Skip to main content
Erschienen in: Lasers in Medical Science 9/2017

11.07.2017 | Original Article

Influence of external cooling on the femtosecond laser ablation of dentin

verfasst von: Q. T. Le, R. Vilar, C. Bertrand

Erschienen in: Lasers in Medical Science | Ausgabe 9/2017

Einloggen, um Zugang zu erhalten

Abstract

In the present work, the influence of external cooling on the temperature rise in the tooth pulpal chamber during femtosecond laser ablation was investigated. The influence of the cooling method on the morphology and constitution of the laser-treated surfaces was studied as well. The ablation experiments were performed on dentin specimens using an Yb:KYW chirped-pulse-regenerative amplification laser system (560 fs, 1030 nm). Cavities were created by scanning the specimens at a velocity of 5 mm/s while pulsing the stationary laser beam at 1 kHz and with fluences in the range of 2–14 J/cm2. The experiments were performed in air and with surface cooling by a lateral air jet and by a combination of an air jet and water irrigation. The temperature in the pulpal chamber of the tooth was measured during the laser experiments. The ablation surfaces were characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. The temperature rise reached 17.5 °C for the treatments performed with 14 J/cm2 and without cooling, which was reduced to 10.8 ± 1.0 and 6.6 ± 2.3 °C with forced air cooling and water cooling, respectively, without significant reduction of the ablation rate. The ablation surfaces were covered by ablation debris and resolidified droplets containing mainly amorphous calcium phosphate, but the amount of redeposited debris was much lower for the water-cooled specimens. The redeposited debris could be removed by ultrasonication, revealing that the structure and constitution of the tissue remained essentially unaltered. The present results show that water cooling is mandatory for the femtosecond laser treatment of dentin, in particular, when high fluences and high pulse repetition rates are used to achieve high material removal rates.
Literatur
1.
Zurück zum Zitat Krapchev VB, Rabii CD, Harrington JA (1994) Novel CO2 laser system for hard tissue ablation. In: Proc. SPIE 2128:341–348 Krapchev VB, Rabii CD, Harrington JA (1994) Novel CO2 laser system for hard tissue ablation. In: Proc. SPIE 2128:341–348
2.
Zurück zum Zitat Fried D, Glena RE, Featherstone JDB, Seka W (1995) Multiple pulse irradiation of dental hard tissues at CO2 laser wavelengths. Lasers Dent Proc 2394:41–50 268 CrossRef Fried D, Glena RE, Featherstone JDB, Seka W (1995) Multiple pulse irradiation of dental hard tissues at CO2 laser wavelengths. Lasers Dent Proc 2394:41–50 268 CrossRef
3.
4.
Zurück zum Zitat Jeffrey IWM, Lawrenson B, Saunders EM, Longbottom C (1990) Dentinal temperature transients caused by exposure to CO2 laser irradiation and possible pulpal damage. J Dent 18:31–36CrossRefPubMed Jeffrey IWM, Lawrenson B, Saunders EM, Longbottom C (1990) Dentinal temperature transients caused by exposure to CO2 laser irradiation and possible pulpal damage. J Dent 18:31–36CrossRefPubMed
5.
Zurück zum Zitat Harris DM et al (2002) Selective ablation of surface enamel caries with a pulsed Nd:YAG dental laser. Lasers Surg Med 30:342–350CrossRefPubMed Harris DM et al (2002) Selective ablation of surface enamel caries with a pulsed Nd:YAG dental laser. Lasers Surg Med 30:342–350CrossRefPubMed
6.
Zurück zum Zitat Armengol V, Jean A, Marion D (2000) Temperature rise during Er:YAG and Nd:YAP laser ablation of dentin. J Endod 26:138–141CrossRefPubMed Armengol V, Jean A, Marion D (2000) Temperature rise during Er:YAG and Nd:YAP laser ablation of dentin. J Endod 26:138–141CrossRefPubMed
