Skip to main content
Erschienen in: Advances in Therapy 4/2014

Open Access 01.04.2014 | Original Research

Impacts of Patient Characteristics on the Effectiveness of Landiolol in AF/AFL Patients Complicated with LV Dysfunction: Subgroup Analysis of the J-Land Study

verfasst von: Koichiro Kinugawa, Ryozo Nagai, Hiroshi Inoue, Hirotsugu Atarashi, Yoshihiko Seino, Takeshi Yamashita, Wataru Shimizu, Takeshi Aiba, Masafumi Kitakaze, Atsuhiro Sakamoto, Takanori Ikeda, Yasushi Imai, Takashi Daimon, Katsuhiro Fujino, Tetsuji Nagano, Tatsuaki Okamura, Masatsugu Hori, The J-Land Investigators

Erschienen in: Advances in Therapy | Ausgabe 4/2014

Abstract

Introduction

Results from the multicenter trial (J-Land study) of landiolol versus digoxin in atrial fibrillation (AF) and atrial flutter (AFL) patients with left ventricular (LV) dysfunction revealed that landiolol was more effective for controlling rapid HR than digoxin. The subgroup analysis for patient characteristics was conducted to evaluate the impact on the efficacy and safety of landiolol compared with digoxin.

Methods

Two hundred patients with AF/AFL, heart rate (HR) ≥ 120 beats/min, and LV ejection fraction (LVEF) 25–50% were randomized to receive either landiolol (n = 93) or digoxin (n = 107). Successful HR control was defined as ≥20% reduction in HR together with HR < 110 beats/min at 2 h after starting intravenous administration of landiolol or digoxin. The subgroup analysis for patient characteristics was to evaluate the impact on the effectiveness of landiolol in AF/AFL patients complicated with LV dysfunction.

Results

The efficacy in patients with NYHA class III/NYHA class IV was 52.3%/35.3% in landiolol, and 13.8%/9.1% in digoxin (p < 0.001 and p = 0.172), lower LVEF (25–35%)/higher LVEF (35–50%) was 45.7%/51.1% in landiolol, and 14.0%/12.7% in digoxin (p < 0.001 and p < 0.001), CKD stage 1 (90 < eGFR)/CKD stage 2 (60 ≤ eGFR < 90)/CKD stage 3 (30 ≤ eGFR < 60)/CKD stage 4 (15 ≤ eGFR < 30) was 66.7%/59.1%/39.6%/66.7% in landiolol, and 0%/13.8%/17.0%/0% in digoxin (p = 0.003, p < 0.001, p = 0.015 and p = 0.040).

Conclusions

This subgroup analysis indicated that landiolol was more useful, regardless of patient characteristics, as compared with digoxin in AF/AFL patients complicated with LV dysfunction. Particularly, in patients with impaired renal function, landiolol should be preferred for the purpose of acute rate control of AF/AFL tachycardia.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1007/​s12325-014-0111-2) contains supplementary material, which is available to authorized users.
Clinical Trials Registration: JapicCTI-111,448.
An erratum to this article can be found at http://​dx.​doi.​org/​10.​1007/​s12325-014-0123-y.

Introduction

Atrial fibrillation (AF) and atrial flutter (AFL) are common arrhythmias in patients with left ventricular (LV) dysfunction. Over 20% of patients with heart failure exhibit AF [1, 2]. In these patients, AF/AFL are often associated with a rapid ventricular response during the worsening of heart failure [3, 4]. However, a sustained rapid ventricular response may further deteriorate cardiac function [5], accelerating the symptoms of heart failure [68]. Intravenous administration of digoxin is considered the standard therapy for controlling the rapid ventricular response in AF/AFL patients with cardiac dysfunction or heart failure [4, 9]. Although digoxin has some beneficial effects for treating heart failure by way of its positive inotropic effects, digoxin may also have a negative chronotropic effect as a result of vagal stimulation. Of note, the negative chronotropic effect develops much more slowly, often taking several hours to reach the maximal effect [9, 10]. Short-acting parenteral β-blockers can act more rapidly than digoxin, and may provide a swift control of heart rate (HR) in these clinical settings. However, there is a concern that β-blockers may depress cardiac function and further deteriorate ventricular dysfunction, accelerating heart failure. Landiolol, an ultra-short-acting β-blocker, is rapidly metabolized to inactive forms in the blood and liver, resulting in a short half-life of approximately 4 min in human blood. In addition, it selectively binds to β1 receptors, with a β1 receptor selectivity (β1/β2) as high as 251 [11]. Based on these properties, landiolol has been reported to be useful for treating several acute disorders, including arrhythmias during heart surgery [12], acute myocardial infarction [13], acute decompensated heart failure [14], and refractory electrical storm [15]. Ultra-short-acting β-blockers may be useful to control HR with minimal effects on cardiac function. Even though the negative inotropic effect by landiolol is manifested, it is not theoretically and practically sustained by decreasing the dose or stopping administration of these drugs.
This hypothesis was tested in the Japanese Landiolol versus Digoxin study (J-Land study), which investigated the efficacy and safety of intravenous landiolol for achieving rapid control of tachycardia in patients with AF/AFL and LV dysfunction. The results of the J-Land study showed that landiolol was more effective for controlling rapid HR than digoxin in AF/AFL patients with LV dysfunction [16]. To further assess these findings, we analyzed effectiveness in the J-Land study population according to patient characteristics.

