissue” and “preventing or treating disease with as little loss of original tissue as possible [5].
Contracted endodontic cavities (CECs), which were inspired by the concepts of MIE, emphasize endodontically treated tooth structure preservation, including pericervical dentin (PCD). The preservation of PCD is important for dental structure and is associated with a long-term survival benefit [6].
Three-dimensional (3D) printing is widely used for preoperative planning and procedure rehearsal [7], orthognathic surgery [8], custom prosthetic design [9], endodontics [10, 11] and surgical guidance [12]. Besides, it would be a useful educational tool for teaching and to enhance communication between the patient and doctors. 3D printing technology could achieve precise design, positioning, and good communication before the operation. Therefore, this technology has been applied in a clinic more extensively to achieve good treatment outcomes [13, 14], besides the accuracy and safety for 3D printed template have been proved [15, 16]. This research was aimed to design the 3D printed template for endodontic cavities and explore the clinical significance of 3D printed template in endodontics.
In this study, systematic measurement, including, the percentage of dentin removed, instrumentation efficacy, the increased canal volume and surface areas, the increased sectional area, the percentage of the filling material, and fracture resistance of premolars was conducted. We systematic compare the effect of the percentage of the filling material and fracture resistance of premolars with contracted endodontic cavities.

Methods

Selection of teeth

The present study was approved by the Ethics Committee of the Hospital of Stomatology, Guangzhou Medical University (KY-2017-012). Forty human first premolars from an orthodontic tooth extraction in the oral and maxillofacial surgery department were collected extracted, informed written consent was obtained from each patient. Soft and hard tissue residuals on the surfaces of the teeth were removed using an ultrasonic scaler. All teeth had a fully formed apex without any defects or cracks on the surface and had no history of restoration. A curvature of 0–20°, according to Schneider [17] on buccolingual and mesiodistal radiographs was selected. The selected teeth were of similar dimensions. The evaluation of the sample selection was done by computerized microcomputed tomography, All teeth were numbered and assigned into four groups (n = 10/ each group) according to the random number table. CEC groups, Group 1: single-rooted mandibular first premolars with one root canal, Vertucci’s classification typeI; Group 2: two-rooted maxillary first premolars with double root canals, Vertucci’s classification type IV. TEC groups, Group 3: single-rooted mandibular first premolars with one root canal, Vertucci’s classification typeI; Group 4: two-rooted maxillary first premolars with double root canals, Vertucci’s classification type IV. All the datas were evaluated using CBCT. There was no statistically significant difference (P > 0.05) in BL, MD, or tooth root length between the CEC and TEC groups. The teeth were kept in 1% chloramine T trihydrate at room temperature until use.

Manufacture of 3D-printed template

The guided access cavity was prepared using cone-beam computed tomography and optical surface scans. A high-resolution cone-beam computed tomography (CBCT) scan was taken to determine the exact location of the root canal. The drill was virtually superimposed on the root canal to plan the CEC outlines by projecting the access trajectory in each canal orifice that required the least tooth structure removal in Simplant (SIMPLANT, Materialise Dental, Leuven, Belgium) (Fig. 1). The data were then imported into Freeform (Geomagic Freeform, 3D Systems, Morrisville, North Carolina, USA). According to the location of the drill in Simplant, we made a guide template with straight-line pathways into the tooth canal. Additionally, we also designed a 3D printed cylindrical lampstand with a 0.2 mm gap to simulate the periodontal ligament for every specimen. The digitally designed template and 3D printed cylindrical lampstand were exported as STL-file and then were sent to a 3D printer (3D System 3510HB, 3D Systems, Morrisville, North Carolina, USA).

