Skip to main content
Erschienen in: Lasers in Medical Science 5/2017

27.04.2017 | Review Article

In vitro biological outcome of laser application for modification or processing of titanium dental implants

verfasst von: Ahmed Hindy, Farzam Farahmand, Fahimeh sadat Tabatabaei

Erschienen in: Lasers in Medical Science | Ausgabe 5/2017

Einloggen, um Zugang zu erhalten

Abstract

There are numerous functions for laser in modern implant dentistry including surface treatment, surface coating, and implant manufacturing. As laser application may potentially improve osseointegration of dental implants, we systematically reviewed the literature for in vitro biological responses to laser-modified or processed titanium dental implants. The literature was searched in PubMed, ISI Web, and Scopus, using keywords “titanium dental implants,” “laser,” “biocompatibility,” and their synonyms. After screening the 136 references obtained, 28 articles met the inclusion criteria. We found that Nd:YAG laser was the most commonly used lasers in the treatment or processing of titanium dental implants. Most of the experiments used cell attachment and cell proliferation to investigate bioresponses of the implants. The most commonly used cells in these assays were osteoblast-like cells. Only one study was conducted in stem cells. These in vitro studies reported higher biocompatibility in laser-modified titanium implants. It seems that laser radiation plays a vital role in cell response to dental implants; however, it is necessary to accomplish more studies using different laser types and parameters on various cells to offer a more conclusive result.
Literatur
1.
Zurück zum Zitat Sakaguchi RL, Powers JM (2013) Craig’s restorative dental materials, 13th edn. Mosby: Elsevier, USA Sakaguchi RL, Powers JM (2013) Craig’s restorative dental materials, 13th edn. Mosby: Elsevier, USA
2.
Zurück zum Zitat Anusavice KJ, Shen C, Rawls HR (2012) Phillip’s science of dental materials, 12th edn. Saunders, St. Louis Anusavice KJ, Shen C, Rawls HR (2012) Phillip’s science of dental materials, 12th edn. Saunders, St. Louis
3.
Zurück zum Zitat Kasemo B (1983) Biocompatibility of titanium implants: surface science aspects. J Prosthet Dent 49(6):832–837CrossRefPubMed Kasemo B (1983) Biocompatibility of titanium implants: surface science aspects. J Prosthet Dent 49(6):832–837CrossRefPubMed
5.
Zurück zum Zitat Branemark P, Adell R, Breine U, Hansson B, Lindström J, Ohlsson A (1969) Intra-osseous anchorage of dental prostheses. I. Experimental studies. Scand J Plast Reconstr Surg 3(2):81–100CrossRefPubMed Branemark P, Adell R, Breine U, Hansson B, Lindström J, Ohlsson A (1969) Intra-osseous anchorage of dental prostheses. I. Experimental studies. Scand J Plast Reconstr Surg 3(2):81–100CrossRefPubMed
6.
Zurück zum Zitat Anil S, Alghamdi H, Jansen J, Anand P (2011) Dental implant surface enhancement and osseointegration. In: Turkyilmaz I (ed) Implant dentistry—a rapidly evolving practice. InTech, Croatia, pp 83–108 Anil S, Alghamdi H, Jansen J, Anand P (2011) Dental implant surface enhancement and osseointegration. In: Turkyilmaz I (ed) Implant dentistry—a rapidly evolving practice. InTech, Croatia, pp 83–108
7.
Zurück zum Zitat Wall I, Donos N, Carlqvist K, Jones F, Brett P (2009) Modified titanium surfaces promote accelerated osteogenic differentiation of mesenchymal stromal cells in vitro. Bone 45(1):17–26CrossRefPubMed Wall I, Donos N, Carlqvist K, Jones F, Brett P (2009) Modified titanium surfaces promote accelerated osteogenic differentiation of mesenchymal stromal cells in vitro. Bone 45(1):17–26CrossRefPubMed
8.
Zurück zum Zitat Raines AL, Olivares-Navarrete R, Wieland M, Cochran DL, Schwartz Z, Boyan BD (2010) Regulation of angiogenesis during osseo integration by titanium surface microstructure and energy. Biomaterials 31(18):4909–4917CrossRefPubMedPubMedCentral Raines AL, Olivares-Navarrete R, Wieland M, Cochran DL, Schwartz Z, Boyan BD (2010) Regulation of angiogenesis during osseo integration by titanium surface microstructure and energy. Biomaterials 31(18):4909–4917CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Buser D, Janner SF, Wittneben JG, Bragger U, Ramseier CA, Salvi GE (2012) 10-year survival and success rates of 511 titanium implants with a sandblasted and acid-etched surface: a retrospective study in 303 partially edentulous patients. Clin Implant Dent Relat Res 14(6):839–851CrossRefPubMed Buser D, Janner SF, Wittneben JG, Bragger U, Ramseier CA, Salvi GE (2012) 10-year survival and success rates of 511 titanium implants with a sandblasted and acid-etched surface: a retrospective study in 303 partially edentulous patients. Clin Implant Dent Relat Res 14(6):839–851CrossRefPubMed
10.