Methods

Study Design and Patients

The design of the J-Land study has been described previously [16]. In brief, the J-Land study was a central registration, prospective, multicenter, single-blind, randomized, parallel-group study that included 200 patients with AF/AFL and LV dysfunction. Average age was 71.6 ± 11.5 years, 106 (53%) were men, New York Heart Association (NYHA) classes were equally distributed between III (n = 163, 81.9%) and IV (n = 36, 51%), Left ventricular ejection fraction (LVEF) was 36.6 ± 7.6%, and heart rate (HR) was 138.1 ± 15.3 beats/min in average. The use of antiarrhythmic drugs, sympathomimetic drugs, sympatholytic drugs, defibrillator use, catheter ablation, and pacemaker therapy were prohibited from the enrollment until completing all observations at 2 h after starting treatment. However, patients being treated with guideline-directed oral β-blockers (carvedilol or bisoprolol) or oral digitalis preparations for chronic heart failure, chronic AF, and/or chronic AFL could participate in the study under continued treatment without changes in their doses. In the landiolol group, continuous administration of landiolol was intravenously started at a dose of 1 μg/kg/min and titrated to a maximum dose of 10 μg/kg/min according to the patient’s condition. Landiolol was administered for ≥2 h and up to 72 h. In the digoxin group, digoxin was intravenously administered at an initial dose of 0.25 mg and could be uptitrated within 72 h according to the patient’s condition. The Japanese guideline for the treatment of atrial fibrillation recommends that the maximum dose of digoxin is 0.25 mg within 2 h. For patients treated with oral digitalis, the parenteral digoxin dose could be reduced to 0.125 mg according to the patient’s condition to prevent digitalis intoxication. The final observation of this study was performed for up to 48 h after the end of administration of landiolol or for up to 48 h after the final dose in the digoxin group. The investigators for the study are listed in the Appendix [16].
In this study, we analyzed the primary endpoint, in which the percentage of patients with both HR < 110 beats/min and ≥20% decrease from baseline at 2 h after administration. Heart rate was measured by the electrocardiogram over 1 min and was reviewed at the core laboratory in a blinded manner. The safety endpoint was the incidence of adverse events related or unrelated to the study drugs. For this analysis, we divided the landiolol and the digoxin groups by patient characteristics at baseline (Fig. 1).

Statistical Analysis

Data are expressed as the mean ± standard deviation or percentages of patients. Student’s t test and χ 2 test were used to compare the means and percentages, respectively, between the two groups. The subgroup analysis for the primary endpoint was conducted by stratifying the J-Land study population by age, sex, NYHA, baseline HR, baseline systolic blood pressure (SBP), LVEF, β-blocker and eGFR using a linear probability model with HR and LVEF measured immediately before starting the study drug as covariates. The subgroup analysis for adverse events was conducted by stratifying the J-Land study population by the above factors using χ 2 test. Values of p < 0.05 were considered statistically significant (2-sided). All analyses were performed using SAS version 9.2 for Windows (SAS Institute, Cary, NC, USA).

Results

Patient Disposition and Baseline Characteristics

The disposition of patients in this study is shown in Fig. 2. A total of 214 patients were randomized to either landiolol (n = 99) or digoxin (n = 115). Of these, 14 patients were not treated (the landiolol group, n = 6; the digoxin group, n = 8) and 2 patients in the landiolol group did not comply with the protocol. Therefore, 200 patients (the landiolol group, n = 93; the digoxin group, n = 107) were included in the safety subgroup analysis set. Of these, 18 patients had no data of the primary endpoint (the landiolol group, n = 9; the digoxin group, n = 9). Therefore, 180 patients were included in the efficacy subgroup analysis set (the landiolol group, n = 82; the digoxin group, n = 98). The demographics of the study patients are shown in Table 1. There were no differences in the general characteristics of the 2 groups. 141 patients (70.5%) were ≥65 years, and 106 patients (53.0%) were male. The NYHA class was III in 163 patients (81.9%) and IV in 36 patients (18.1%). 115 patients (58.4%) were HR < 140 bpm, and 111 patients (55.8%) were SBP ≥ 120 mmHg. Before starting study treatment, oral β-blockers were used in 41 patients (20.5%). About 60% of patients or more had moderate or severe renal dysfunction (15 ≤ eGFR (mL/min/1.73 m2) < 60).
Table 1
Baseline characteristics
 
Total
Landiolol
Digoxin
p value
Age (n)
 
93
107
 
 20 to <65 years
59 (29.5%)
32 (34.4%)
27 (25.2%)
 
 ≥65 years
141 (70.5%)
61 (65.6%)
80 (74.8%)
 
 Mean ± SD
71.6 ± 11.5
70.5 ± 12.0
72.5 ± 11.0
0.221
Sex (n)
 
93
107
 
 Male
106 (53.0%)
50 (53.8%)
56 (52.3%)
0.840
 Female
94 (47.0%)
43 (46.2%)
51 (47.7%)
 
NYHA (n)
 
93
107
 
 Class III
163 (81.9%)
71 (77.2%)
92 (86.0%)
0.108
 Class IV
36 (18.1%)
21 (22.8%)
15 (14.0%)
 
Baseline HR (n)
 
90
107
 
 <140 bpm
115 (58.4%)
55 (61.1%)
60 (56.1%)
 
 ≥140 bpm
82 (41.6%)
35 (38.9%)
47 (43.9%)
 
 Mean ± SD
138.1 ± 15.3
138.2 ± 15.7
138.0 ± 15.0
0.934
Baseline SBP (n)
 
92
107
 
 <120 mmHg
88 (44.2%)
39 (42.4%)
49 (45.8%)
 
 ≥120 mmHg
111 (55.8%)
53 (57.6%)
58 (54.2%)
 
 Mean ± SD
125.7 ± 21.8
124.6 ± 19.8
126.6 + 23.5
0.523
LVEF (n)
 
92
107
 
 25.0 to <35.0%
90 (45.2%)
41 (44.6%)
49 (45.8%)
 
 35.0 to 50.0%
109 (54.8%)
51 (55.4%)
58 (54.2%)
 
 Mean ± SD
36.6 ± 7.6
36.4 ± 7.9
36.7 ± 7.3
0.753
Beta blocker (oral) (n)
 
93
107
 
 No beta-blockers intake
159 (79.5%)
75 (80.6%)
84 (78.5%)
 
 Beta-blockers intake
41 (20.5%)
18 (19.4%)
23 (21.5%)
0.708
eGFR (n)
 
92
107
 
 90 ≤ eGFR
18 (9.1%)
8 (8.7%)
10 (9.4%)
 
 60 ≤ eGFR < 90
58 (29.1%)
26 (28.3%)
32 (29.9%)
 
 30 ≤ eGFR < 60
109 (54.8%)
51 (55.4%)
58 (54.2%)
 
 15 ≤ eGFR < 30
14 (7.0%)
7 (7.6%)
7 (6.5%)
 