Root canal preparation between TECs and CECs

First of all, the teeth were imaged with micro-CT (SkyScan 1172; Bruker micro-CT, Kontich, Belgium) imaging at 20 μm (pretreatment scan) to capture the original canal shape and volume of tooth tissue. In CEC preparation, a 3D-printed template was positioned on the tooth model (Fig. 1), and a guiding sleeve was placed on the hole.
CECs were drilled with long diamond burs (MANI SF-11, MANI INC, Japan) at high speed. The CEC access attested the distal and mesial accesses could be directed towards their respective orifices, which kept back the truss of dentin between the cavities. In the TEC group, conventional access cavities were prepared. After initial preparation with pathfile instruments (Dentsply Maillefer, Ballaigues, Switzerland), canals were prepared with 0.04 taper M-Two rotary instruments (VDW company, Munich, Germany) to size 35#. These instruments were used in a standard technique, The canals were irrigated with 3 ml of 5.25% sodium hypochlorite (Guangzhou Hui Fan company, Guangzhou, China) between use of each instrument, and then, each canal was irrigated with 5.25% sodium hypochlorite followed by irrigation for 30 s with ultrasonic oscillation tip (K15/21–25, SATELEC, France) coupled with an ultrasound device (SATELEC P5XS, Merignac, France) at power 7. After cleaning and shaping, the teeth were imaged again with micro-CT imaging at 20 μm (posttreatment scan) to capture the instrumented canal shape and volume of tooth tissue for comparative the differences. All canals were obturated with gutta-percha cones (Dentsply Sirona, New York, Pennsylvania, USA) and AH Plus sealer (Dentsply DeTrey, Konstanz, Germany). The thermoplastic continuous wave of condensation technique was used for obturation using a B&L-beta Gutta Percha Heating System (B&L Biotech, Inc., Korea). Smart Dentin Replacement (Dentsply, DE, USA) was used to imitate the lost dentin tissue, and 2 mm composite resin restorative material (SHOFU, Kyoto, Japan) was placed on the canal opening. The teeth were stored in physiological saline at 37 °C for 1 week. After that, each specimen was subjected to micro-CT imaging at 20 μm (finished scan).

Load at fracture

After root canal filling and micro-CT scanning, teeth with a 3D printed cylindrical lampstand were mounted in an Instron Testing machine (E3000, Instron, High Wycombe, UK). The specimens were subjected to 500000 loading cycles in the Instron Testing machine (E3000) axial forces, directed at a 135 angle from the long axis of the tooth [18], between 5 N–50 N at 15 HZ to simulate approximately 2 years of chewing function [19, 20]. After this fatigue phase, the specimens were placed in the Instron Universal Testing machine (E3366, Instron, MA, America). Each tooth was loaded at the central fossa at 135° from the tooth long axis to simulate a maximum bending motion of the tooth at buccal cervical areas [8]. A continuous compressive force was applied with a 2-mm spherical crosshead at 1 mm/min until failure occurred, which was defined as a 25% drop in the applied force [21] (Fig. 2a). The load at fracture was recorded in Newton (N), and the type of fracture was recorded (Fig. 2b).

Evaluation methodology

After reconstruction with NRecon (Bruker micro CT, Kontich, Belgium) software, the volume of the tooth tissue was analyzed with CT-AN software (Bruker micro CT, Kontich, Belgium), we selected appropriate CT value as the segmentation of tooth volume. After the pretreatment scan and post-treatment scan were aligned in Data Viewer software (Bruker micro CT, Kontich, Belgium), the increased canal volume and surface areas after root canals shaped during the two different access opening procedures were measured using CT-An software. The proportion of untouched canal wall (UCW) in the canals was determined with 3-Matic (Fig. 3), and we measured the sectional section of 1, 3, and 5 mm from the apical and the deviation of the central point in Solid Work (Dassault, France) (Fig. 4). The percentage volume of root filling materials and any voids inside the region of interest were calculated in CT-An software, and all areas without filling within the root canal space were considered voids.

Statistical analysis

The data were analyzed using IBM SPSS Statistics 16 software (Armonk, NY, USA), it was compared with independent samples T-tests, and the Mann-Whitney U test, P < .05 was considered significant.