Zurück zum Zitat Dohan Ehrenfest DM, Coelho PG, Kang BS, Sul YT, Albrektsson T (2010) Classification of osseointegrated implant surfaces: materials, chemistry and topography. Trends Biotechnol 28(4):198–206CrossRefPubMed Dohan Ehrenfest DM, Coelho PG, Kang BS, Sul YT, Albrektsson T (2010) Classification of osseointegrated implant surfaces: materials, chemistry and topography. Trends Biotechnol 28(4):198–206CrossRefPubMed
11.
Zurück zum Zitat Novaes AB Jr, de Souza SL, de Barros RR, Pereira KK, Iezzi G, Piattelli A (2010) Influence of implant surfaces on osseointegration. Braz Dent J 21(6):471–481CrossRefPubMed Novaes AB Jr, de Souza SL, de Barros RR, Pereira KK, Iezzi G, Piattelli A (2010) Influence of implant surfaces on osseointegration. Braz Dent J 21(6):471–481CrossRefPubMed
12.
Zurück zum Zitat Ulerich JP, Ionescu LC, Chen J, Soboyejo WO, Arnold CB, editors. Modifications of Ti-6Al-4V surfaces by direct-write laser machining of linear grooves. Lasers and Applications in Science and Engineering; 2007: International Society for Optics and Photonics. Ulerich JP, Ionescu LC, Chen J, Soboyejo WO, Arnold CB, editors. Modifications of Ti-6Al-4V surfaces by direct-write laser machining of linear grooves. Lasers and Applications in Science and Engineering; 2007: International Society for Optics and Photonics.
13.
Zurück zum Zitat Deppe H, Horch HH (2007) Laser applications in oral surgery and implant dentistry. Lasers Med Sci 22:217–221CrossRefPubMed Deppe H, Horch HH (2007) Laser applications in oral surgery and implant dentistry. Lasers Med Sci 22:217–221CrossRefPubMed
14.
Zurück zum Zitat Brunette DM (1988) The effects of implant surface topography on the behavior of cells. Int J Oral Maxillofac Implants 3(4):231–246PubMed Brunette DM (1988) The effects of implant surface topography on the behavior of cells. Int J Oral Maxillofac Implants 3(4):231–246PubMed
15.
Zurück zum Zitat Mariscal-Munoz E, Costa CA, Tavares HS et al (2016) Osteoblast differentiation is enhanced by a nano-to-micro hybrid titanium surface created by Yb:YAG laser irradiation. Clin Oral Investig 20(3):503–511CrossRefPubMed Mariscal-Munoz E, Costa CA, Tavares HS et al (2016) Osteoblast differentiation is enhanced by a nano-to-micro hybrid titanium surface created by Yb:YAG laser irradiation. Clin Oral Investig 20(3):503–511CrossRefPubMed
16.
Zurück zum Zitat Hara T, Matsuoka K, Matsuzaka K, Yoshinari M, Inoue T (2012) Effect of surface roughness of titanium dental implant placed under periosteum on gene expression of bone morphogenic markers in rat. Bull Tokyo Dent Coll 53(2):45–50CrossRefPubMed Hara T, Matsuoka K, Matsuzaka K, Yoshinari M, Inoue T (2012) Effect of surface roughness of titanium dental implant placed under periosteum on gene expression of bone morphogenic markers in rat. Bull Tokyo Dent Coll 53(2):45–50CrossRefPubMed
17.
Zurück zum Zitat Velasco-Ortega E, Jos A, Camean AM, Pato-Mourelo J, Segura-Egea JJ (2010) In vitro evaluation of cytotoxicity and genotoxicity of a commercial titanium alloy for dental implantology. Mutat Res 702(1):17–23CrossRefPubMed Velasco-Ortega E, Jos A, Camean AM, Pato-Mourelo J, Segura-Egea JJ (2010) In vitro evaluation of cytotoxicity and genotoxicity of a commercial titanium alloy for dental implantology. Mutat Res 702(1):17–23CrossRefPubMed
18.
Zurück zum Zitat Le Guehennec L, Lopez-Heredia MA, Enkel B, Weiss P, Amouriq Y, Layrolle P (2008) Osteoblastic cell behaviour on different titanium implant surfaces. Acta Biomater 4(3):535–543CrossRefPubMed Le Guehennec L, Lopez-Heredia MA, Enkel B, Weiss P, Amouriq Y, Layrolle P (2008) Osteoblastic cell behaviour on different titanium implant surfaces. Acta Biomater 4(3):535–543CrossRefPubMed
19.
Zurück zum Zitat Parthasarathy J, Starly B, Raman S, Christensen A (2010) Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM). J Mech Behav Biomed Mater 3(3):249–259CrossRefPubMed Parthasarathy J, Starly B, Raman S, Christensen A (2010) Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM). J Mech Behav Biomed Mater 3(3):249–259CrossRefPubMed
20.
