Skip to main content
Erschienen in: World Journal of Emergency Surgery 1/2014

Open Access 01.12.2014 | Research article

Important CT findings for prediction of severe appendicitis: involvement of retroperitoneal space

verfasst von: Kumiko Kitaoka, Kazuhiro Saito, Koichi Tokuuye

Erschienen in: World Journal of Emergency Surgery | Ausgabe 1/2014

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Background

Determination of the severity of appendicitis and differentiation between complicated and uncomplicated appendicitis are clinically important. Severe appendicitis frequently affects extraperitoneal spaces. We have investigated CT findings of retroperitoneal space (RPS) in patients with appendicitis to create a model for identification of complicated appendicitis.

Method

CT images of 223 patients with pathologically proven appendicitis were reviewed. The total number of the segments in RPS where inflammatory changes were located (RPS count) was obtained as well as appendiceal diameter, appendicolithiasis, WBC count, and CRP level. Data were analyzed to identify factors indicating complicated appendicitis. Univariate analysis was conducted to identify statistically significant variables. A multivariable logistic regression analysis was performed in order to find independent predictors of complicated appendicitis.

Results

Patients with complicated appendicitis were more likely to have higher RPS count (P < 0.001), appendicolithiasis (P = 0.002), higher CRP level (P < 0.001), and greater appendix diameter (P < 0.001) than patients with uncomplicated appendicitis. Statistical analysis showed RPS count was the most helpful predictor of complicated appendicitis.

Conclusion

Radiologists and surgeons should be aware of the importance of CT findings in RPS when treating patients with appendicitis. Complicated appendicitis can be predicted by RPS count, diameter of the appendix, appendicolithiasis, and CRP level.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1749-7922-9-62) contains supplementary material, which is available to authorized users.
Kumiko Kitaoka, Kazuhiro Saito and Koichi Tokuuye contributed equally to this work.

Competing interest

The authors declare that they have no competing interests. No external financial support was provided.

Authors' contribution

Study concept and design: KK and KS. Acquisition of data: KK. Analysis and interpretation of data: KK, KS, and KT, Drafting of the manuscript: KK. Critical revision of the manuscript for important intellectual content: KS and KT. All authors take responsibility for the integrity of the data and the accuracy of the data analysis. All authors read and approved the final manuscript.

Introduction

Appendicitis, a very common surgical condition, has been traditionally considered as a surgical emergency and a clinical challenge [1]. With the advent of computed tomography (CT), the diagnostic accuracy of appendicitis has dramatically improved. So far, CT findings, such as enlargement of the appendix, appendicolithiasis, and phlegmon, have been reported to successfully identify cases of acute appendicitis and these findings are relatively easy to identify [24]. Other researchers have reported that laboratory markers are useful in making diagnosis [5]. Recently, one systematic review and meta-analysis reported imperfect accuracy of procalcitonin, C-reactive protein (CRP) and white blood cell count (WBC) in uncomplicated or complicated appendicitis [6].
In patients with complicated appendicitis, a significant increase in mortality rate has been reported [7, 8]. Accordingly, accurate determination of the severity of appendicitis, and differentiation between complicated and uncomplicated appendicitis is clinically warranted. CT could help surgeons recognize the location of appendix, confirm the diagnosis and other intra-abdominal conditions requiring other procedures, such as perforation, abscess, and peritonitis [9]. Some previous studies have investigated the implication of various CT findings in the context of severity of appendicitis [1017]. Clinical application of such findings, however, may not be easy, because they can be subtle, and subjective.
The appendix is usually located in the anterolateral portion of pelvic cavity, and inflammation of the appendix can trigger inflammatory process in pelvic extraperitoneal space (PEPS). Recent studies have discovered more precise anatomical relationship between retroperitoneal space (RPS) and PEPS [1820].