Results

The percentage of dentin removed in the premolars with two dental roots in the CEC group (3.85% ± 0.42%) was significantly smaller (P < 0.05) than in the TEC group (4.94% ± 0.5%). The UCW after instrumentation for TECs (16.43% ± 6.56%) was significantly lower (P < 0.05) than the UCW (24.42% ± 9.19%) for CECs in single-rooted premolars (Table 1). No significant differences were observed in the increased canal volume and surface areas in premolars between the TEC and CEC groups (P > 0.05). In the premolars with two dental roots, the increased sectional area of 1, 3, and 5 mm from the major apical foramen was significantly greater (P < 0.05) in the CEC group than in the TEC group. The deviation of the central point after instrumentation for TECs was significantly smaller (P < 0.05) than that for CECs. There was no significant difference (P > 0.05) between the TEC and CEC groups in the increased sectional area and the deviation of the central point in single-rooted premolars. Micro-CT analysis revealed that there were no differences between the CEC groups and the TEC groups in the percentage of filling material and voids (P > 0.05) (Table 2). In general, the mean load at failure of premolars did not significantly differ between the CEC and TEC groups, and there was no significant difference in the type of fracture (P > 0.05) (Table 3).
Table 1
Unmodified canal wall after CEC or TEC preparation and root canal instrumentation in premolars assessed by Micro-CT imaging
Tooth type (n = 10)
UCW (% of total canal wall surface)
P value
CEC
TEC
Single-rooted premolars
24.42 ± 9.19%
16.43 ± 6.56%
0.038
Two dental root premolars
18.62 ± 5.85%
21.28 ± 8.91%
0.441
Table 2
Mean values ± standard deviations of the filling material and voids volume in premolars assessed by Micro-CT imaging
Groups
Region
Filling material (%)
Voids (%)
TEC (single-rooted premolars)
All
95.35 ± 2.94
4.65 ± 2.94
Cervica
94.52 ± 3.69
5.48 ± 3.69
Middle
96.28 ± 2.72
3.72 ± 2.72
Apical
96.53 ± 3.72
3.47 ± 3.72
CEC (single-rooted premolars)
All
96.78 ± 1.81
3.23 ± 1.81
Cervical
96.83 ± 1.76
3.17 ± 1.76
Middle
97.36 ± 2.73
2.64 ± 2.74
Apical
98.29 ± 1.51
1.71 ± 1.51
TEC (two dental roots premolars)
All
91.59 ± 3.48
8.41 ± 3.48
Cervical
89.82 ± 4.1
10.18 ± 4.1
Middle
95.34 ± 3.27
4.66 ± 3.27
Apical
95.07 ± 5.13
4.93 ± 5.13
CEC (two dental roots premolars)
All
91.07 ± 6.38
8.93 ± 6.38
Cervical
88.45 ± 9.06
11.55 ± 9.06
Middle
93.75 ± 5.55
6.25 ± 5.55
Apical
96.87 ± 3.49
3.13 ± 3.49
CEC contracted endodontic cavity, TEC traditional endodontic cavity
No statistically significant difference was observed between groups throughout the canal in each region (p > .05)
Table 3
Load at fracture (mean values ± standard deviations) for premolars with CEC or TEC assessed in the Instron Universal Testing Machine
Tooth type (n = 10)
UCW (% of total canal wall surface)
P value
CEC
TEC
Single-rooted premolars
926.90 ± 194.97
888.57 ± 165.73
0.64
Two dental root premolars
665.09 ± 168.74
630.95 ± 159.81
0.88