Zurück zum Zitat Sumner DR, Galante JO (1992) Determinants of stress shielding: design versus materials versus interface. Clin Orthop Relat Res 274:202–212 Sumner DR, Galante JO (1992) Determinants of stress shielding: design versus materials versus interface. Clin Orthop Relat Res 274:202–212
21.
Zurück zum Zitat Traini T, Mangano C, Sammons RL, Mangano F, Macchi A, Piattelli A (2008) Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants. Dent Mater 24(11):1525–1533CrossRefPubMed Traini T, Mangano C, Sammons RL, Mangano F, Macchi A, Piattelli A (2008) Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants. Dent Mater 24(11):1525–1533CrossRefPubMed
22.
Zurück zum Zitat Mangano C, De Rosa A, Desiderio V et al (2010) The osteoblastic differentiation of dental pulp stem cells and bone formation on different titanium surface textures. Biomaterials 31(13):3543–3551CrossRefPubMed Mangano C, De Rosa A, Desiderio V et al (2010) The osteoblastic differentiation of dental pulp stem cells and bone formation on different titanium surface textures. Biomaterials 31(13):3543–3551CrossRefPubMed
23.
Zurück zum Zitat Groessner-Schreiber B, Neubert A, Muller WD, Hopp M, Griepentrog M, Lange KP. Fibroblast growth on surface-modified dental implants: an in vitro study. J Biomed Mater Res A 15:64(4):591–9. Groessner-Schreiber B, Neubert A, Muller WD, Hopp M, Griepentrog M, Lange KP. Fibroblast growth on surface-modified dental implants: an in vitro study. J Biomed Mater Res A 15:64(4):591–9.
24.
Zurück zum Zitat Schwarz F, Rothamel D, Sculean A, Georg T, Scherbaum W, Becker J (2003) Effects of an Er:YAG laser and the vector ultrasonic system on the biocompatibility of titanium implants in cultures of human osteoblast-like cells. Clin Oral Implants Res 14:784–792CrossRefPubMed Schwarz F, Rothamel D, Sculean A, Georg T, Scherbaum W, Becker J (2003) Effects of an Er:YAG laser and the vector ultrasonic system on the biocompatibility of titanium implants in cultures of human osteoblast-like cells. Clin Oral Implants Res 14:784–792CrossRefPubMed
25.
Zurück zum Zitat Hao L, Lawrence J, Chian KS (2005) Osteoblast cell adhesion on a laser modified zirconia based bioceramic. J Mater Sci Mater Med 16(8):719–726CrossRefPubMed Hao L, Lawrence J, Chian KS (2005) Osteoblast cell adhesion on a laser modified zirconia based bioceramic. J Mater Sci Mater Med 16(8):719–726CrossRefPubMed
26.
Zurück zum Zitat Lawrence J, Hao L, Chew HR (2006) On the correlation between Nd:YAG laser-induced wettability characteristics modification and osteoblast cell bioactivity on a titanium alloy. Surf Coat Tech 200(18–19):5581–5589CrossRef Lawrence J, Hao L, Chew HR (2006) On the correlation between Nd:YAG laser-induced wettability characteristics modification and osteoblast cell bioactivity on a titanium alloy. Surf Coat Tech 200(18–19):5581–5589CrossRef
27.
Zurück zum Zitat Ayobian-Markazi N, Karimi M, Safar-Hajhosseini A (2013) Effects of Er: YAG laser irradiation on wettability, surface roughness, and biocompatibility of SLA titanium surfaces: an in vitro study. Lasers Med Sci 30(2):561–566CrossRefPubMed Ayobian-Markazi N, Karimi M, Safar-Hajhosseini A (2013) Effects of Er: YAG laser irradiation on wettability, surface roughness, and biocompatibility of SLA titanium surfaces: an in vitro study. Lasers Med Sci 30(2):561–566CrossRefPubMed
28.
Zurück zum Zitat Heinrich A, Dengler K, Koerner T, Haczek C, Deppe H, Stritzker B (2008) Laser-modified titanium implants for improved cell adhesion. Lasers Med Sci 23(1):55–58CrossRefPubMed Heinrich A, Dengler K, Koerner T, Haczek C, Deppe H, Stritzker B (2008) Laser-modified titanium implants for improved cell adhesion. Lasers Med Sci 23(1):55–58CrossRefPubMed
29.
Zurück zum Zitat Erdogan M, Oktem B, Kalaycioglu H et al (2011) Texturing of titanium (Ti6Al4V) medical implant surfaces with MHz-repetition-rate femtosecond and picosecond Yb-doped fiber lasers. Opt Express 19(11):10986–10996CrossRefPubMed Erdogan M, Oktem B, Kalaycioglu H et al (2011) Texturing of titanium (Ti6Al4V) medical implant surfaces with MHz-repetition-rate femtosecond and picosecond Yb-doped fiber lasers. Opt Express 19(11):10986–10996CrossRefPubMed
30.