7.
Zurück zum Zitat Fried D, Zuerlein MJ, Le CQ, Featherstone JDB (2002) Thermal and chemical modification of dentin by 9–11-μm CO2 laser pulses of 5–100-μs duration. Lasers Surg Med 31:275–282CrossRefPubMed Fried D, Zuerlein MJ, Le CQ, Featherstone JDB (2002) Thermal and chemical modification of dentin by 9–11-μm CO2 laser pulses of 5–100-μs duration. Lasers Surg Med 31:275–282CrossRefPubMed
8.
Zurück zum Zitat Fried D, Ashouri N, Breunig T, Shori R (2002) Mechanism of water augmentation during IR laser ablation of dental enamel. Lasers Surg Med 31:186–193CrossRefPubMed Fried D, Ashouri N, Breunig T, Shori R (2002) Mechanism of water augmentation during IR laser ablation of dental enamel. Lasers Surg Med 31:186–193CrossRefPubMed
9.
Zurück zum Zitat Sunakawa M, Tokita Y, Suda H (2000) Pulsed Nd:YAG laser irradiation of the tooth pulp in the cat: II. Effect of scanning lasing. Lasers Surg Med 26:477–484CrossRefPubMed Sunakawa M, Tokita Y, Suda H (2000) Pulsed Nd:YAG laser irradiation of the tooth pulp in the cat: II. Effect of scanning lasing. Lasers Surg Med 26:477–484CrossRefPubMed
10.
Zurück zum Zitat Lee D-H, Murakami S, Khan SZ, Matsuzaka K, Inoue T (2013) Pulp responses after CO2 laser irradiation of rat dentin. Photomed Laser Surg 31:59–64CrossRefPubMed Lee D-H, Murakami S, Khan SZ, Matsuzaka K, Inoue T (2013) Pulp responses after CO2 laser irradiation of rat dentin. Photomed Laser Surg 31:59–64CrossRefPubMed
11.
Zurück zum Zitat Zach L, Cohen G (1965) Pulp response to externally applied heat. Oral Surg Oral Med Oral Pathol 19:515–530CrossRefPubMed Zach L, Cohen G (1965) Pulp response to externally applied heat. Oral Surg Oral Med Oral Pathol 19:515–530CrossRefPubMed
12.
Zurück zum Zitat Neev J et al (1996) Ultrashort pulse lasers for hard tissue ablation. IEEE J Sel Top Quantum Electron 2:790–800CrossRef Neev J et al (1996) Ultrashort pulse lasers for hard tissue ablation. IEEE J Sel Top Quantum Electron 2:790–800CrossRef
13.
Zurück zum Zitat Alves S, Oliveira V, Vilar R (2012) Femtosecond laser ablation of dentin. J Phys D Appl Phys 45:245401CrossRef Alves S, Oliveira V, Vilar R (2012) Femtosecond laser ablation of dentin. J Phys D Appl Phys 45:245401CrossRef
14.
Zurück zum Zitat Gamaly EG, Rode AV, Luther-Davies B, Tikhonchuk VT (2002) Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics. Phys Plasmas 9:949–957CrossRef Gamaly EG, Rode AV, Luther-Davies B, Tikhonchuk VT (2002) Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics. Phys Plasmas 9:949–957CrossRef
15.
Zurück zum Zitat McCormack SM, Fried D, Featherstone JD, Glena RE, Seka W (1995) Scanning electron microscope observations of CO2 laser effects on dental enamel. J Dent Res 74:1702–1708CrossRefPubMed McCormack SM, Fried D, Featherstone JD, Glena RE, Seka W (1995) Scanning electron microscope observations of CO2 laser effects on dental enamel. J Dent Res 74:1702–1708CrossRefPubMed
16.
Zurück zum Zitat Sanchez F, Espana Tost AJ, Morenza JL (1997) ArF excimer laser irradiation of human dentin. Lasers Surg Med 21:474–479CrossRefPubMed Sanchez F, Espana Tost AJ, Morenza JL (1997) ArF excimer laser irradiation of human dentin. Lasers Surg Med 21:474–479CrossRefPubMed
17.
Zurück zum Zitat Eugenio S, Sivakumar M, Vilar R, Rego AM (2005) Characterisation of dentin surfaces processed with KrF excimer laser radiation. Biomaterials 26:6780–6787CrossRefPubMed Eugenio S, Sivakumar M, Vilar R, Rego AM (2005) Characterisation of dentin surfaces processed with KrF excimer laser radiation. Biomaterials 26:6780–6787CrossRefPubMed
18.