Methods

Approval was obtained by the institutional review board of our university before initiation of this study. All consecutive patients who underwent an appendectomy for suspected acute appendicitis at our university hospital between January 1, 2007 and December 31, 2012 were eligible. All eligible patients were chosen by searching a pathology database with an appropriate code for appendix or appendectomy. The eligibility criteria were a histology report showing acute appendicitis (n = 231). Patients were excluded when pathologists made a diagnosis of chronic appendicitis (n = 7), or when there was no preoperative, non-focused, abdominopelvic CT examination available in our picture archiving and communication system (PACS) at the time of the study that had been obtained before a surgery (n = 1). Written informed consent was obtained from the patient on admission for the publication of clinical report and any accompanying images performed during their medical treatment.
We reviewed the patients’ medical, surgical, and pathology records. All multidetector non-contrast or contrast CT images were obtained to visualize structures in ileocecal area. All patients were scanned using a 16 or 64 multi-detector helical scanner, (Bright Speed Elite; Right Speed VCT General Electric Health Care). The abdomen was scanned helically (pitch of 1.375:1, rotation time 0.4 sec, 120kVp, auto mAs) with a 5-mm collimation.
The images were retrospectively reviewed at a PACS workstation and interpreted by consensus of two radiologists (K.S. 23 years of experience, specialized in abdominal radiology; K.K. 3 years of experience) who were blinded to the patients’ surgical or pathological results.
We selected six sections within RPS without discriminating the right from the left. These sections included (a) lateral conal plane (LCP), (b) retromesenteric plane (RMP), (c) retrorenal plane (RRP), (d) bridging septa (BS), (e) subfascial plane (SFP), and (f) combined fascial plane (CFP) [21] (Figures 1, 2 and 3). These segments were evaluated for signs of inflammation, such as thickening of the fascial plane (Figures 2 and 3). We regarded recognizable thickening of fascial planes of any degree as pathological as well as fluid accumulation. RPS segments where signs of inflammation could be located and the total number of involved RPS segments (RPS count) were recorded for each patient. In addition, maximal diameter of the appendix on an axial image was measured, and presence or absence of appendicolithiasis was determined. Patients were divided into two groups a complicated appendicitis group and an uncomplicated appendicitis group. The complicated appendicitis group consisted of patients whose surgical reports either described the presence of a perforated appendix, abscess formation, or purulent peritoneal fluid, or whose histology reports indicated a perforated appendix, abscess formation, peritonitis, or gangrenous appendicitis.
We analyzed data using the Statistical Package for the Social Sciences (SPSS) ver. 16.0 (SPSS Inc., Chicago, IL). Univariate analysis was performed by comparing characteristics between complicated and uncomplicated appendicitis. Analysis was also repeated for two subgroups, the younger patients (age <16 years, n = 68) and the older patients (age ≧16 years, n = 155).
A multivariable logistic regression analysis was performed in order to find factors for indicating complicated appendicitis.

Results

A total number of 223 patients with pathologically proven appendicitis, 78 female, 145 male, were included. The mean age of the patients was 31.4 years old (4–94 year old). 123 patients had complicated appendicitis (55.2%).
Observed distribution of changes in each segment of RPS for the complicated/uncomplicated appendicitis group was summarized (Table 1). Significantly more RPS segments were involved in the complicated appendicitis group compared with the uncomplicated appendicitis group (Figures 2, 3, 4 and 5). Involvement of RPS segments was more identifiable in the older patient (age ≧16 years) group than in the younger patient group (age <16 years) because segments of RPS are sometimes difficult to be observed (Figures 6 and 7).
Table 1
Distribution of observed radiological changes in RPS segments
 