Discussion

Mininally invasive endodontics is widely accepted nowadays and attracted extensive attention. With the development of advanced equipments and techniques, such as CBCT, dental microscope, nickel-titanium instrument, as well as the single-cone technique. According to the concept, tooth structure preservation turn out to be the prime concern during an endodontic procedure. Recently, contracted endodontic cavity has been put forward to protect dental tissue as much as possible. However, this may lead to difficulty in operating due to the small operating space, insufficient visible light, and may also cause apical transportation, ledge, and instrument fracture. By analysis and compare systematically for the impact of contracted endodontic cavities and traditional endodontic cavities in premolars, the present study aims to provide references and advice to clinicians.
The result suggested that apical transportation after instrumentation for CEC was significantly bigger (P < 0.05) than TECs in premolars with two dental roots, and no instrument fracture was experienced, which means although the apical transportation of CEC was bigger in premolars with two dental roots, with the appropriate straight path to a root canal, there is a small probability that instrument fracture occurred in premolars. There was no significant difference (P > 0.05) between the TEC and CEC groups in the increased sectional area and the deviation of the central point in single-rooted premolars, which means it is safe and effective in single-rooted teeth.
Contracted endodontic cavities (CECs), as an alternative to traditional endodontic cavities, have been researched widely. So far, the outcomes and fracture resistance of CECs on root canal preparation still limited and controversial. Some studies showed that there was no difference between CECs and TECs in mean failure load in maxillary molars [22]. The type of access cavity does not influence the amount of remaining pulp tissue in root canals and isthmus in maxillary first molars [23]. Similarly, TECs lead to better preservation of the original canal anatomy in maxillary first permanent molars [24]. Most of the previous researches were focused on the efficacy of CECs and TECs treatment in maxillary molars, rarely in premolars. Firstly, the anatomy of premolars is complex and variation; secondly, the concentration of masticatory forces in premolars is big and the cervical of premolars is small; last but not least premolars are more likely to break after root canal therapy; therefore, minimally invasive endodontics in premolars is of great significance.
It is reported that guided endodontics printed templates have been used to locate all root canals in the apical third of teeth with pulp canal calcification and apical pathology with the aid of 3D printing technology and digital dentistry [16, 21]. In this research, we used guided endodontics printed templates for minimal cavity access, which acquired the least tooth structure removal and projected the access trajectory to each canal orifice. Contracted endodontic cavity with the aid of 3D-printed template seems to be a safe, clinically feasible method for locating root canals.
A previous study reported that CEC seems to exhibit better preservation of the original canal anatomy, particularly at the crown level, including incisors, premolars, and molars with TEC [25]. The conservative endodontic cavity, which could keep back the truss of dentin between the cavities, could save more dental tissue in premolars with two dental roots. Although more tooth tissue was retained, there was no obvious increase in the fracture resistance. It is probably because the volume of premolars themselveswas small, the increased fracture resistance of reserved coronal dentin could not offset the decreased amount that caused by RCT. Hence, further studies and a larger amount of simples are needed.
According to Neelakantan’report, Root canal was divided into coronal, middle and apical apart [18]. In the present research, due to similar sample size, it could avoid the difference of measurement and analysis caused by the differences of sample length.
Canal and crown boundaries were demarcated at the buccal-lingual level of the cementoenamel junction in single-rooted premolars, and canal boundaries were demarcated in root separation in premolars with two dental roots, all analyses were calculated separately for the cervical, middle, and apical thirds of the canal. Micro-CT allowed the 3D anatomy assessment of root canal fillings and voids, the results obtained in our study did not show obvious differences in the percentage of root canal filling in the CEC and TEC groups. Although the entrance of the pulp chamber is smaller in CECs, with the straight-line pathways into canals, the root canal filling can be completed for both CECs and TECs equally.
Numerous studies provided CEC preparation did not increase the fracture strength of teeth compared with TEC preparation [2628]. This result corroborate with those above research. The researchers have found the endodontic procedures do not weaken teeth with intact marginal ridges [29], the CEC and TEC groups were both prepared with intact marginal ridges, and there were no significant differences (P > 0.05) on biomechanical responses between the premolars in the CEC and TEC groups. At the same time, the result was opposite to Krishan’s research [30], which reported CEC increased fracture resistance in premolars and mandibular molars. The following 4 explanations clarify this contradiction: (1) the simulated clinical treatment procedure to restore the access cavities with resin before fracture resistance test; (2) the angle of the tooth loaded at the central fossa from the tooth long axis and the spherical crosshead was different in this study; (3) single-rooted premolars and premolars with two dental roots were differentiated; (4) each sample has been tested by fatigue cycle test. All of these factors have a potential effect on the final results. In addition, the load type was comparable to that experienced in the mouth, and human teeth were subjected to forces in different directions at the same time, the tested teeth have irregular shapes, and the experimental data acquired were just in one direction, and the results were for reference. Besides, when we discuss about CECs, the extended preparation time and materials should be considered.

Conclusions

Within the limitations of this study, the current results did not show obvious benefits associated with the CEC group compared with the TEC group. Although CECs could conserve more tooth hard tissue, the results of this study did not suggest that CEC could improve the fracture resistance of the endodontically treated premolars. The instrumentation efficacy and the percentage of filling material did not significantly differ between CECs and TECs in the premolars. Future experiments with bigger sample sizes and long-term clinical studies are encouraged to carry out on this topic.
Besides, contracted endodontic cavity with the aid of 3D-printed template seems to be a safe, clinically feasible method for locating root canals, which could be a prosperous future in minimally invasive endodontics.