Zurück zum Zitat Paz MD, Alava JI, Goikoetxea L et al (2011) Biological response of laser macrostructured and oxidized titanium alloy: an in vitro and in vivo study. J Appl Biomater Biomech 9(3):214–222PubMed Paz MD, Alava JI, Goikoetxea L et al (2011) Biological response of laser macrostructured and oxidized titanium alloy: an in vitro and in vivo study. J Appl Biomater Biomech 9(3):214–222PubMed
31.
Zurück zum Zitat Ayobian-Markazi N, Fourootan T, Zahmatkesh A (2012) An in vitro evaluation of the responses of human osteoblast-like SaOs-2 cells to SLA titanium surfaces irradiated by erbium:yttrium-aluminum-garnet (Er:YAG) lasers. Lasers Med Sci 29(1):47–53CrossRefPubMed Ayobian-Markazi N, Fourootan T, Zahmatkesh A (2012) An in vitro evaluation of the responses of human osteoblast-like SaOs-2 cells to SLA titanium surfaces irradiated by erbium:yttrium-aluminum-garnet (Er:YAG) lasers. Lasers Med Sci 29(1):47–53CrossRefPubMed
32.
Zurück zum Zitat Györgyey Á, Ungvári K, Kecskeméti G et al (2013) Attachment and proliferation of human osteoblast-like cells (MG-63) on laser-ablated titanium implant material. Mater Sci Eng C Mater Biol Appl 33(7):4251–4259CrossRefPubMed Györgyey Á, Ungvári K, Kecskeméti G et al (2013) Attachment and proliferation of human osteoblast-like cells (MG-63) on laser-ablated titanium implant material. Mater Sci Eng C Mater Biol Appl 33(7):4251–4259CrossRefPubMed
33.
Zurück zum Zitat Chikarakara E, Fitzpatrick P, Moore E et al (2015) In vitro fibroblast and pre-osteoblastic cellular responses on laser surface modified Ti-6Al-4V. Biomed Mater 10(1):015007CrossRef Chikarakara E, Fitzpatrick P, Moore E et al (2015) In vitro fibroblast and pre-osteoblastic cellular responses on laser surface modified Ti-6Al-4V. Biomed Mater 10(1):015007CrossRef
34.
Zurück zum Zitat Vignesh, Nayar S, Bhuminathan, Mahadevan, Santhosh S (2015) Comparative evaluation of the three different surface treatments—conventional, laser and Nano technology methods in enhancing the surface characteristics of commercially pure titanium discs and their effects on cell adhesion: an in vitro study. J Pharm Bioallied Sci 7(Suppl 1):587–591 Vignesh, Nayar S, Bhuminathan, Mahadevan, Santhosh S (2015) Comparative evaluation of the three different surface treatments—conventional, laser and Nano technology methods in enhancing the surface characteristics of commercially pure titanium discs and their effects on cell adhesion: an in vitro study. J Pharm Bioallied Sci 7(Suppl 1):587–591
35.
Zurück zum Zitat Mukherjee S, Dhara S, Saha P (2015) Enhancing the biocompatibility of Ti6Al4V implants by laser surface microtexturing: an in vitro study. Int J Adv Manufac Tech 76(1):5–15CrossRef Mukherjee S, Dhara S, Saha P (2015) Enhancing the biocompatibility of Ti6Al4V implants by laser surface microtexturing: an in vitro study. Int J Adv Manufac Tech 76(1):5–15CrossRef
36.
Zurück zum Zitat Hsiao W-T, Chang H-C, Nanci A, Durand R (2016) Surface microtexturing of Ti–6Al–4V using an ultraviolet laser system. Mater Des 90:891–895CrossRef Hsiao W-T, Chang H-C, Nanci A, Durand R (2016) Surface microtexturing of Ti–6Al–4V using an ultraviolet laser system. Mater Des 90:891–895CrossRef
37.
Zurück zum Zitat Lusquinos F, De Carlos A, Pou J et al (2003) Calcium phosphate coatings obtained by Nd:YAG laser cladding: physicochemical and biologic properties. J Biomed Mater Res A 64(4):630–637CrossRefPubMed Lusquinos F, De Carlos A, Pou J et al (2003) Calcium phosphate coatings obtained by Nd:YAG laser cladding: physicochemical and biologic properties. J Biomed Mater Res A 64(4):630–637CrossRefPubMed
38.
Zurück zum Zitat Seydlova M, Teuberova Z, Dostalova T et al (2006) Biological properties of titanium implants covered with hydroxyapatite and zirconia layers by pulsed laser: in vitro study. J Appl Phys 99(1):014905CrossRef Seydlova M, Teuberova Z, Dostalova T et al (2006) Biological properties of titanium implants covered with hydroxyapatite and zirconia layers by pulsed laser: in vitro study. J Appl Phys 99(1):014905CrossRef
39.
Zurück zum Zitat Teuberova Z, Seydlova M, Dostalova T et al (2007) Biological and physical properties of pulsed-laser-deposited zirconia/hydroxyapatite on titanium: in vitro study. Laser Phys 17(1):45–49CrossRef Teuberova Z, Seydlova M, Dostalova T et al (2007) Biological and physical properties of pulsed-laser-deposited zirconia/hydroxyapatite on titanium: in vitro study. Laser Phys 17(1):45–49CrossRef
40.