LCP
RRP
RMP
BS
SFP
CFP
Complicated appendicitis (true positive)
≧16y
49
38
33
12
12
82
<16y
4
5
3
1
5
17
Uncomplicated appendicitis
(false positive)
≧16y
7
7
5
2
1
46
<16y
6
3
3
0
0
15
PPV
≧16y
0.88
0.84
0.87
0.86
0.92
0.64
<16y
0.40
0.63
0.50
1.0
1.0
0.53
NPV
≧16y
0.53
0.47
0.46
0.40
0.41
0.48
<16y
0.60
0.63
0.61
0.61
0.65
0.72
Significantly more segments were involved (i.e. radiographical changes were observed) in complicated appendicitis group. CFP, which is closest to the pelvic extraperitoneal space, was predominantly involved. Positive predictive value (PPV) of complicated appendicitis was highest for SFP in older patient group while PPV was highest for SFP and BS in younger patient group.
Positive predictive value (PPV) was relatively high (0.64-0.92) for segments of RPS among older patients. The most frequently involved segment was CFP, which had Negative predictive value (NPV) of 0.72 among younger patients. The least frequently involved segment, SFP had PPV of 0.92 among older patients (Table 1).
Univariate analysis revealed that patients with complicated appendicitis were more likely to have higher RPS count (P < 0.001), higher CRP level (P < 0.001), greater appendix diameter (P < 0.001), and appendicolitiasis (P = 0.002) (Table 2). No statistically significant differences were noted between both groups with respect to gender and WBC count.
Table 2
Results of univariate analysis of variables between groups
 
Complicated (n = 123)
Uncomplicated (n = 100)
P value
Appendix diameter* (mm)
13.4 (10.4-16.0)
10.6 (8.6-13.1)
<0.001
RPS count*
2 (1-3)
1(0-1)
<0.001
WBC count (×109 cells/L)
13.7 (11.3-17.0)
13.7 (11.1-16.5)
>0.05
CRP level* (nmol/L)
45.7 (11.4-131.4)
12.4 (4.8-36.2)
<0.001
Age*(years old)
34(18-51)
23 (11-34.8)
<0.001
Appendicolithiasis*
  
0.002
Gender
  
>0.05
*P value <0.05 was considered significant.
†Medians are shown with 25th percentile and 75th percentile between brackets.
‡Data were analyzed using Fishers’ exact test.
In the older patient group, patients with complicated appendicitis were more likely to have higher RPS count (P < 0.001), higher CRP level (P < 0.001), greater appendix diameter (P = 0.002), appendicolitiasis (P = 0.04), and advanced age (P = 0.01). In the younger patient group, patients with complicated appendicitis were more likely to be female (P = 0.02), more likely to have appendicolitiasis (P = 0.01), greater appendix diameter (P = 0.02), and higher CRP level (P = 0.03).
Variables of age, RPS count, diameter of appendix, appendicolithiasis, and CRP level were entered into the initial logistic regression model.
The final model included RPS count, diameter of appendix, appendicolithiasis, and CRP level, and was characterized by a Nagelkerke R-square value of 0.31 and a Hosmer and Lemeshow level of fit with a χ2 value of 7.9 and a P value of 0.45.
The regression coefficients for the final regression models are shown in Table 3. Obtained ROC curve showed the largest area under the curve (AUROC) for RPS (AUROC = 0.70), followed by CRP level (AUROC = 0.69) (Figure 8). The optimal cutoff value of RPS count for complicated appendicitis was calculated around 1 to 2 (sensitivity = 0.521, specificity 0.786 at RPS = 1.5).
Table 3
Logistic regression model for probability of complicated appendicitis
 
P value
Regression coefficient
Odds ratio
RPS count
0.004
0.419
1.52
Appendix diameter
0.06
0.088
1.09
Appendicolithiasis
0.09
0.863
0.42
CRP level
0.08
0.076
1.709
Analysis was repeated for the older patient group and RPS count was found to be a better indicator of complicated appendicitis than other variables. The final model included only RPS count, appendicolithiasis, and CRP level. AUROC was largest for RPS (AUROC = 0.71).