Acknowledgements

Not applicable.
This study was approved by the Ethics Committee of the Hospital of Stomatology, Guangzhou Medical University and written informed consent was obtained from the participants.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Schroeder KP, Walton RE, Rivera EM. Straight line access and coronal flaring: effect on canal length. J Endod. 2002;28:474–6.CrossRef Schroeder KP, Walton RE, Rivera EM. Straight line access and coronal flaring: effect on canal length. J Endod. 2002;28:474–6.CrossRef
2.
Zurück zum Zitat Patel S, Rhodes J. A practical guide to endodontic access cavity preparation in molar teeth. Br Dent J. 2007;203:133–40.CrossRef Patel S, Rhodes J. A practical guide to endodontic access cavity preparation in molar teeth. Br Dent J. 2007;203:133–40.CrossRef
3.
Zurück zum Zitat Pereira JR, McDonald A, Petrie A, Knowles JC. Effect of cavity design on tooth surface strain. J Prosthet Dent. 2013;110:369–75.CrossRef Pereira JR, McDonald A, Petrie A, Knowles JC. Effect of cavity design on tooth surface strain. J Prosthet Dent. 2013;110:369–75.CrossRef
4.
Zurück zum Zitat Chen SC, Chueh LH, Hsiao CK, Wu HP, Chiang CP. First untoward events and reasons for tooth extraction after nonsurgical endodontic treatment in Taiwan. J Endod. 2008;34:671–4.CrossRef Chen SC, Chueh LH, Hsiao CK, Wu HP, Chiang CP. First untoward events and reasons for tooth extraction after nonsurgical endodontic treatment in Taiwan. J Endod. 2008;34:671–4.CrossRef
5.
Zurück zum Zitat Gluskin AH, Peters CI, Peters OA. Minimally invasive endodontics: challenging prevailing paradigm. Br Dent J. 2014;216:347–53.CrossRef Gluskin AH, Peters CI, Peters OA. Minimally invasive endodontics: challenging prevailing paradigm. Br Dent J. 2014;216:347–53.CrossRef
6.
Zurück zum Zitat Clark D, Khademi J. Modern molar endodontic access and directed dentin conservation. Dent Clin N Am. 2010;54:249–73.CrossRef Clark D, Khademi J. Modern molar endodontic access and directed dentin conservation. Dent Clin N Am. 2010;54:249–73.CrossRef
7.
Zurück zum Zitat Chen Y, Jia X, Qiang M, Zhang K, Chen S. Computer-assisted virtual surgical technology versus three-dimensional printing technology in preoperative planning for displaced three and four-part fractures of the proximal end of the humerus. J Bone Joint Surg Am. 2018;100:1960–8.CrossRef Chen Y, Jia X, Qiang M, Zhang K, Chen S. Computer-assisted virtual surgical technology versus three-dimensional printing technology in preoperative planning for displaced three and four-part fractures of the proximal end of the humerus. J Bone Joint Surg Am. 2018;100:1960–8.CrossRef
8.
Zurück zum Zitat Shaheen E, Sun Y, Jacobs R, Politis C. Three-dimensional printed final occlusal splint for orthognathic surgery: design and validation. Int J Oral Maxillofac Surg. 2017;46:67–71.CrossRef Shaheen E, Sun Y, Jacobs R, Politis C. Three-dimensional printed final occlusal splint for orthognathic surgery: design and validation. Int J Oral Maxillofac Surg. 2017;46:67–71.CrossRef
9.
Zurück zum Zitat Bukhari S, Goodacre BJ, AlHelal A, Kattadiyil MT, Richardson PM. Three-dimensional printing in contemporary fixed prosthodontics: a technique article. J Prosthet Dent. 2018;119:530–4.CrossRef Bukhari S, Goodacre BJ, AlHelal A, Kattadiyil MT, Richardson PM. Three-dimensional printing in contemporary fixed prosthodontics: a technique article. J Prosthet Dent. 2018;119:530–4.CrossRef
10.
Zurück zum Zitat Strbac GD, Schnappauf A, Giannis K, Moritz A, Ulm C. Guided modern endodontic surgery: a novel approach for guided osteotomy and root resection. J Endod. 2017;43:496–5.CrossRef Strbac GD, Schnappauf A, Giannis K, Moritz A, Ulm C. Guided modern endodontic surgery: a novel approach for guided osteotomy and root resection. J Endod. 2017;43:496–5.CrossRef
11.
Zurück zum Zitat Ye S, Zhao S, Wang W, Jiang Q, Yang X. A novel method for periapical microsurgery with the aid of 3D technology: a case report. BMC Oral Health. 2018;18:85–9.CrossRef Ye S, Zhao S, Wang W, Jiang Q, Yang X. A novel method for periapical microsurgery with the aid of 3D technology: a case report. BMC Oral Health. 2018;18:85–9.CrossRef
12.