 Mean ± SD
57.3 ± 19.7
57.6 ± 19.7
57.0 ± 19.8
0.845
Mean ± SD or number (%), Student’s t test and χ 2 test

Efficacy

The subgroup analysis of the primary endpoint is shown in Table 2. The percentage of patients with both HR < 110 beats/min and ≥20% decrease from baseline to 2 h after administration was determined to examine the influence of HR and LVEF at baseline. Overall, 48.0% (n = 40/82) of patients in the landiolol group and 13.9% (n = 13/98) of patients in the digoxin group achieved the primary endpoint, with a between-group difference of 34.1% (95% confidence interval, 22.1–46.2; p < 0.0001). There was no impact on the primary endpoint by age, sex, baseline SBP, LVEF, and β-blocker (oral) intake. In patients with NYHA IV, there was no significant difference between the two groups, but the percentage of patients who reached the primary endpoint was numerically higher in the landiolol group [the landiolol group; 35.3% (6/17 patients), and the digoxin group; 9.1% (1/11 patients)]. In patients with renal dysfunction of moderate or more [15 ≤ eGFR (mL/min/1.73 m2) < 60], the landiolol group had also a significantly better outcome as compared to the digoxin group.
Table 2
Subgroup analysis for primary endpoint
https://static-content.springer.com/image/art%3A10.1007%2Fs12325-014-0111-2/MediaObjects/12325_2014_111_Tab2_HTML.gif

Safety

The incidence of the adverse events in the subgroup is shown in Table 3. Adverse events occurred in 30 patients (32.3%) in the landiolol group and in 35 patients (32.7%) in the digoxin group, which was not statistically significant (p = 0.946). There was no impact on the incidence of the adverse events in the subgroup by age, sex, NYHA, baseline HR, LVEF, and oral β-blocker intake. In the population with low SBP, the incidence of the adverse events was significantly higher in the digoxin group compared with the landiolol group. Conversely, in the population with high SBP, the incidence of adverse events was significantly higher in the landiolol group compared with the digoxin group. Adverse events associated with heart and renal function are shown in Table 4. In the safety subgroup analysis of SBP, the incidence of adverse events associated with heart and renal function was 12.8% (5/39) in the landiolol group with low SBP, 13.2% (7/53) in the landiolol group with high SBP, 24.5% (12/49) in the digoxin group with low SBP, and 6.9% (4/58) in the digoxin group with high SBP. In the digoxin group with low SBP, the incidence of adverse events associated with heart and renal function was significantly higher as compared to the high SBP group (p = 0.011). In addition, in patients with severe renal impairment [15 ≤ eGFR (mL/min/1.73 m2) < 30], the incidence of adverse events was significantly lower in the landiolol group than compared with the digoxin group.
Table 3
Subgroup analysis for adverse events
https://static-content.springer.com/image/art%3A10.1007%2Fs12325-014-0111-2/MediaObjects/12325_2014_111_Tab3_HTML.gif
Table 4
Adverse events associated with heart and renal function
Group
Baseline SBP (mmHg)
Subject
Adverse events
Time to events from the administration of the study drug (h)
Severity
Relationship to the study drug
Outcomea
Landiolol
<120
L-1
Blood pressure increased
21
Mild
Not related
Recovered
L-2
Blood pressure decreased
29.2
Mild
Not related
Recovered
L-3
Serum creatinine increased
62.8
Mild
Not related
Recovered
Blood pressure systolic decreased
2
Mild
Related
Recovered
Blood urea nitrogen increased
62.8
Mild
Not related
Recovered
Brain natriuretic peptide increased
71.9
Moderate
Not related
Recovered
Dehydration
56.8
Mild
Not related
Recovered
L-4
Blood pressure decreased
0.9
Moderate
Related
Recovered
L-5
Palpitations
11
Mild
Not related
Ongoing
Serum creatinine increased
18
Mild
Not related
Ongoing
≥120
L-6
Blood pressure decreased
5.6
Moderate
Not related
Recovered
Blood pressure decreased
33.1
Moderate
Not related
Recovered
L-7
Hypotension
3.2
Moderate
Related
Recovered
L-8
Serum potassium decreased
47.8
Mild
Not related
Recovered
Blood pressure decreased
90.2
Moderate
Not related
Recovered
L-9
Serum creatinine increased
46.7
Mild
Not related
Recovered
Blood urea nitrogen increased
46.7
Mild
Not related
Lost to follow-up
Dehydration
32.8
Mild
Not related
Recovered
L-10
Tachycardia
17.3
Mild
Not related
Recovered
L-11
Blood pressure decreased
1
Mild
Related
Recovered
L-12
Congestive heart failure
14.3
Severe
Not related
Lost to follow-up
Blood urea nitrogen increased
4.2
Mild
Not related
Lost to follow-up
Digoxin
<120
D-1
Serum creatinine increased
4.6
Mild
Not related
Recovered
Serum potassium increased
44.1
Moderate
Not related
Recovered
Blood pressure decreased
4.6
Mild
Not related
Recovered
D-2
Serum potassium decreased
31.6
Mild
Not related
Recovered
D-3
Blood pressure decreased
21.5
Moderate
Not related
Recovered
Blood pressure decreased
41.5
Moderate
Not related
Recovered
D-4
Serum creatinine increased
36
Mild
Not related
Recovered
D-5
Hypokalemia
39
Mild
Not related
Recovered
D-6
Serum creatinine increased
46.1
Mild
Not related
Recovered
Blood urea nitrogen increased
46.1
Mild
Not related
Recovered
D-7
Tachycardia
21
Mild
Not related
Recovered
D-8
Blood pressure increased
12.1
Mild
Not related
Recovered
D-9
Hypokalemia
17.3
Mild
Not related
Recovered
D-10
Blood pressure decreased
31.2
Mild
Not related
Recovered
D-11
Sinus arrest
21.5
Mild
Not related
Recovered
D-12
Blood pressure increased
0.3
Mild
Related
Recovered
≥120
D-13
Blood pressure decreased
12.6
Moderate
Not related
Recovered
Blood pressure decreased
27.6
Moderate
Not related
Recovered
D-14
Tachycardia
6.6
Moderate
Not related
Recovered
Serum potassium decreased
15.9
Mild
Not related
Recovered
D-15
Tachycardia
45.1
Mild
Not related
Recovered
D-16
Dehydration
40.2
Mild
Not related
Recovered
aThe final observation was performed for up to 48 h after the end of administration of landiolol or for up to 48 h after the final dose in the digoxin group