Zurück zum Zitat Bose S, Roy M, Das K, Bandyopadhyay A (2009) Surface modification of titanium for load-bearing applications. J Mater Sci Mater Med 20(Suppl 1):S19–S24CrossRefPubMed Bose S, Roy M, Das K, Bandyopadhyay A (2009) Surface modification of titanium for load-bearing applications. J Mater Sci Mater Med 20(Suppl 1):S19–S24CrossRefPubMed
41.
Zurück zum Zitat Gao Y, Hu J, Guan TH, Wu J, Zhang CB, Gao B (2014) Physical properties and cellular responses to calcium phosphate coating produced by laser rapid forming on titanium. Lasers Med Sci 29(1):9–17CrossRefPubMed Gao Y, Hu J, Guan TH, Wu J, Zhang CB, Gao B (2014) Physical properties and cellular responses to calcium phosphate coating produced by laser rapid forming on titanium. Lasers Med Sci 29(1):9–17CrossRefPubMed
42.
Zurück zum Zitat Oyane A, Matsuoka N, Koga K et al (2015) Laser-assisted biomimetic process for surface functionalization of titanium metal. Colloids Interface Sci Comm 4:5–9CrossRef Oyane A, Matsuoka N, Koga K et al (2015) Laser-assisted biomimetic process for surface functionalization of titanium metal. Colloids Interface Sci Comm 4:5–9CrossRef
43.
Zurück zum Zitat Hollander DA, von Walter M, Wirtz T et al (2006) Structural, mechanical and in vitro characterization of individually structured Ti–6Al–4V produced by direct laser forming. Biomaterials 27(7):955–963CrossRefPubMed Hollander DA, von Walter M, Wirtz T et al (2006) Structural, mechanical and in vitro characterization of individually structured Ti–6Al–4V produced by direct laser forming. Biomaterials 27(7):955–963CrossRefPubMed
44.
Zurück zum Zitat Xue W, Krishna BV, Bandyopadhyay A, Bose S (2007) Processing and biocompatibility evaluation of laser processed porous titanium. Acta Biomater 3(6):1007–1018CrossRefPubMed Xue W, Krishna BV, Bandyopadhyay A, Bose S (2007) Processing and biocompatibility evaluation of laser processed porous titanium. Acta Biomater 3(6):1007–1018CrossRefPubMed
45.
Zurück zum Zitat Mangano C, Raspanti M, Traini T, Piattelli A, Sammons R (2009) Stereo imaging and cytocompatibility of a model dental implant surface formed by direct laser fabrication. J Biomed Mater Res A 88(3):823–831CrossRefPubMed Mangano C, Raspanti M, Traini T, Piattelli A, Sammons R (2009) Stereo imaging and cytocompatibility of a model dental implant surface formed by direct laser fabrication. J Biomed Mater Res A 88(3):823–831CrossRefPubMed
46.
Zurück zum Zitat Shishkovskii IV, Morozov YG, Fokeev SV, Volova LT (2012) Laser synthesis and comparative testing of a three dimensional porous matrix of titanium and titanium nickelide as a repository for stem cells. Powder Metall Met Ceram 50(9):606–618CrossRef Shishkovskii IV, Morozov YG, Fokeev SV, Volova LT (2012) Laser synthesis and comparative testing of a three dimensional porous matrix of titanium and titanium nickelide as a repository for stem cells. Powder Metall Met Ceram 50(9):606–618CrossRef
47.
Zurück zum Zitat Cheng A, Humayun A, Cohen DJ, Boyan BD, Schwartz Z (2014) Additively manufactured 3D porous Ti-6Al-4V constructs mimic trabecular bone structure and regulate osteoblast proliferation, differentiation and local factor production in a porosity and surface roughness dependent manner. Biofabrication 6(4):045007CrossRefPubMedPubMedCentral Cheng A, Humayun A, Cohen DJ, Boyan BD, Schwartz Z (2014) Additively manufactured 3D porous Ti-6Al-4V constructs mimic trabecular bone structure and regulate osteoblast proliferation, differentiation and local factor production in a porosity and surface roughness dependent manner. Biofabrication 6(4):045007CrossRefPubMedPubMedCentral
48.
Zurück zum Zitat Bidan CM, Kommareddy KP, Rumpler M, Kollmannsberger P, Fratzl P, Dunlop JW (2013) Geometry as a factor for tissue growth: towards shape optimization of tissue engineering scaffolds. Adv Healthc Mater 2(1):186–194CrossRefPubMed Bidan CM, Kommareddy KP, Rumpler M, Kollmannsberger P, Fratzl P, Dunlop JW (2013) Geometry as a factor for tissue growth: towards shape optimization of tissue engineering scaffolds. Adv Healthc Mater 2(1):186–194CrossRefPubMed
49.