Zurück zum Zitat Ciocca L, De Crescenzio F, Fantini M, Scotti R. CAD/CAM and rapid prototyped scaffold construction for bone regenerative medicine and surgical transfer of virtual planning: a pilot study. Comput Med Imaging Graph. 2009;33:58–62.CrossRef Ciocca L, De Crescenzio F, Fantini M, Scotti R. CAD/CAM and rapid prototyped scaffold construction for bone regenerative medicine and surgical transfer of virtual planning: a pilot study. Comput Med Imaging Graph. 2009;33:58–62.CrossRef
13.
Zurück zum Zitat Krastl G, Zehnder MS, Connert T, Weiger R, Kühl S. Guided endodontics: a novel treatment approach for teeth with pulp canal calcification and apical pathology. Dent Traumatol. 2016;32:240–6.CrossRef Krastl G, Zehnder MS, Connert T, Weiger R, Kühl S. Guided endodontics: a novel treatment approach for teeth with pulp canal calcification and apical pathology. Dent Traumatol. 2016;32:240–6.CrossRef
14.
Zurück zum Zitat Shi X, Zhao S, Wang W, Jiang Q, Yang X. Novel navigation technique for the endodontic treatment of a molar with pulp canal calcification and apical pathology. Aust Endod J. 2018;44:66–70.CrossRef Shi X, Zhao S, Wang W, Jiang Q, Yang X. Novel navigation technique for the endodontic treatment of a molar with pulp canal calcification and apical pathology. Aust Endod J. 2018;44:66–70.CrossRef
15.
Zurück zum Zitat Connert T, Zehnder MS, Weiger R, Kühl S, Krastl G. Microguided endodontics: accuracy of a miniaturized technique for apically extended access cavity preparation in anterior teeth. J Endod. 2017;43:787–90.CrossRef Connert T, Zehnder MS, Weiger R, Kühl S, Krastl G. Microguided endodontics: accuracy of a miniaturized technique for apically extended access cavity preparation in anterior teeth. J Endod. 2017;43:787–90.CrossRef
16.
Zurück zum Zitat Zehnder MS, Connert T, Weiger R, Krastl G, Kühl S. Guided endodontics: accuracy of a novel method for guided access cavity preparation and root canal location. Int Endod J. 2016;49:966–72.CrossRef Zehnder MS, Connert T, Weiger R, Krastl G, Kühl S. Guided endodontics: accuracy of a novel method for guided access cavity preparation and root canal location. Int Endod J. 2016;49:966–72.CrossRef
17.
Zurück zum Zitat Silva EJNL, Rover G, Belladonna FG, De-Deus G, Da Silveira Teixeira C, Da Silva Fidalgo TK. Impact of contracted endodontic cavities on fracture resistance of endodontically treated teeth: a systematic review of in vitro studies. Clin Oral Investig. 2018;22:109–18.CrossRef Silva EJNL, Rover G, Belladonna FG, De-Deus G, Da Silveira Teixeira C, Da Silva Fidalgo TK. Impact of contracted endodontic cavities on fracture resistance of endodontically treated teeth: a systematic review of in vitro studies. Clin Oral Investig. 2018;22:109–18.CrossRef
18.
Zurück zum Zitat Neelakantan P, Khan K, Hei Ng GP, Yip CY, Zhang C, Pan Cheung GS. Does the orifice-directed dentin conservation access design debride pulp chamber and mesial root canal systems of mandibular molars similar to a traditional access design? J Endod. 2018;44:274–9.CrossRef Neelakantan P, Khan K, Hei Ng GP, Yip CY, Zhang C, Pan Cheung GS. Does the orifice-directed dentin conservation access design debride pulp chamber and mesial root canal systems of mandibular molars similar to a traditional access design? J Endod. 2018;44:274–9.CrossRef
19.
Zurück zum Zitat Alovisi M, Pasqualini D, Musso E, Bobbio E, Giuliano C, Mancino D, et al. Influence of contracted endodontic access on root canal geometry: an in vitro study. J Endod. 2018;44:614–20.CrossRef Alovisi M, Pasqualini D, Musso E, Bobbio E, Giuliano C, Mancino D, et al. Influence of contracted endodontic access on root canal geometry: an in vitro study. J Endod. 2018;44:614–20.CrossRef
20.
Zurück zum Zitat Schneider SW. A comparison of canal preparations in straight and curved root canals. Oral Surg Oral Med Oral Pathol. 1971;32:271–5.CrossRef Schneider SW. A comparison of canal preparations in straight and curved root canals. Oral Surg Oral Med Oral Pathol. 1971;32:271–5.CrossRef
21.
Zurück zum Zitat Lara-Mendes STO, Barbosa CFM, Machado VC, Santa-Rosa CC. A new approach for minimally invasive access to severely calcified anterior teeth using the guided endodontics technique. J Endod. 2018;44:1578–82.CrossRef Lara-Mendes STO, Barbosa CFM, Machado VC, Santa-Rosa CC. A new approach for minimally invasive access to severely calcified anterior teeth using the guided endodontics technique. J Endod. 2018;44:1578–82.CrossRef