Discussion

Our results showed that in patients with LV dysfunction, who had AF/AFL with HR of 120 bpm or higher, there was a subgroup that the administration of landiolol should be recommended. Our subgroup analysis in patients with severe renal dysfunction demonstrated that the incidence of adverse events was significantly low in the landiolol group compared with the digoxin group, and that swift rate control effect was significantly more prevalent by landiolol than by digoxin.
According to the several registries for chronic heart failure patients, the ratio of patients with renal impairment has been reported approximately to be 30–70% (ADHERE, JCARE-CARD, CHART) [1820]. It is also reported that long-term prognosis is poor if renal dysfunction is severe [19]. In the treatment of acute heart failure, there have been concerns about nesiritide that may deteriorate renal function and worsen short-term prognosis (30 days after) [21, 22]. ASCEND-HF study never proved any significant efficacy over placebo, which resulted in a marked decline in the share of nesiritide [23]. On the other hand, serelaxin, which is currently being developed as a therapeutic agent for acute heart failure, improved the prognosis after 180 days of administration with the fewer adverse events related to renal function [24, 25]. Accordingly, safety for renal function may be indispensable for less adverse impact on the long-term prognosis of acute heart failure patients.
Digoxin is excreted by kidneys and its dose should be decreased in many patients with renal dysfunction [17]. However, landiolol is not metabolized at all by kidneys or neither have adverse effects on renal function. As a result, landiolol can be uptitrated safely to achieve rate control in a shorter period regardless of patients’ renal function. In fact, landiolol was faster than digoxin in the rate control during acute phase of AF/AFL among the patients with renal dysfunction. Moreover, our subgroup analysis consistently demonstrated that the incidence of adverse events was lower by the landiolol treatment compared with the digoxin in patients with severe renal dysfunction. Furthermore, in the digoxin group with low SBP, that is considered to have decreased renal blood flow, the incidence of adverse events related to heart and renal function has increased. We speculate the delayed excretion of digoxin due to a decrease in renal blood flow has affected the incidence of adverse events. In this regard, for the rate control during acute phase of AF/AFL patients, especially those who are associated with severe renal dysfunction, landiolol should be considered as the first-choice drug.
This study had several limitations. Firstly, the efficacy of landiolol in patients in cardiogenic shock was not examined because patients with SBP < 90 mmHg were excluded. Secondly, the efficacy of landiolol in patients with severe LV dysfunction was not determined because patients with a baseline LVEF < 25 % were excluded. Thirdly, the impact of landiolol on the long-term prognosis should be examined in the future. Lastly, in this study, the efficacy and safety was only compared between landiolol and digoxin. Therefore, it is still unclear whether the effects of landiolol are superior to those of propranolol or esmolol. However, the t1/2 of landiolol is shorter than that of propranolol and esmolol [26], and β1-selectivity is higher [27], which make landiolol favorable for use in the acute rate control of AF/AFL tachycardia because of less possibility of serious adverse events.

Conclusions

This subgroup analysis indicated that landiolol was more useful, regardless of patient characteristics, as compared with digoxin in AF/AFL patients complicated with LV dysfunction. Particularly, in the rate control of AF/AFL tachycardia patients with impaired renal function, landiolol should be preferred over digoxin.

Acknowledgments

The authors thank all of the investigators and site staff who participated in this clinical trial.

Conflict of interest

This study was funded by Ono Pharmaceutical Co Ltd (Osaka, Japan). K.K., R.N., H.I., H.A., Y.S., T.Y., W.S., T.A., M.K., A.S., T.I., Y.I., T.D., and M.H. have received consulting fees from Ono Pharmaceutical. K.F., T.N., and T.O. are employees of Ono Pharmaceutical.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://​creativecommons.​org/​licenses/​by/​4.​0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

e.Med Allgemeinmedizin

Kombi-Abonnement

Mit e.Med Allgemeinmedizin erhalten Sie Zugang zu allen CME-Fortbildungen und Premium-Inhalten der allgemeinmedizinischen Zeitschriften, inklusive einer gedruckten Allgemeinmedizin-Zeitschrift Ihrer Wahl.