Discussion

This study showed a complicated appendicitis can be predicted by a combination of clinical variables, the number of involved segments of RPS, the maximal diameter of the appendix on CT examination, existence of appendicolithiasis, and the CRP levels. Based on our data, CT analysis has strong predictive power for the severity of appendicitis [21]. This finding is similar to the pancreatitis severity scoring system [22], which determines the severity of pancreatitis based on the extent of inflammation on CT. The appendix, being located in the proximity of PEPS, can cause inflammation-related CT changes in RPS as well by way of CFP.
Compared with laboratory markers, CT findings of appendicitis have been found helpful because of their specificity. Noncontrast CT scan in adults had reasonably high sensitivity and specificity for clinical decision making. Previous radiologists who studied severity of appendicitis limited the scope of observation to findings observed in the vicinity of the appendix, such as involvement of periappendiceal fat and appendicolithiasis [917]. Although these results are important, these findings are not always reproducible. For example, contrast medium is contraindicated in some patients while many of these findings are sometimes difficult to be identified without contrast enhancement. Furthermore, not every clinician is familiarized with subtle CT changes. Contrary to these limitations, the key elements of CT findings that we presented in this article can be interpreted more objectively and in a semiquantitative manner in almost every patient once clinicians know where to look at.
The present study included 123 cases of complicated appendicitis in 223 cases of pathologically proven appendicitis (55.2%). The ratio of complicated appendicitis is relatively high compared with other previous reports (20-40%) [9, 16, 17]. There was no appendicitis-associated death observed among the study subjects.
Potential limitations of this study include difficulty of identifying anatomical structures in pediatric patients. We acknowledge that this method may be more useful in patients who are at the age of 16 or higher. CT exposes patients to a risk of ionizing radiation. Therefore, CT is less indicated in the young and female patients due to its high level of irradiation and may be more helpful in the elderly age group, but there is still a 10-20% negative appendectomy rate despite the use of CT [2325]. However, most importantly we can utilize this diagnostic method without specialized training or it can be employed irrespective of use of contrast medium once its practical utility is properly understood.

Conclusion

In conclusions, radiographical findings of RPS segments are important for the diagnosis of appendicitis and the prediction of severity of acute appendicitis because numerosity of the involved RPS segments (for example ≧2) is indicative of severe appendicitis. Complicated appendicitis can be predicted by RPS count, diameter of the appendix, appendicolithiasis, and CRP level. The possibility of false positivity remains, but RPS count would be more useful than other CT findings because administration of contrast medium is not required and it can be utilized in almost every clinical setting. Radiologists and clinicians should continue appropriate measures to minimize irradiation for susceptible patients.
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​4.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Competing interest

The authors declare that they have no competing interests. No external financial support was provided.