22.
Zurück zum Zitat Goto Y, Nicholls JI, Phillips KM, Junge T. Fatigue resistance of endodontically treated teeth restored with three dowel-and-core systems. J Prosthet Dent. 2005;93:45–50.CrossRef Goto Y, Nicholls JI, Phillips KM, Junge T. Fatigue resistance of endodontically treated teeth restored with three dowel-and-core systems. J Prosthet Dent. 2005;93:45–50.CrossRef
23.
Zurück zum Zitat Krejci I, Mueller E, Lutz F. Effects of thermocycling and occlusal force on adhesive composite crowns. J Dent Res. 1994;73:1228–32.CrossRef Krejci I, Mueller E, Lutz F. Effects of thermocycling and occlusal force on adhesive composite crowns. J Dent Res. 1994;73:1228–32.CrossRef
24.
Zurück zum Zitat Grippo JO, Chaiyabutr Y, Kois JC. Effects of cyclic fatigue stress-biocorrosion on noncarious cervical lesions. J Esthet Restor Dent. 2013;25:265–72.CrossRef Grippo JO, Chaiyabutr Y, Kois JC. Effects of cyclic fatigue stress-biocorrosion on noncarious cervical lesions. J Esthet Restor Dent. 2013;25:265–72.CrossRef
25.
Zurück zum Zitat Krishan R, Paqué F, Ossareh A, Dao T, Friedman S. Impacts of conservative endodontic cavity on root canal instrumentation efficacy and resistance to fracture assessed in incisors, premolars, and molars. J Endod. 2014;40:1160–6.CrossRef Krishan R, Paqué F, Ossareh A, Dao T, Friedman S. Impacts of conservative endodontic cavity on root canal instrumentation efficacy and resistance to fracture assessed in incisors, premolars, and molars. J Endod. 2014;40:1160–6.CrossRef
26.
Zurück zum Zitat Moore B, Verdelis K, Kishen A, Dao T, Friedman S. Impacts of contracted endodontic cavities on instrumentation efficacy and biomechanical responses in maxillary molars. J Endod. 2016;42:1779–83.CrossRef Moore B, Verdelis K, Kishen A, Dao T, Friedman S. Impacts of contracted endodontic cavities on instrumentation efficacy and biomechanical responses in maxillary molars. J Endod. 2016;42:1779–83.CrossRef
27.
Zurück zum Zitat Özyürek T, Ülker Ö, Demiryürek EÖ, Yılmaz F. The effects of endodontic access cavity preparation design on the fracture strength of endodontically treated teeth: traditional versus conservative preparation. J Endod. 2018;44:800–5.CrossRef Özyürek T, Ülker Ö, Demiryürek EÖ, Yılmaz F. The effects of endodontic access cavity preparation design on the fracture strength of endodontically treated teeth: traditional versus conservative preparation. J Endod. 2018;44:800–5.CrossRef
28.
Zurück zum Zitat Rover G, Belladonna FG, Bortoluzzi EA, De-Deus G, Silva EJNL, Teixeira CS. Influence of access cavity design on root CanalDetection, instrumentation efficacy, and fracture resistance assessed in maxillary molars. J Endod. 2017;43:1657–62.CrossRef Rover G, Belladonna FG, Bortoluzzi EA, De-Deus G, Silva EJNL, Teixeira CS. Influence of access cavity design on root CanalDetection, instrumentation efficacy, and fracture resistance assessed in maxillary molars. J Endod. 2017;43:1657–62.CrossRef
29.
Zurück zum Zitat Reeh ES, Messer HH, Douglas WH. Reduction in tooth stiffness as a result of endodontic and restorative procedures. J Endod. 1989;15:512–6.CrossRef Reeh ES, Messer HH, Douglas WH. Reduction in tooth stiffness as a result of endodontic and restorative procedures. J Endod. 1989;15:512–6.CrossRef
30.
Zurück zum Zitat Krishan R, Paqué F, Ossareh A, Kishen A, Dao T, Friedman S. Impacts of conservative endodontic cavity on root canal instrumentation efficacy and resistance to fracture assessed in incisors, premolars, and molars. J Endod. 2014;40:1160–6.CrossRef Krishan R, Paqué F, Ossareh A, Kishen A, Dao T, Friedman S. Impacts of conservative endodontic cavity on root canal instrumentation efficacy and resistance to fracture assessed in incisors, premolars, and molars. J Endod. 2014;40:1160–6.CrossRef
Metadaten
Titel
Impacts of contracted endodontic cavities compared to traditional endodontic cavities in premolars
verfasst von
Juan Xia
Weidong Wang
Zhengmao Li
Bingpeng Lin
Qian Zhang
Qianzhou Jiang
Xuechao Yang
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
BMC Oral Health / Ausgabe 1/2020
Elektronische ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-020-01237-w