Anhänge

Appendix

Investigators and Study Sites

Toshiharu Takeuchi, Asahikawa Medical University Hospital; Shigeo Kakinoki, Otaru Kyokai Hospital; Minoru Sato, Hokkaido Medical Center; Hironori Murakami, Teine Keijinkai Hospital; Ken Okumura, Hirosaki University Graduate School of Medicine; Tetsuo Yagi, Sendai City Hospital; Tsuyoshi Shinozaki, Sendai Medical Center; Koji Fukuda, Tohoku University Graduate School of Medicine; Kaname Takizawa, Sendai Kousei Hospital; Tetsu Watanabe, Yamagata University Hospital; Shuichi Taguchi, Mito Medical Center; Shoji Suzuki, Kasumigaura Medical Center; Kazutaka Aonuma, Tsukuba University Hospital; Daisuke Abe, Ibaraki Prefectural Central Hospital; Shoichi Tange, Maebashi Red Cross Hospital; Shigeto Naito, Gunma Prefectural Cardiovascular Center; Shu Kasama, Cardiovascular Hospital of Central Japan (Kitakanto Cardiovascular Hospital); Shin-ichi Momomura, Saitama Medical Center, Jichi Medical University; Kazuo Matsumoto, Saitama Medical University International Medical Center; Masayuki Inagaki, Funabashi Municipal Medical Center; Atsushi Iwasa, New Tokyo Hospital; Yoshihiko Seino, Nippon Medical School Chiba-Hokusoh Hospital; Atsushi Hirayama, Nihon University School of Medicine, Itabashi Hospital; Takanori Ikeda, Toho University Omori Medical Center; Seiji Fukamizu, Tokyo Metropolitan Hiroo Hospital; Jun Umemura, Sakakibara Heart Institute; Hiroyuki Niinuma, St. Luke’s International Hospital; Koichiro Kinugawa, Tokyo University Hospital; Kaoru Sugi, Toho University Ohashi Medical Center; Hiroyuki Tanaka, Tokyo Metropolitan Tama Medical Center; Yoshiki Kusama, Nippon Medical School Tama-Nagayama Hospital; Atsuyuki Ono, Kasai Shoikai Hospital; Takeshi Yamashita, The Cardiovascular Institute; Kazunori Iwade, National Hospital Organization Yokohama Medical Center; Kazuo Kimura, Yokohama City University Medical Center; Hiroshi Suzuki, Showa University Fujigaoka Hospital; Hideo Himeno, Fujisawa City Hospital; Koichiro Yoshioka, Tokai University Hospital; Hiroshi Furushima, Niigata University Graduate School of Medical and Dental Sciences; Hirotaka Oda, Niigata City General Hospital; Koichi Fuse, Tachikawa General Hospital; Hiroshi Inoue, Toyama University Hospital; Tetsuo Konno, Kanazawa University Hospital; Masayuki Takamura, Kanazawa University Hospital; Kenji Sakata, Kanazawa Cardiovascular Hospital; Ken Umetani, Yamanashi Prefectural Central Hospital; Kenichi Kawabata, Yamanashi University Hospital; Hiroshi Tsutsui, Japanese Red Cross Society Suwa Hospital; Masahiro Muto, Hamamatsu Medical Center; Yasushi Wakabayashi, Seirei Mikatahara General Hospital; Yasuya Inden, Nagoya University Hospital; Hiroaki Sano, Nagoya Ekisaikai Hospital; Haruo Kamiya, Japanese Red Cross Nagoya Daiichi Hospital; Toshikazu Tanaka, Okazaki City Hospital; Masayoshi Ajioka, Tosei General Hospital; Yukio Ozaki, Fujita Health University Hospital; Tetsuya Amano, Aichi Medical University Hospital; Makoto Kitamuta, Kyoto Second Red Cross Hospital; Masahiro Esato, Ijinkai Takeda General Hospital; Kimihito Usui, Maizuru Mutual Hospital; Eiwa Zen, Koseikai Takeda Hospital; Kenshi Fujii, Sakurabashi Watanabe Hospital; Takahisa Yamada, Osaka General Medical Center; Yasushi Sakata, Osaka University Hospital; Yoshiyuki Nagai, Rinku General Medical Center; Shiro Kamakura, National Cerebral and Cardiovascular Center; Takashi Kurita, Kinki University Hospital; Akihiko Takahashi, Sakurakai Takahashi Hospital; Toshiro Shinke, Kobe University Hospital; Kazuyasu Yoshitani, Hyogo Prefectural Amagasaki Hospital; Takatoshi Hayashi, Hyogo Brain and Heart Center; Yorihiko Higashino, Higashi Takarazuka Satoh Hospital; Koichi Tamita, Nishinomiya Watanabe Cardiovascular Center; Satoshi Nagase, Okayama University Hospital; Ritsu Tamura, National Hospital Organization Kure Medical Center; Kaoru Yanagihara, Higashihiroshima Medical Center; Nobuo Shiode, Tsuchiya General Hospital; Yuji Shimatani, Hiroshima City Hospital; Mitsunori Okamoto, Hiroshima Prefectural Hospital; Shigeki Kobayashi, Yamaguchi University Hospital; Shinobu Hosokawa, Tokushima Red Cross Hospital; Eitaro Umehara, Kaisei Hospital; Mitsunori Abe, Yotsuba Circulation Clinic; Masahiko Goya, Kokura Memorial Hospital; Toshiaki Kadokami, Saiseikai Futsukaichi Hospital; Yusuke Yamamoto, Saiseikai Fukuoka General Hospital; Keijiro Saku, Fukuoka University Hospital; Ryozo Kobayashi, National Hospital Organization Kyusyu Medical Center; Tomohiro Kawasaki, Shin-Koga Hospital; Hiroshige Yamabe, Kumamoto University Hospital; Kazuhiro Nishigami, Saiseikai Kumamoto Hospital Cardiovascular Center; Shunichi Koide, Yatsushiro Social Insurance General Hospital; Masayuki Kaneko, Oita Oka Hospital; Masahiro Sonoda, National Hospital Organization Kagoshima Medical Center; Tetsuji Shinjyo, Tomishiro Central Hospital.

Ono Pharmaceutical Core Team

Takashi Tanaka, Takuto Kuramoto, Taketo Anze, Nobuyuki Oki (data manager), Akira Tsuchiya (data manager), Keita Nagasawa (data manager), Haruka Okamoto (data manager) and Toshihiro Yoshikawa (statistician).