Zurück zum Zitat McDonald A, Claffey N, Pearson G, Blau W, Setchell D (2001) The effect of Nd:YAG pulse duration on dentine crater depth. J Dent 29:43–53CrossRefPubMed McDonald A, Claffey N, Pearson G, Blau W, Setchell D (2001) The effect of Nd:YAG pulse duration on dentine crater depth. J Dent 29:43–53CrossRefPubMed
19.
Zurück zum Zitat Antunes A, de Rossi W, Zezell DM (2006) Spectroscopic alterations on enamel and dentin after nanosecond Nd:YAG laser irradiation. Spectrochim Acta A Mol Biomol Spectrosc 64:1142–1146CrossRefPubMed Antunes A, de Rossi W, Zezell DM (2006) Spectroscopic alterations on enamel and dentin after nanosecond Nd:YAG laser irradiation. Spectrochim Acta A Mol Biomol Spectrosc 64:1142–1146CrossRefPubMed
20.
Zurück zum Zitat Lizarelli RFZ, Kurachi C, Misoguti L, Bagnato VS (1999) Characterization of enamel and dentin response to Nd:YAG picosecond laser ablation. J Clin Laser Med Surg 17:127–131PubMed Lizarelli RFZ, Kurachi C, Misoguti L, Bagnato VS (1999) Characterization of enamel and dentin response to Nd:YAG picosecond laser ablation. J Clin Laser Med Surg 17:127–131PubMed
21.
Zurück zum Zitat Fried D, Featherstone JDB, Le CQ, Fan K (2006) Dissolution studies of bovine dental enamel surfaces modified by high-speed scanning ablation with a λ = 9.3-μm TEA CO2 laser. Lasers Surg Med 38:837–845CrossRefPubMed Fried D, Featherstone JDB, Le CQ, Fan K (2006) Dissolution studies of bovine dental enamel surfaces modified by high-speed scanning ablation with a λ = 9.3-μm TEA CO2 laser. Lasers Surg Med 38:837–845CrossRefPubMed
22.
Zurück zum Zitat Sivakumar M, Oliveira V, Oliveira S, Leitao J, Vilar R (2006) Influence of tubule orientation on cone-shaped texture development in laser-ablated dentin. Lasers Med Sci 21:160–164CrossRefPubMed Sivakumar M, Oliveira V, Oliveira S, Leitao J, Vilar R (2006) Influence of tubule orientation on cone-shaped texture development in laser-ablated dentin. Lasers Med Sci 21:160–164CrossRefPubMed
23.
Zurück zum Zitat Arima M, Matsumoto K (1993) Effects of ArF:excimer laser irradiation on human enamel and dentin. Lasers Surg Med 13:97–105CrossRefPubMed Arima M, Matsumoto K (1993) Effects of ArF:excimer laser irradiation on human enamel and dentin. Lasers Surg Med 13:97–105CrossRefPubMed
24.
Zurück zum Zitat Turkmen C, Gunday M, Karacorlu M, Basaran B (2000) Effect of CO2, Nd:YAG, and ArF excimer lasers on dentin morphology and pulp chamber temperature: an in vitro study. J Endod 26:644–648CrossRefPubMed Turkmen C, Gunday M, Karacorlu M, Basaran B (2000) Effect of CO2, Nd:YAG, and ArF excimer lasers on dentin morphology and pulp chamber temperature: an in vitro study. J Endod 26:644–648CrossRefPubMed
25.
Zurück zum Zitat Nishimoto Y et al (2008) Effect of pulse duration of Er:YAG laser on dentin ablation. Dent Mater J 27:433–439CrossRefPubMed Nishimoto Y et al (2008) Effect of pulse duration of Er:YAG laser on dentin ablation. Dent Mater J 27:433–439CrossRefPubMed
26.
Zurück zum Zitat Bachmann L, Diebolder R, Hibst R, Zezell DM (2005) Changes in chemical composition and collagen structure of dentine tissue after erbium laser irradiation. Spectrochim Acta A Mol Biomol Spectrosc 61:2634–2639CrossRefPubMed Bachmann L, Diebolder R, Hibst R, Zezell DM (2005) Changes in chemical composition and collagen structure of dentine tissue after erbium laser irradiation. Spectrochim Acta A Mol Biomol Spectrosc 61:2634–2639CrossRefPubMed
27.
Zurück zum Zitat Fried D, Ragadio J, Champion A (2001) Residual heat deposition in dental enamel during IR laser ablation at 2.79, 2.94, 9.6, and 10.6 μm. Lasers Surg Med 29:221–229CrossRefPubMed Fried D, Ragadio J, Champion A (2001) Residual heat deposition in dental enamel during IR laser ablation at 2.79, 2.94, 9.6, and 10.6 μm. Lasers Surg Med 29:221–229CrossRefPubMed
28.