Weitere Artikel der Ausgabe 1/2020

BMC Oral Health 1/2020 Zur Ausgabe

Parodontalbehandlung verbessert Prognose bei Katheterablation

19.04.2024 Vorhofflimmern Nachrichten

Werden Personen mit Vorhofflimmern in der Blanking-Periode nach einer Katheterablation gegen eine bestehende Parodontitis behandelt, verbessert dies die Erfolgsaussichten. Dafür sprechen die Resultate einer prospektiven Untersuchung.

Invasive Zahnbehandlung: Wann eine Antibiotikaprophylaxe vor infektiöser Endokarditis schützt

11.04.2024 Endokarditis Nachrichten

Bei welchen Personen eine Antibiotikaprophylaxe zur Prävention einer infektiösen Endokarditis nach invasiven zahnärztlichen Eingriffen sinnvoll ist, wird diskutiert. Neue Daten stehen im Einklang mit den europäischen Leitlinienempfehlungen.

Zell-Organisatoren unter Druck: Mechanismen des embryonalen Zahnwachstums aufgedeckt

08.04.2024 Zahnmedizin Nachrichten

Der Aufbau von Geweben und Organen während der Embryonalentwicklung wird von den Zellen bemerkenswert choreografiert. Für diesen Prozess braucht es spezielle sogenannte „Organisatoren“. In einer aktuellen Veröffentlichung im Fachjournal Nature Cell Biology berichten Forschende durch welchen Vorgang diese Organisatoren im Gewebe entstehen und wie sie dann die Bildung von Zähnen orchestrieren.

Die Oralprophylaxe & Kinderzahnheilkunde umbenannt

11.03.2024 Kinderzahnmedizin Nachrichten

Infolge der Umbenennung der Deutschen Gesellschaft für Kinderzahnheilkunde in Deutsche Gesellschaft für Kinderzahnmedizin (DGKiZ) wird deren Mitgliederzeitschrift Oralprophylaxe & Kinderzahnheilkunde in Oralprophylaxe & Kinderzahnmedizin umbenannt. Aus diesem Grunde trägt die erste Ausgabe in 2024 erstmalig den neuen Titel.

Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Zahnmedizin und bleiben Sie gut informiert – ganz bequem per eMail.