Electronic supplementary material

Below is the link to the electronic supplementary material.
Literatur
1.
Zurück zum Zitat Hamaguchi S, Yokoshiki H, Kinugawa S, Tsuchihashi-Makaya M, Yokota T, Takeshita A, JCARE-CARD Investigators, et al. Effects of atrial fibrillation on long-term outcomes in patients hospitalized for heart failure in Japan: a report from the Japanese Cardiac Registry of Heart Failure in Cardiology (JCARE-CARD). Circ J. 2009;73:2084–90.PubMedCrossRef Hamaguchi S, Yokoshiki H, Kinugawa S, Tsuchihashi-Makaya M, Yokota T, Takeshita A, JCARE-CARD Investigators, et al. Effects of atrial fibrillation on long-term outcomes in patients hospitalized for heart failure in Japan: a report from the Japanese Cardiac Registry of Heart Failure in Cardiology (JCARE-CARD). Circ J. 2009;73:2084–90.PubMedCrossRef
2.
Zurück zum Zitat Maisel WH, Stevenson LW. Atrial fibrillation in heart failure: epidemiology, pathophysiology, and rationale for therapy. Am J Cardiol. 2003;91:2D–8D.PubMedCrossRef Maisel WH, Stevenson LW. Atrial fibrillation in heart failure: epidemiology, pathophysiology, and rationale for therapy. Am J Cardiol. 2003;91:2D–8D.PubMedCrossRef
3.
Zurück zum Zitat Sato N, Kajimoto K, Asai K, Mizuno M, Minami Y, Nagashima M, et al. Acute decompensated heart failure syndromes (ATTEND) registry. A prospective observational multicenter cohort study: rationale, design, and preliminary data. Am Heart J. 2010;159:949–55.PubMedCrossRef Sato N, Kajimoto K, Asai K, Mizuno M, Minami Y, Nagashima M, et al. Acute decompensated heart failure syndromes (ATTEND) registry. A prospective observational multicenter cohort study: rationale, design, and preliminary data. Am Heart J. 2010;159:949–55.PubMedCrossRef
4.
Zurück zum Zitat JCS Joint Working Group. Guidelines for pharmacotherapy of atrial fibrillation (JCS 2008): digest version. Circ J. 2010;74:2479–500.CrossRef JCS Joint Working Group. Guidelines for pharmacotherapy of atrial fibrillation (JCS 2008): digest version. Circ J. 2010;74:2479–500.CrossRef
5.
Zurück zum Zitat Clark DM, Plumb VJ, Epstein AE, Kay GN. Hemodynamic effects of an irregular sequence of ventricular cycle lengths during atrial fibrillation. J Am Coll Cardiol. 1997;30:1039–45.PubMedCrossRef Clark DM, Plumb VJ, Epstein AE, Kay GN. Hemodynamic effects of an irregular sequence of ventricular cycle lengths during atrial fibrillation. J Am Coll Cardiol. 1997;30:1039–45.PubMedCrossRef
6.
Zurück zum Zitat Wang TJ, Larson MG, Levy D, Vasan RS, Leip EP, Wolf PA, et al. Temporal relations of atrial fibrillation and congestive heart failure and their joint influence on mortality: the Framingham Heart Study. Circulation. 2003;107:2920–5.PubMedCrossRef Wang TJ, Larson MG, Levy D, Vasan RS, Leip EP, Wolf PA, et al. Temporal relations of atrial fibrillation and congestive heart failure and their joint influence on mortality: the Framingham Heart Study. Circulation. 2003;107:2920–5.PubMedCrossRef
7.
Zurück zum Zitat Peters KG, Kienzle MG. Severe cardiomyopathy due to chronic rapidly conducted atrial fibrillation: complete recovery after restoration of sinus rhythm. Am J Med. 1988;85:242–4.PubMedCrossRef Peters KG, Kienzle MG. Severe cardiomyopathy due to chronic rapidly conducted atrial fibrillation: complete recovery after restoration of sinus rhythm. Am J Med. 1988;85:242–4.PubMedCrossRef
8.
Zurück zum Zitat Grogan M, Smith HC, Gersh BJ, Wood DL. Left ventricular dysfunction due to atrial fibrillation in patients initially believed to have idiopathic dilated cardiomyopathy. Am J Cardiol. 1992;69:1570–3.PubMedCrossRef Grogan M, Smith HC, Gersh BJ, Wood DL. Left ventricular dysfunction due to atrial fibrillation in patients initially believed to have idiopathic dilated cardiomyopathy. Am J Cardiol. 1992;69:1570–3.PubMedCrossRef
9.
Zurück zum Zitat Fuster V, Rydén LE, Cannom DS, Crijns HJ, Curtis AB, Ellenbogen KA, et al. 2011 ACCF/AHA/HRS focused updates incorporated into the ACC/AHA/ESC 2006 Guidelines for the management of patients with atrial fibrillation: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines developed in partnership with the European Society of Cardiology and in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society. J Am Coll Cardiol. 2011;57:e101–98.PubMedCrossRef Fuster V, Rydén LE, Cannom DS, Crijns HJ, Curtis AB, Ellenbogen KA, et al. 2011 ACCF/AHA/HRS focused updates incorporated into the ACC/AHA/ESC 2006 Guidelines for the management of patients with atrial fibrillation: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines developed in partnership with the European Society of Cardiology and in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society. J Am Coll Cardiol. 2011;57:e101–98.PubMedCrossRef
10.
Zurück zum Zitat The Digitalis in Acute Atrial Fibrillation (DAAF) Trial Group. Intravenous digoxin in acute atrial fibrillation. Results of a randomized, placebo-controlled multicentre trial in 239 patients: the Digitalis in Acute Atrial Fibrillation (DAAF) Trial Group. Eur Heart J. 1997;18:649–54.CrossRef The Digitalis in Acute Atrial Fibrillation (DAAF) Trial Group. Intravenous digoxin in acute atrial fibrillation. Results of a randomized, placebo-controlled multicentre trial in 239 patients: the Digitalis in Acute Atrial Fibrillation (DAAF) Trial Group. Eur Heart J. 1997;18:649–54.CrossRef
11.
Zurück zum Zitat Shiroya T, Ichioka Y, Yoshida K, Nishijima K, Omawari N, Naka M, et al. Pharmacological studies of ONO-1101 as a beta-blocking agent with high beta 1 selectivity and ultra-short duration of action. Kiso To Rinsho. 1997;31:2913–23 (in Japanese). Shiroya T, Ichioka Y, Yoshida K, Nishijima K, Omawari N, Naka M, et al. Pharmacological studies of ONO-1101 as a beta-blocking agent with high beta 1 selectivity and ultra-short duration of action. Kiso To Rinsho. 1997;31:2913–23 (in Japanese).
12.
Zurück zum Zitat Sakamoto A, Kitakaze M, Takamoto S, Namiki A, Kasanuki H, Hosoda S, JL-KNIGHT study group. Landiolol, an ultra-short-acting β1-blocker, more effectively terminates atrial fibrillation than diltiazem after open heart surgery: prospective, multicenter, randomized, open-label study (JL-KNIGHT study). Circ J. 2012;76:1097–101.PubMedCrossRef Sakamoto A, Kitakaze M, Takamoto S, Namiki A, Kasanuki H, Hosoda S, JL-KNIGHT study group. Landiolol, an ultra-short-acting β1-blocker, more effectively terminates atrial fibrillation than diltiazem after open heart surgery: prospective, multicenter, randomized, open-label study (JL-KNIGHT study). Circ J. 2012;76:1097–101.PubMedCrossRef
13.
Zurück zum Zitat Hanada K, Higuma T, Nishizaki F, Sukekawa T, Yokota T, Yamada M, et al. Randomized study on the efficacy and safety of landiolol, an ultra-short-acting β1-adrenergic blocker, in patients with acute myocardial infarction undergoing primary percutaneous coronary intervention. Circ J. 2012;76:439–45.PubMedCrossRef Hanada K, Higuma T, Nishizaki F, Sukekawa T, Yokota T, Yamada M, et al. Randomized study on the efficacy and safety of landiolol, an ultra-short-acting β1-adrenergic blocker, in patients with acute myocardial infarction undergoing primary percutaneous coronary intervention. Circ J. 2012;76:439–45.PubMedCrossRef
14.
Zurück zum Zitat Kobayashi S, Susa T, Tanaka T, Murakami W, Fukuta S, Okuda S, et al. Low-dose β-blocker in combination with milrinone safely improves cardiac function and eliminates pulsus alternans in patients with acute decompensated heart failure. Circ J. 2012;76:1646–53.PubMedCrossRef Kobayashi S, Susa T, Tanaka T, Murakami W, Fukuta S, Okuda S, et al. Low-dose β-blocker in combination with milrinone safely improves cardiac function and eliminates pulsus alternans in patients with acute decompensated heart failure. Circ J. 2012;76:1646–53.PubMedCrossRef
15.