Zurück zum Zitat Gaković B, Desai T, Trtica M, et al. Laser ablation of multi-layered targets with short laser pulses. 3rd international conference on the frontiers of Plasma Physics and Technology 2007. Gaković B, Desai T, Trtica M, et al. Laser ablation of multi-layered targets with short laser pulses. 3rd international conference on the frontiers of Plasma Physics and Technology 2007.
50.
Zurück zum Zitat Gaggl A, Schultes G, Muller WD, Karcher H (2000) Scanning electron microscopical analysis of laser-treated titanium implant surfaces—a comparative study. Biomaterials 21(10):1067–1073CrossRefPubMed Gaggl A, Schultes G, Muller WD, Karcher H (2000) Scanning electron microscopical analysis of laser-treated titanium implant surfaces—a comparative study. Biomaterials 21(10):1067–1073CrossRefPubMed
52.
Zurück zum Zitat Sjostrom T, Brydone AS, Meek RM, Dalby MJ, Su B, McNamara LE (2013) Titanium nanofeaturing for enhanced bioactivity of implanted orthopedic and dental devices. Nanomedicine (Lond) 8(1):89–104CrossRef Sjostrom T, Brydone AS, Meek RM, Dalby MJ, Su B, McNamara LE (2013) Titanium nanofeaturing for enhanced bioactivity of implanted orthopedic and dental devices. Nanomedicine (Lond) 8(1):89–104CrossRef
53.
Zurück zum Zitat Chen H, Sago A, West S, Farina J, Eckert J, Broadley M (2011) Biocompatibility of metal injection molded versus wrought ASTM F562 (MP35N) and ASTM F1537 (CCM) cobalt alloys. Biomed Mater Eng 21(1):1–7PubMed Chen H, Sago A, West S, Farina J, Eckert J, Broadley M (2011) Biocompatibility of metal injection molded versus wrought ASTM F562 (MP35N) and ASTM F1537 (CCM) cobalt alloys. Biomed Mater Eng 21(1):1–7PubMed
54.
Zurück zum Zitat Kumar G, Tison CK, Chatterjee K et al (2011) The determination of stem cell fate by 3D scaffold structures through the control of cell shape. Biomaterials 32(35):9188–9196CrossRefPubMedPubMedCentral Kumar G, Tison CK, Chatterjee K et al (2011) The determination of stem cell fate by 3D scaffold structures through the control of cell shape. Biomaterials 32(35):9188–9196CrossRefPubMedPubMedCentral
55.
Zurück zum Zitat Poulon-Quintin A, Watanabe I, Watanabe E, Bertrand C (2012) Microstructure and mechanical properties of surface treated cast titanium with Nd:YAG laser. Dental Mater 28(9):945–951CrossRef Poulon-Quintin A, Watanabe I, Watanabe E, Bertrand C (2012) Microstructure and mechanical properties of surface treated cast titanium with Nd:YAG laser. Dental Mater 28(9):945–951CrossRef
56.
Zurück zum Zitat Ciganovic J, Stasic J, Gakovic B et al (2012) Surface modification of the titanium implant using TEA CO2 laser pulses in controllable gas atmospheres—comparative study. Appl Surf Sci 258(7):2741–2748CrossRef Ciganovic J, Stasic J, Gakovic B et al (2012) Surface modification of the titanium implant using TEA CO2 laser pulses in controllable gas atmospheres—comparative study. Appl Surf Sci 258(7):2741–2748CrossRef
57.
Zurück zum Zitat Trtica M, Gakovic B, Batani D, Desai T, Panjan P, Radak B (2006) Surface modifications of a titanium implant by a picosecond Nd:YAG laser operating at 1064 and 532 nm. Appl Surf Sci 253(5):2551–2556CrossRef Trtica M, Gakovic B, Batani D, Desai T, Panjan P, Radak B (2006) Surface modifications of a titanium implant by a picosecond Nd:YAG laser operating at 1064 and 532 nm. Appl Surf Sci 253(5):2551–2556CrossRef
58.
Zurück zum Zitat Ricci J, Charvet J, Frenkel S, et al. Bone response to laser microtextured surfaces. In: JE D, editor. Bone engineering. Toronto: Em2 Inc 2000. p. 1–11. Ricci J, Charvet J, Frenkel S, et al. Bone response to laser microtextured surfaces. In: JE D, editor. Bone engineering. Toronto: Em2 Inc 2000. p. 1–11.
59.
Zurück zum Zitat Vorobyev AY, Guo C, editors. Femtosecond laser surface structuring of biocompatible metals. Commercial and Biomedical Applications of Ultrafast Lasers IX; 2009: Proc. of SPIE. Vorobyev AY, Guo C, editors. Femtosecond laser surface structuring of biocompatible metals. Commercial and Biomedical Applications of Ultrafast Lasers IX; 2009: Proc. of SPIE.
60.
Zurück zum Zitat Karacs A, Joob Fancsaly A, Divinyi T, Pető G, Kovách G (2003) Morphological and animal study of titanium dental implant surface induced by blasting and high intensity pulsed Nd-glass laser. Mater Sci Eng C Mater Biol Appl 23(3):431–435CrossRef Karacs A, Joob Fancsaly A, Divinyi T, Pető G, Kovách G (2003) Morphological and animal study of titanium dental implant surface induced by blasting and high intensity pulsed Nd-glass laser. Mater Sci Eng C Mater Biol Appl 23(3):431–435CrossRef
61.