Authors' contribution

Study concept and design: KK and KS. Acquisition of data: KK. Analysis and interpretation of data: KK, KS, and KT, Drafting of the manuscript: KK. Critical revision of the manuscript for important intellectual content: KS and KT. All authors take responsibility for the integrity of the data and the accuracy of the data analysis. All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Agresta F, Ansaloni L, Catena F, Verza LA, Prando D: Acute appendicitis: position paper, WSES, 2013. World J Emerg Surg. 2014, 9 (1): 26-10.1186/1749-7922-9-26.PubMedCentralCrossRefPubMed Agresta F, Ansaloni L, Catena F, Verza LA, Prando D: Acute appendicitis: position paper, WSES, 2013. World J Emerg Surg. 2014, 9 (1): 26-10.1186/1749-7922-9-26.PubMedCentralCrossRefPubMed
2.
Zurück zum Zitat Ives EP, Sung S, McCue P, Durrani H, Halpern EJ: Independent predictors of acute appendicitis on CT with pathologic correlation. Acad Radiol. 2008, 15 (8): 996-1003. 10.1016/j.acra.2008.02.009.CrossRefPubMed Ives EP, Sung S, McCue P, Durrani H, Halpern EJ: Independent predictors of acute appendicitis on CT with pathologic correlation. Acad Radiol. 2008, 15 (8): 996-1003. 10.1016/j.acra.2008.02.009.CrossRefPubMed
3.
Zurück zum Zitat Lane MJ, Liu DM, Huynh MD, Jeffrey RB Jr, Mindelzun RE, Katz DS: Suspected acute appendicitis: nonenhanced helical CT in 300 consecutive patients. Radiology. 1999, 213 (2): 341-346. 10.1148/radiology.213.2.r99nv44341.CrossRefPubMed Lane MJ, Liu DM, Huynh MD, Jeffrey RB Jr, Mindelzun RE, Katz DS: Suspected acute appendicitis: nonenhanced helical CT in 300 consecutive patients. Radiology. 1999, 213 (2): 341-346. 10.1148/radiology.213.2.r99nv44341.CrossRefPubMed
4.
Zurück zum Zitat Raman SS, Lu DS, Kadell BM, Vodopich DJ, Sayre J, Cryer H: Accuracy of nonfocused helical CT for the diagnosis of acute appendicitis: a 5-year review. Am J Roentgenol. 2002, 178 (6): 1319-1325. 10.2214/ajr.178.6.1781319.CrossRef Raman SS, Lu DS, Kadell BM, Vodopich DJ, Sayre J, Cryer H: Accuracy of nonfocused helical CT for the diagnosis of acute appendicitis: a 5-year review. Am J Roentgenol. 2002, 178 (6): 1319-1325. 10.2214/ajr.178.6.1781319.CrossRef
5.
Zurück zum Zitat Xharra S, Gashi-Luci L, Xharra K, Veselaj F, Bicaj B, Sada F, Krasniqi A: Correlation of serum C-reactive protein, white blood count and neutrophil percentage with histopathology findings in acute appendicitis. World J Emerg Surg. 2012, 7 (1): 27-10.1186/1749-7922-7-27.PubMedCentralCrossRefPubMed Xharra S, Gashi-Luci L, Xharra K, Veselaj F, Bicaj B, Sada F, Krasniqi A: Correlation of serum C-reactive protein, white blood count and neutrophil percentage with histopathology findings in acute appendicitis. World J Emerg Surg. 2012, 7 (1): 27-10.1186/1749-7922-7-27.PubMedCentralCrossRefPubMed
6.
Zurück zum Zitat Yu CW, Juan LI, Wu MH, Shen CJ, Wu JY, Lee CC: Systematic review and meta-analysis of the diagnostic accuracy of procalcitonin, C-reactive protein and white blood cell count for suspected acute appendicitis. Br J Surg. 2013, 100 (3): 322-329. 10.1002/bjs.9008.CrossRefPubMed Yu CW, Juan LI, Wu MH, Shen CJ, Wu JY, Lee CC: Systematic review and meta-analysis of the diagnostic accuracy of procalcitonin, C-reactive protein and white blood cell count for suspected acute appendicitis. Br J Surg. 2013, 100 (3): 322-329. 10.1002/bjs.9008.CrossRefPubMed
7.