Zurück zum Zitat Miwa Y, Ikeda T, Mera H, Miyakoshi M, Hoshida K, Yanagisawa R, et al. Effects of landiolol, an ultra-short-acting β1-selective blocker, on electrical storm refractory to class III antiarrhythmic drugs. Circ J. 2010;74:856–63.PubMedCrossRef Miwa Y, Ikeda T, Mera H, Miyakoshi M, Hoshida K, Yanagisawa R, et al. Effects of landiolol, an ultra-short-acting β1-selective blocker, on electrical storm refractory to class III antiarrhythmic drugs. Circ J. 2010;74:856–63.PubMedCrossRef
16.
Zurück zum Zitat Nagai R, Kinugawa K, Inoue H, Atarashi H, Seino Y, Yamashita T, Shimizu W, et al. Urgent management of rapid heart rate in patients with atrial fibrillation/flutter and left ventricular dysfunction. Circ J. 2013;77:908–16.PubMedCrossRef Nagai R, Kinugawa K, Inoue H, Atarashi H, Seino Y, Yamashita T, Shimizu W, et al. Urgent management of rapid heart rate in patients with atrial fibrillation/flutter and left ventricular dysfunction. Circ J. 2013;77:908–16.PubMedCrossRef
17.
Zurück zum Zitat Hunt SA, Abraham WT, Chin MH, Feldman AM, Francis GS, Ganiats TG, et al. 2009 Focused update incorporated into the ACC/AHA 2005 guidelines for the diagnosis and management of heart failure in adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines developed in collaboration with the International Society for Heart and Lung Transplantation. J Am Coll Cardiol. 2009;53:e1–90.PubMedCrossRef Hunt SA, Abraham WT, Chin MH, Feldman AM, Francis GS, Ganiats TG, et al. 2009 Focused update incorporated into the ACC/AHA 2005 guidelines for the diagnosis and management of heart failure in adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines developed in collaboration with the International Society for Heart and Lung Transplantation. J Am Coll Cardiol. 2009;53:e1–90.PubMedCrossRef
18.
Zurück zum Zitat Adams KF Jr, Fonarow GC, Emerman CL, LeJemtel TH, Costanzo MR, Abraham WT, et al. Characteristics and outcomes of patients hospitalized for heart failure in the United States: rationale, design, and preliminary observations from the first 100,000 cases in the Acute Decompensated Heart Failure National Registry (ADHERE). Am Heart J. 2005;149:209–16.PubMedCrossRef Adams KF Jr, Fonarow GC, Emerman CL, LeJemtel TH, Costanzo MR, Abraham WT, et al. Characteristics and outcomes of patients hospitalized for heart failure in the United States: rationale, design, and preliminary observations from the first 100,000 cases in the Acute Decompensated Heart Failure National Registry (ADHERE). Am Heart J. 2005;149:209–16.PubMedCrossRef
19.
Zurück zum Zitat Hamaguchi S, Tsuchihashi-Makaya M, Kinugawa S, Yokota T, Ide T, Takeshita A, et al. Chronic kidney disease as an independent risk for long-term adverse outcomes in patients hospitalized with heart failure in Japan. Report from the Japanese Cardiac Registry of Heart Failure in Cardiology (JCARE-CARD). Circ J. 2009;73:1442–7.PubMedCrossRef Hamaguchi S, Tsuchihashi-Makaya M, Kinugawa S, Yokota T, Ide T, Takeshita A, et al. Chronic kidney disease as an independent risk for long-term adverse outcomes in patients hospitalized with heart failure in Japan. Report from the Japanese Cardiac Registry of Heart Failure in Cardiology (JCARE-CARD). Circ J. 2009;73:1442–7.PubMedCrossRef
20.
Zurück zum Zitat Shiba N, Matsuki M, Takahashi J, Tada T, Watanabe J, Shimokawa H. Prognostic importance of chronic kidney disease in Japanese patients with chronic heart failure. Circ J. 2008;72:173–8.PubMedCrossRef Shiba N, Matsuki M, Takahashi J, Tada T, Watanabe J, Shimokawa H. Prognostic importance of chronic kidney disease in Japanese patients with chronic heart failure. Circ J. 2008;72:173–8.PubMedCrossRef
21.
Zurück zum Zitat Sackner-Bernstein JD, Skopicki HA, Aaronson KD. Risk of worsening renal function with nesiritide in patients with acutely decompensated heart failure. Circulation. 2005;111:1487–91.PubMedCrossRef Sackner-Bernstein JD, Skopicki HA, Aaronson KD. Risk of worsening renal function with nesiritide in patients with acutely decompensated heart failure. Circulation. 2005;111:1487–91.PubMedCrossRef
22.
Zurück zum Zitat Sackner-Bernstein JD, Kowalski M, Fox M, Aaronson K. Short-term risk of death after treatment with nesiritide for decompensated heart failure: a pooled analysis of randomized controlled trials. JAMA. 2005;293:1900–5.PubMedCrossRef Sackner-Bernstein JD, Kowalski M, Fox M, Aaronson K. Short-term risk of death after treatment with nesiritide for decompensated heart failure: a pooled analysis of randomized controlled trials. JAMA. 2005;293:1900–5.PubMedCrossRef
23.
Zurück zum Zitat O’Connor CM, Starling RC, Hernandez AF, Armstrong PW, Dickstein K, Hasselblad V, et al. Effect of nesiritide in patients with acute decompensated heart failure. N Engl J Med. 2011;365:32–43.PubMedCrossRef O’Connor CM, Starling RC, Hernandez AF, Armstrong PW, Dickstein K, Hasselblad V, et al. Effect of nesiritide in patients with acute decompensated heart failure. N Engl J Med. 2011;365:32–43.PubMedCrossRef
24.
Zurück zum Zitat Teerlink JR, Cotter G, Davison BA, Felker GM, Filippatos G, Greenberg BH, et al. Serelaxin, recombinant human relaxin-2, for treatment of acute heart failure (RELAX-AHF): a randomised, placebo-controlled trial. Lancet. 2013;381:29–39.PubMedCrossRef Teerlink JR, Cotter G, Davison BA, Felker GM, Filippatos G, Greenberg BH, et al. Serelaxin, recombinant human relaxin-2, for treatment of acute heart failure (RELAX-AHF): a randomised, placebo-controlled trial. Lancet. 2013;381:29–39.PubMedCrossRef
25.
Zurück zum Zitat Metra M, Cotter G, Davison BA, Felker GM, Filippatos G, Greenberg BH, et al. Effect of serelaxin on cardiac, renal, and hepatic biomarkers in the Relaxin in Acute Heart Failure (RELAX-AHF) development program: correlation with outcomes. JACC. 2013;61:196–206.PubMedCrossRef Metra M, Cotter G, Davison BA, Felker GM, Filippatos G, Greenberg BH, et al. Effect of serelaxin on cardiac, renal, and hepatic biomarkers in the Relaxin in Acute Heart Failure (RELAX-AHF) development program: correlation with outcomes. JACC. 2013;61:196–206.PubMedCrossRef
26.
Zurück zum Zitat Motomura S, Hagihara A, Narumi Y, Hashimoto K. Time course of a new ultrashort-acting beta-adrenoceptor-blocking drug, ONO-1101: comparison with those of esmolol and propranolol by using the canine isolated, blood-perfused heart preparations. J Cardiovasc Pharmacol. 1998;31:431–40.PubMedCrossRef Motomura S, Hagihara A, Narumi Y, Hashimoto K. Time course of a new ultrashort-acting beta-adrenoceptor-blocking drug, ONO-1101: comparison with those of esmolol and propranolol by using the canine isolated, blood-perfused heart preparations. J Cardiovasc Pharmacol. 1998;31:431–40.PubMedCrossRef
27.
Zurück zum Zitat Iguchi S, Iwamura H, Nishizaki M, Hayashi A, Senokuchi K, Kobayashi K, et al. Development of a highly cardioselective ultra short-acting beta-blocker, ONO-1101. Chem Pharm Bull. 1992;40:1462–9.PubMedCrossRef Iguchi S, Iwamura H, Nishizaki M, Hayashi A, Senokuchi K, Kobayashi K, et al. Development of a highly cardioselective ultra short-acting beta-blocker, ONO-1101. Chem Pharm Bull. 1992;40:1462–9.PubMedCrossRef
Metadaten
Titel
Impacts of Patient Characteristics on the Effectiveness of Landiolol in AF/AFL Patients Complicated with LV Dysfunction: Subgroup Analysis of the J-Land Study
verfasst von
Koichiro Kinugawa
Ryozo Nagai
Hiroshi Inoue
Hirotsugu Atarashi
Yoshihiko Seino
Takeshi Yamashita
Wataru Shimizu
Takeshi Aiba
Masafumi Kitakaze
Atsuhiro Sakamoto
Takanori Ikeda
Yasushi Imai
Takashi Daimon
Katsuhiro Fujino
Tetsuji Nagano
Tatsuaki Okamura
Masatsugu Hori
The J-Land Investigators
Publikationsdatum
01.04.2014
Verlag
Springer Healthcare
Erschienen in
Advances in Therapy / Ausgabe 4/2014
Print ISSN: 0741-238X
Elektronische ISSN: 1865-8652
DOI
https://doi.org/10.1007/s12325-014-0111-2