Zurück zum Zitat Braga FJC, Marques RFC, Filho EA, Guastaldi AC (2007) Surface modification of Ti dental implants by Nd:YVO4 laser irradiation. Appl Surf Sci 253(23):9203–9208CrossRef Braga FJC, Marques RFC, Filho EA, Guastaldi AC (2007) Surface modification of Ti dental implants by Nd:YVO4 laser irradiation. Appl Surf Sci 253(23):9203–9208CrossRef
62.
Zurück zum Zitat Tabatabaei F, Torshabi M, Mojahedi Nasab M, Khosraviani K, Khojasteh A (2015) Effect of low-level diode laser on proliferation and osteogenic differentiation of dental pulp stem cells. Laser Phys 25(9):095602CrossRef Tabatabaei F, Torshabi M, Mojahedi Nasab M, Khosraviani K, Khojasteh A (2015) Effect of low-level diode laser on proliferation and osteogenic differentiation of dental pulp stem cells. Laser Phys 25(9):095602CrossRef
63.
Zurück zum Zitat Laoui T, Santos E, Osakada K et al (2006) Properties of titanium dental implant models made by laser processing. J Mech Eng Sci 220(c):857–863CrossRef Laoui T, Santos E, Osakada K et al (2006) Properties of titanium dental implant models made by laser processing. J Mech Eng Sci 220(c):857–863CrossRef
64.
Zurück zum Zitat Ready JF (1997) Industrial applications of lasers. Academic Press, San Diego Ready JF (1997) Industrial applications of lasers. Academic Press, San Diego
65.
Zurück zum Zitat Fuchs E, Mandel K, Bouazza S, Rosin A, Weiss E, Willert-Porada M. Surface modification of porous titanium composites obtained by different processing methods. 17th Plansee Seminars 2009. p. 1–7. Fuchs E, Mandel K, Bouazza S, Rosin A, Weiss E, Willert-Porada M. Surface modification of porous titanium composites obtained by different processing methods. 17th Plansee Seminars 2009. p. 1–7.
66.
Zurück zum Zitat Guo Z, Zhou L, Rong M, Zhu A, Geng H (2010) Bone response to a pure titanium implant surface modified by laser etching and microarc oxidation. Int J Oral Maxillofac Implants 25(1):130–136PubMed Guo Z, Zhou L, Rong M, Zhu A, Geng H (2010) Bone response to a pure titanium implant surface modified by laser etching and microarc oxidation. Int J Oral Maxillofac Implants 25(1):130–136PubMed
67.
Zurück zum Zitat Tavangar A, Tan B, Venkatakrishnan K (2011) Synthesis of bio-functionalized three-dimensional titania nanofibrous structures using femtosecond laser ablation. Acta Biomater 7(6):2726–2732CrossRefPubMed Tavangar A, Tan B, Venkatakrishnan K (2011) Synthesis of bio-functionalized three-dimensional titania nanofibrous structures using femtosecond laser ablation. Acta Biomater 7(6):2726–2732CrossRefPubMed
68.
Zurück zum Zitat Bruschi M, Steinmüller-Nethl D, Goriwoda W, Rasse M (2015) Composition and modifications of dental implant surfaces. J Oral Implants 2015:14CrossRef Bruschi M, Steinmüller-Nethl D, Goriwoda W, Rasse M (2015) Composition and modifications of dental implant surfaces. J Oral Implants 2015:14CrossRef
69.
Zurück zum Zitat Rajesh P, Muraleedharan CV, Komath M, Varma H (2011) Laser surface modification of titanium substrate for pulsed laser deposition of highly adherent hydroxyapatite. J Mater Sci Mater Med 22(7):1671–1679CrossRefPubMed Rajesh P, Muraleedharan CV, Komath M, Varma H (2011) Laser surface modification of titanium substrate for pulsed laser deposition of highly adherent hydroxyapatite. J Mater Sci Mater Med 22(7):1671–1679CrossRefPubMed
70.
Zurück zum Zitat Filho EA, Fraga AF, Bini RA, Guastaldi AC (2011) Bioactive coating on titanium implants modified by Nd:YVO4 laser. Appl Surf Sci 257(10):4575–4580CrossRef Filho EA, Fraga AF, Bini RA, Guastaldi AC (2011) Bioactive coating on titanium implants modified by Nd:YVO4 laser. Appl Surf Sci 257(10):4575–4580CrossRef
71.
Zurück zum Zitat Symietz C, Lehmann E, Gildenhaar R, Koter R, Berger G, Krüger J (2011) Fixation of bioactive calcium alkali phosphate on Ti6Al4V implant material with femtosecond laser pulses. Appl Surf Sci 257(12):5208–5212CrossRef Symietz C, Lehmann E, Gildenhaar R, Koter R, Berger G, Krüger J (2011) Fixation of bioactive calcium alkali phosphate on Ti6Al4V implant material with femtosecond laser pulses. Appl Surf Sci 257(12):5208–5212CrossRef
72.