Zurück zum Zitat Bachmann L et al (2009) Crystalline structure of human enamel irradiated with Er,Cr:YSGG laser. Laser Phys Lett 6:159–162CrossRef Bachmann L et al (2009) Crystalline structure of human enamel irradiated with Er,Cr:YSGG laser. Laser Phys Lett 6:159–162CrossRef
29.
Zurück zum Zitat Mir M et al (2008) Influence of water-layer thickness on Er:YAG laser ablation of enamel of bovine anterior teeth. Lasers Med Sci 23:451–457CrossRefPubMed Mir M et al (2008) Influence of water-layer thickness on Er:YAG laser ablation of enamel of bovine anterior teeth. Lasers Med Sci 23:451–457CrossRefPubMed
30.
Zurück zum Zitat Rodriguez-Vilchis LE, Contreras-Bulnes R, Olea-Mejia OF, Sanchez-Flores I, Centeno-Pedraza C (2011) Morphological and structural changes on human dental enamel after Er:YAG laser irradiation: AFM, SEM, and EDS evaluation. Photomed Laser Surg 29:493–500CrossRefPubMedPubMedCentral Rodriguez-Vilchis LE, Contreras-Bulnes R, Olea-Mejia OF, Sanchez-Flores I, Centeno-Pedraza C (2011) Morphological and structural changes on human dental enamel after Er:YAG laser irradiation: AFM, SEM, and EDS evaluation. Photomed Laser Surg 29:493–500CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Moretto SG et al (2011) Effects of ultramorphological changes on adhesion to lased dentin-scanning electron microscopy and transmission electron microscopy analysis. Microsc Res Tech 74:720–726CrossRefPubMed Moretto SG et al (2011) Effects of ultramorphological changes on adhesion to lased dentin-scanning electron microscopy and transmission electron microscopy analysis. Microsc Res Tech 74:720–726CrossRefPubMed
32.
Zurück zum Zitat Lee BS, Hung YL, Lan WH (2003) Compositional and morphological changes of human dentin after Er:YAG laser irradiation. Lasers Dent Proc 1248:143–152489 Lee BS, Hung YL, Lan WH (2003) Compositional and morphological changes of human dentin after Er:YAG laser irradiation. Lasers Dent Proc 1248:143–152489
33.
Zurück zum Zitat Cangueiro LT, Vilar R, Botelho do Rego AM, Muralha VS (2012) Femtosecond laser ablation of bovine cortical bone. J Biomed Opt 17:125005CrossRefPubMed Cangueiro LT, Vilar R, Botelho do Rego AM, Muralha VS (2012) Femtosecond laser ablation of bovine cortical bone. J Biomed Opt 17:125005CrossRefPubMed
34.
Zurück zum Zitat Le Q-T, Bertrand C, Vilar R (2016) Femtosecond laser ablation of enamel. J Biomed Opt 21:65005CrossRefPubMed Le Q-T, Bertrand C, Vilar R (2016) Femtosecond laser ablation of enamel. J Biomed Opt 21:65005CrossRefPubMed
35.
Zurück zum Zitat Bello-Silva MS et al (2013) Precise ablation of dental hard tissues with ultra-short pulsed lasers. Preliminary exploratory investigation on adequate laser parameters. Lasers Med Sci 28:171–184CrossRefPubMed Bello-Silva MS et al (2013) Precise ablation of dental hard tissues with ultra-short pulsed lasers. Preliminary exploratory investigation on adequate laser parameters. Lasers Med Sci 28:171–184CrossRefPubMed
36.
Zurück zum Zitat Liu JM (1982) Simple technique for measurements of pulsed Gaussian-beam spot sizes. Opt Lett 7:196–198CrossRefPubMed Liu JM (1982) Simple technique for measurements of pulsed Gaussian-beam spot sizes. Opt Lett 7:196–198CrossRefPubMed
37.
Zurück zum Zitat Cangueiro LT, Vilar R (2013) Influence of the pulse frequency and water cooling on the femtosecond laser ablation of bovine cortical bone. Appl Surf Sci 283:1012–1017CrossRef Cangueiro LT, Vilar R (2013) Influence of the pulse frequency and water cooling on the femtosecond laser ablation of bovine cortical bone. Appl Surf Sci 283:1012–1017CrossRef
38.