Zurück zum Zitat Aprahamian CJ, Barnhart DC, Bledsoe SE, Vaid Y, Harmon CM: Failure in the nonoperative management of pediatric ruptured appendicitis: Predictors and consequences. J Pediatr Surg. 2007, 42 (6): 934-938. 10.1016/j.jpedsurg.2007.01.024. discussion 938CrossRefPubMed Aprahamian CJ, Barnhart DC, Bledsoe SE, Vaid Y, Harmon CM: Failure in the nonoperative management of pediatric ruptured appendicitis: Predictors and consequences. J Pediatr Surg. 2007, 42 (6): 934-938. 10.1016/j.jpedsurg.2007.01.024. discussion 938CrossRefPubMed
8.
Zurück zum Zitat Velanovich V, Satava R: Balancing the normal appendectomy rate with the perforated appendicitis rate: Implications for quality assurance. Am Surg. 1992, 58 (4): 264-269.PubMed Velanovich V, Satava R: Balancing the normal appendectomy rate with the perforated appendicitis rate: Implications for quality assurance. Am Surg. 1992, 58 (4): 264-269.PubMed
9.
Zurück zum Zitat Hansen AJ, Young SW, De Petris G, Tessier DJ, Hernandez JL, Johnson DJ: Histologic severity of appendicitis can be predicted by computed tomography. Arch Surg. 2004, 139 (12): 1304-1308. 10.1001/archsurg.139.12.1304.CrossRefPubMed Hansen AJ, Young SW, De Petris G, Tessier DJ, Hernandez JL, Johnson DJ: Histologic severity of appendicitis can be predicted by computed tomography. Arch Surg. 2004, 139 (12): 1304-1308. 10.1001/archsurg.139.12.1304.CrossRefPubMed
10.
Zurück zum Zitat Oliak D, Sinow R, French S, Udani VM, Stamos MJ: Computed tomography scanning for the diagnosis of perforated appendicitis. Am Surg. 1999, 65 (10): 959-964.PubMed Oliak D, Sinow R, French S, Udani VM, Stamos MJ: Computed tomography scanning for the diagnosis of perforated appendicitis. Am Surg. 1999, 65 (10): 959-964.PubMed
11.
Zurück zum Zitat Foley TA, Earnest F, Nathan MA, Hough DM, Schiller HJ, Hoskin TL: Differentiation of nonperforated from perforated appendicitis: accuracy of CT diagnosis and relationship of CT findings to length of hospital stay. Radiology. 2005, 235 (1): 89-96. 10.1148/radiol.2351040310.CrossRefPubMed Foley TA, Earnest F, Nathan MA, Hough DM, Schiller HJ, Hoskin TL: Differentiation of nonperforated from perforated appendicitis: accuracy of CT diagnosis and relationship of CT findings to length of hospital stay. Radiology. 2005, 235 (1): 89-96. 10.1148/radiol.2351040310.CrossRefPubMed
12.
Zurück zum Zitat Bixby SD, Lucey BC, Soto JA, Theysohn JM, Ozonoff A, Varghese JC: Perforated versus nonperforated acute appendicitis: accuracy of multidetector CT detection. Radiology. 2006, 241 (3): 780-786. 10.1148/radiol.2413051896.CrossRefPubMed Bixby SD, Lucey BC, Soto JA, Theysohn JM, Ozonoff A, Varghese JC: Perforated versus nonperforated acute appendicitis: accuracy of multidetector CT detection. Radiology. 2006, 241 (3): 780-786. 10.1148/radiol.2413051896.CrossRefPubMed
13.
Zurück zum Zitat Pinto Leite N, Pereira JM, Cunha R, Pinto P, Sirlin C: CT evaluation of appendicitis and its complications: imaging techniques and key diagnostic findings. Am J Roentgenol. 2005, 185 (2): 406-417. 10.2214/ajr.185.2.01850406.CrossRef Pinto Leite N, Pereira JM, Cunha R, Pinto P, Sirlin C: CT evaluation of appendicitis and its complications: imaging techniques and key diagnostic findings. Am J Roentgenol. 2005, 185 (2): 406-417. 10.2214/ajr.185.2.01850406.CrossRef
14.