Zurück zum Zitat Murr LE, Quinones SA, Gaytan SM et al (2009) Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications. J Mech Behav Biomed Mater 2(1):20–32CrossRefPubMed Murr LE, Quinones SA, Gaytan SM et al (2009) Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications. J Mech Behav Biomed Mater 2(1):20–32CrossRefPubMed
73.
Zurück zum Zitat Chen J, Zhang Z, Chen X, Zhang C, Zhang G, Xu Z (2014) Design and manufacture of customized dental implants by using reverse engineering and selective laser melting technology. J Prosthet Dent 112(5):1088–95.e1CrossRefPubMed Chen J, Zhang Z, Chen X, Zhang C, Zhang G, Xu Z (2014) Design and manufacture of customized dental implants by using reverse engineering and selective laser melting technology. J Prosthet Dent 112(5):1088–95.e1CrossRefPubMed
74.
Zurück zum Zitat Liu J, Han G, Pan S, Ge Y, Feng H, Shen Z (2015) Biomineralization stimulated peri-titanium implants prepared by selective laser melting. J Mater 1(3):253–261 Liu J, Han G, Pan S, Ge Y, Feng H, Shen Z (2015) Biomineralization stimulated peri-titanium implants prepared by selective laser melting. J Mater 1(3):253–261
75.
Zurück zum Zitat Lin WS, Starr TL, Harris BT, Zandinejad A, Morton D (2013) Additive manufacturing technology (direct metal laser sintering) as a novel approach to fabricate functionally graded titanium implants: preliminary investigation of fabrication parameters. Int J Oral Maxillofac Implants 28(6):1490–1495CrossRefPubMed Lin WS, Starr TL, Harris BT, Zandinejad A, Morton D (2013) Additive manufacturing technology (direct metal laser sintering) as a novel approach to fabricate functionally graded titanium implants: preliminary investigation of fabrication parameters. Int J Oral Maxillofac Implants 28(6):1490–1495CrossRefPubMed
76.
Zurück zum Zitat Osakada K, Shiomi M (2006) Flexible manufacturing of metallic products by selective laser melting of powder. Int J Mach Tool Manu 46(11):1188–1193CrossRef Osakada K, Shiomi M (2006) Flexible manufacturing of metallic products by selective laser melting of powder. Int J Mach Tool Manu 46(11):1188–1193CrossRef
77.
Zurück zum Zitat Mizutani M, Honda R, Yuda A, Komotori J, Ohmori H (2013) Effects of nanosecond laser fabrication on bioactivity of pure titanium. Procedia CIRP 5:242–246CrossRef Mizutani M, Honda R, Yuda A, Komotori J, Ohmori H (2013) Effects of nanosecond laser fabrication on bioactivity of pure titanium. Procedia CIRP 5:242–246CrossRef
78.
Zurück zum Zitat Han G, Shen Z (2015) Microscopic view of osseointegration and functional mechanisms of implant surfaces. Mater Sci Eng C Mater Biol Appl 56:380–385CrossRefPubMed Han G, Shen Z (2015) Microscopic view of osseointegration and functional mechanisms of implant surfaces. Mater Sci Eng C Mater Biol Appl 56:380–385CrossRefPubMed
79.
Zurück zum Zitat Mangano C, Piattelli A, d’Avila S et al (2010) Early human bone response to laser metal sintering surface topography: a histologic report. J oral implantol 36(2):91–96CrossRefPubMed Mangano C, Piattelli A, d’Avila S et al (2010) Early human bone response to laser metal sintering surface topography: a histologic report. J oral implantol 36(2):91–96CrossRefPubMed
80.
Zurück zum Zitat Witek L, Marin C, Granato R et al (2012) Characterization and in vivo evaluation of laser sintered dental endosseous implants in dogs. Biomed Mater Res Part B Appl Biomater 100(6):1566–1573CrossRef Witek L, Marin C, Granato R et al (2012) Characterization and in vivo evaluation of laser sintered dental endosseous implants in dogs. Biomed Mater Res Part B Appl Biomater 100(6):1566–1573CrossRef
81.
Zurück zum Zitat Bandyopadhyay A, Espana F, Balla VK, Bose S, Ohgami Y, Davies NM (2010) Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants. Acta Biomater 6(4):1640–1648CrossRefPubMed Bandyopadhyay A, Espana F, Balla VK, Bose S, Ohgami Y, Davies NM (2010) Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants. Acta Biomater 6(4):1640–1648CrossRefPubMed
Metadaten
Titel
In vitro biological outcome of laser application for modification or processing of titanium dental implants
verfasst von
Ahmed Hindy
Farzam Farahmand
Fahimeh sadat Tabatabaei
Publikationsdatum
27.04.2017
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 5/2017
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-017-2217-7

Weitere Artikel der Ausgabe 5/2017

Lasers in Medical Science 5/2017 Zur Ausgabe