Zurück zum Zitat Rehman I, Bonfield W (1997) Characterization of hydroxyapatite and carbonated apatite by photo acoustic FTIR spectroscopy. J Mater Sci Mater Med 8:1–4CrossRefPubMed Rehman I, Bonfield W (1997) Characterization of hydroxyapatite and carbonated apatite by photo acoustic FTIR spectroscopy. J Mater Sci Mater Med 8:1–4CrossRefPubMed
39.
Zurück zum Zitat Kruger J, Kautek W, Newesely H (1999) Femtosecond-pulse laser ablation of dental hydroxyapatite and single-crystalline fluoroapatite. Appl Phys A Mater Sci Process 69:S403–S407CrossRef Kruger J, Kautek W, Newesely H (1999) Femtosecond-pulse laser ablation of dental hydroxyapatite and single-crystalline fluoroapatite. Appl Phys A Mater Sci Process 69:S403–S407CrossRef
40.
Zurück zum Zitat Pike P, Parigger C, Splinter R, Lockhart P (2007) Temperature distribution in dental tissue after interaction with femtosecond laser pulses. Appl Opt 46:8374–8378CrossRefPubMed Pike P, Parigger C, Splinter R, Lockhart P (2007) Temperature distribution in dental tissue after interaction with femtosecond laser pulses. Appl Opt 46:8374–8378CrossRefPubMed
41.
Zurück zum Zitat Chang KP et al (2013) Thermal response of a dental tissue induced by femtosecond laser pulses. Appl Opt 52:6626–6635CrossRefPubMed Chang KP et al (2013) Thermal response of a dental tissue induced by femtosecond laser pulses. Appl Opt 52:6626–6635CrossRefPubMed
42.
Zurück zum Zitat Lin M, Luo ZY, Bai BF, Xu F, Lu TJ (2011) Fluid mechanics in dentinal microtubules provides mechanistic insights into the difference between hot and cold dental pain. PLoS One 6:e18068CrossRefPubMedPubMedCentral Lin M, Luo ZY, Bai BF, Xu F, Lu TJ (2011) Fluid mechanics in dentinal microtubules provides mechanistic insights into the difference between hot and cold dental pain. PLoS One 6:e18068CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Serbin J, Bauer T, Fallnich C, Kasenbacher A, Arnold WH (2002) Femtosecond lasers as novel tool in dental surgery. Appl Surf Sci 197:737–740CrossRef Serbin J, Bauer T, Fallnich C, Kasenbacher A, Arnold WH (2002) Femtosecond lasers as novel tool in dental surgery. Appl Surf Sci 197:737–740CrossRef
44.
Zurück zum Zitat Fanibunda KB, de Sa A (1975) Thermal conductivity of normal and abnormal human dentine. Arch Oral Biol 20:457–IN11CrossRefPubMed Fanibunda KB, de Sa A (1975) Thermal conductivity of normal and abnormal human dentine. Arch Oral Biol 20:457–IN11CrossRefPubMed
45.
Zurück zum Zitat Combes C, Rey C (2010) Amorphous calcium phosphates: synthesis, properties and uses in biomaterials. Acta Biomater 6:3362–3378CrossRefPubMed Combes C, Rey C (2010) Amorphous calcium phosphates: synthesis, properties and uses in biomaterials. Acta Biomater 6:3362–3378CrossRefPubMed
46.
Zurück zum Zitat Skrtic D, Antonucci JM, Eanes ED (2003) Amorphous calcium phosphate-based bioactive polymeric composites for mineralized tissue regeneration. J Res Natl Inst Stand Technol 108:167–182CrossRefPubMedPubMedCentral Skrtic D, Antonucci JM, Eanes ED (2003) Amorphous calcium phosphate-based bioactive polymeric composites for mineralized tissue regeneration. J Res Natl Inst Stand Technol 108:167–182CrossRefPubMedPubMedCentral
47.
Zurück zum Zitat Zezell DM, Ana PA, Pereira TM, Correa PR, VellosoWJ (2011) In: Bernardes MADS (ed) Developments in heat transfer. InTech, p 227–246 Zezell DM, Ana PA, Pereira TM, Correa PR, VellosoWJ (2011) In: Bernardes MADS (ed) Developments in heat transfer. InTech, p 227–246
Metadaten
Titel
Influence of external cooling on the femtosecond laser ablation of dentin
verfasst von
Q. T. Le
R. Vilar
C. Bertrand
Publikationsdatum
11.07.2017
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 9/2017
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-017-2277-8

Weitere Artikel der Ausgabe 9/2017

Lasers in Medical Science 9/2017 Zur Ausgabe