Zurück zum Zitat Tsuboi M, Takase K, Kaneda I, Ishibashi T, Yamada T, Kitami M, Higano S, Takahashi S: Perforated and Nonperforated Appendicitis: Defect in enhancing appendiceal wall – depiction with Multi-Detector Row CT. Radiology. 2008, 246 (1): 142-147. 10.1148/radiol.2461051760.CrossRefPubMed Tsuboi M, Takase K, Kaneda I, Ishibashi T, Yamada T, Kitami M, Higano S, Takahashi S: Perforated and Nonperforated Appendicitis: Defect in enhancing appendiceal wall – depiction with Multi-Detector Row CT. Radiology. 2008, 246 (1): 142-147. 10.1148/radiol.2461051760.CrossRefPubMed
15.
Zurück zum Zitat Mori Y, Yamasaki M, Furukawa A, Takahashi M, Murata K: Enhanced CT in the diagnosis of acute appendicitis to evaluate the severity of disease: comparison of CT findings and histological diagnosis. Radiat Med. 2001, 19 (4): 197-202.PubMed Mori Y, Yamasaki M, Furukawa A, Takahashi M, Murata K: Enhanced CT in the diagnosis of acute appendicitis to evaluate the severity of disease: comparison of CT findings and histological diagnosis. Radiat Med. 2001, 19 (4): 197-202.PubMed
16.
Zurück zum Zitat Tsukada K, Miyazaki T, Katoh H, Masuda N, Ojima H, Fukuchi M, Manda R, Fukai Y, Nakajima M, Ishizaki M, Motegi M, Ohsawa H, Mogi A, Okamura A, Tsunoda Y, Sohda M, Ohno T, Moteki T, Sekine T, Kuwano H: CT is useful for identifying patients with complicated appendicitis. Dig Liver Dis. 2004, 36 (3): 195-198. 10.1016/j.dld.2003.11.026.CrossRefPubMed Tsukada K, Miyazaki T, Katoh H, Masuda N, Ojima H, Fukuchi M, Manda R, Fukai Y, Nakajima M, Ishizaki M, Motegi M, Ohsawa H, Mogi A, Okamura A, Tsunoda Y, Sohda M, Ohno T, Moteki T, Sekine T, Kuwano H: CT is useful for identifying patients with complicated appendicitis. Dig Liver Dis. 2004, 36 (3): 195-198. 10.1016/j.dld.2003.11.026.CrossRefPubMed
17.
Zurück zum Zitat Miki T, Ogata S, Uto M, Nakazono T, Urata M, Ishibe R, Shinyama S, Nakajo M: Enhanced Multidetector-row Computed Tomography (MDCT) in the diagnosis of acute appendicitis and its severity. Radiat Med. 2005, 23 (4): 242-255.PubMed Miki T, Ogata S, Uto M, Nakazono T, Urata M, Ishibe R, Shinyama S, Nakajo M: Enhanced Multidetector-row Computed Tomography (MDCT) in the diagnosis of acute appendicitis and its severity. Radiat Med. 2005, 23 (4): 242-255.PubMed
18.
Zurück zum Zitat Korobkin M, Silverman PM, Quint LE, Francis IR: CT of the extraperitoneal space: normal anatomy and fluid collections. Am J Roentgenol. 1992, 159 (5): 933-942. 10.2214/ajr.159.5.1414803.CrossRef Korobkin M, Silverman PM, Quint LE, Francis IR: CT of the extraperitoneal space: normal anatomy and fluid collections. Am J Roentgenol. 1992, 159 (5): 933-942. 10.2214/ajr.159.5.1414803.CrossRef
19.
Zurück zum Zitat Beaulieu CF, Mindelzun RE, Dolph J, Jeffrey RB Jr: The infraconal compartment: a multidirectional pathway for spread of disease between the extraperitoneal abdomen and pelvis. J Comput Assist Tomogr. 1997, 21 (2): 223-228. 10.1097/00004728-199703000-00011.CrossRefPubMed Beaulieu CF, Mindelzun RE, Dolph J, Jeffrey RB Jr: The infraconal compartment: a multidirectional pathway for spread of disease between the extraperitoneal abdomen and pelvis. J Comput Assist Tomogr. 1997, 21 (2): 223-228. 10.1097/00004728-199703000-00011.CrossRefPubMed
20.