Weitere Artikel der Ausgabe 4/2014

Advances in Therapy 4/2014 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Echinokokkose medikamentös behandeln oder operieren?

06.05.2024 DCK 2024 Kongressbericht

Die Therapie von Echinokokkosen sollte immer in spezialisierten Zentren erfolgen. Eine symptomlose Echinokokkose kann – egal ob von Hunde- oder Fuchsbandwurm ausgelöst – konservativ erfolgen. Wenn eine Op. nötig ist, kann es sinnvoll sein, vorher Zysten zu leeren und zu desinfizieren. 

Umsetzung der POMGAT-Leitlinie läuft

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

Proximale Humerusfraktur: Auch 100-Jährige operieren?

01.05.2024 DCK 2024 Kongressbericht

Mit dem demographischen Wandel versorgt auch die Chirurgie immer mehr betagte Menschen. Von Entwicklungen wie Fast-Track können auch ältere Menschen profitieren und bei proximaler Humerusfraktur können selbst manche 100-Jährige noch sicher operiert werden.

Die „Zehn Gebote“ des Endokarditis-Managements

30.04.2024 Endokarditis Leitlinie kompakt

Worauf kommt es beim Management von Personen mit infektiöser Endokarditis an? Eine Kardiologin und ein Kardiologe fassen die zehn wichtigsten Punkte der neuen ESC-Leitlinie zusammen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.