Zurück zum Zitat Lee SL, Ku YM, Rha SE: Comprehensive reviews of the interfascial plane of the retroperitoneum: normal anatomy and pathologic entities. Emerg Radiol. 2010, 17 (1): 3-11. 10.1007/s10140-009-0809-7.CrossRefPubMed Lee SL, Ku YM, Rha SE: Comprehensive reviews of the interfascial plane of the retroperitoneum: normal anatomy and pathologic entities. Emerg Radiol. 2010, 17 (1): 3-11. 10.1007/s10140-009-0809-7.CrossRefPubMed
21.
Zurück zum Zitat Sartelli M, Viale P, Catena F, Ansaloni L, Moore E, Malangoni M, Moore FA, Velmahos G, Coimbra R, Ivatury R, Peitzman A, Koike K, Leppaniemi A, Biffl W, Burlew CC, Balogh ZJ, Boffard K, Bendinelli C, Gupta S, Kluger Y, Agresta F, Di Saverio S, Wani I, Escalona A, Ordonez C, Fraga GP, Junior GA, Bala M, Cui Y, Marwah S, et al: WSES guidelines for management of intra-abdominal infections. World J Emerg Surg. 2013, 8 (1): 3-10.1186/1749-7922-8-3.PubMedCentralCrossRefPubMed Sartelli M, Viale P, Catena F, Ansaloni L, Moore E, Malangoni M, Moore FA, Velmahos G, Coimbra R, Ivatury R, Peitzman A, Koike K, Leppaniemi A, Biffl W, Burlew CC, Balogh ZJ, Boffard K, Bendinelli C, Gupta S, Kluger Y, Agresta F, Di Saverio S, Wani I, Escalona A, Ordonez C, Fraga GP, Junior GA, Bala M, Cui Y, Marwah S, et al: WSES guidelines for management of intra-abdominal infections. World J Emerg Surg. 2013, 8 (1): 3-10.1186/1749-7922-8-3.PubMedCentralCrossRefPubMed
22.
Zurück zum Zitat Ishikawa K, Idoguchi K, Tanaka H, Tohma Y, Ukai I, Watanabe H, Matsuoka T, Yokota J, Sugimoto T: Classification of acute pancreatitis based on retroperitoneal extension: application of the concept of interfascial planes. Eur J Radiol. 2006, 60 (3): 445-452. 10.1016/j.ejrad.2006.06.014.CrossRefPubMed Ishikawa K, Idoguchi K, Tanaka H, Tohma Y, Ukai I, Watanabe H, Matsuoka T, Yokota J, Sugimoto T: Classification of acute pancreatitis based on retroperitoneal extension: application of the concept of interfascial planes. Eur J Radiol. 2006, 60 (3): 445-452. 10.1016/j.ejrad.2006.06.014.CrossRefPubMed
23.
Zurück zum Zitat Chandrasekaran TV, Johnson N: Acute appendicitis. Intestinal Surgery II. Surgery. 2014, 32 (8): 413-417. Chandrasekaran TV, Johnson N: Acute appendicitis. Intestinal Surgery II. Surgery. 2014, 32 (8): 413-417.
24.
Zurück zum Zitat Wray CJ, Kao LS, Millas SG, Tsao K, Ko TC: Acute Appendicitis: controversies in diagnosis and management. Curr Probl Surg. 2013, 50 (2): 54-86. 10.1067/j.cpsurg.2012.10.001.CrossRefPubMed Wray CJ, Kao LS, Millas SG, Tsao K, Ko TC: Acute Appendicitis: controversies in diagnosis and management. Curr Probl Surg. 2013, 50 (2): 54-86. 10.1067/j.cpsurg.2012.10.001.CrossRefPubMed
25.
Zurück zum Zitat Omari AH, Khammash MR, Qasaimeh GR, Shammari AK, Yaseen MK, Hammori SK: Acute appendicitis in the elderly: risk factors for perforation. World J Emerg Surg. 2014, 9 (1): 6-10.1186/1749-7922-9-6.PubMedCentralCrossRefPubMed Omari AH, Khammash MR, Qasaimeh GR, Shammari AK, Yaseen MK, Hammori SK: Acute appendicitis in the elderly: risk factors for perforation. World J Emerg Surg. 2014, 9 (1): 6-10.1186/1749-7922-9-6.PubMedCentralCrossRefPubMed
Metadaten
Titel
Important CT findings for prediction of severe appendicitis: involvement of retroperitoneal space
verfasst von
Kumiko Kitaoka
Kazuhiro Saito
Koichi Tokuuye
Publikationsdatum
01.12.2014
Verlag
BioMed Central
Erschienen in
World Journal of Emergency Surgery / Ausgabe 1/2014
Elektronische ISSN: 1749-7922
DOI
https://doi.org/10.1186/1749-7922-9-62

Weitere Artikel der Ausgabe 1/2014

World Journal of Emergency Surgery 1/2014 Zur Ausgabe