Skip to main content
Erschienen in: Archives of Virology 7/2009

01.07.2009 | Original Article

Influenza A virus matrix protein 1 interacts with hTFIIIC102-s, a short isoform of the polypeptide 3 subunit of human general transcription factor IIIC

verfasst von: Shengping Huang, Jingjing Chen, Huadong Wang, Bing Sun, Hanzhong Wang, Zhiping Zhang, Xianen Zhang, Ze Chen

Erschienen in: Archives of Virology | Ausgabe 7/2009

Einloggen, um Zugang zu erhalten

Abstract

Influenza A virus matrix protein 1 (M1) is a multifunctional protein that plays important roles during replication, assembly and budding of the virus. To search for intracellular protein components that interact with M1 protein and explore the potential roles of these interactions in the pathogenesis of influenza virus infection, 11 independent proteins, including hTFIIIC102-s protein, encoding a short isoform of the TFIIIC102 subunit of the human TFIIIC transcription factor, were screened from a human cell cDNA library using a yeast two-hybrid technique. The interaction between M1 protein and hTFIIIC102-s was studied in more detail. Mapping assays showed that the N-terminal globular region (amino acids 1–164) of the M1 protein and the five tandem tetratricopeptide repeats (TPR1-5, amino acids 149–362) in hTFIIIC102-s were necessary for the interaction. The interaction was confirmed by both glutathione-S-transferase (GST) pull-down assays and coimmunoprecipitation assays. In addition, coexpression of hTFIIIC102-s with M1 in HeLa cells inhibited the translocation of M1 into the nucleus. Taken together, the present data indicate that hTFIIIC102-s can interact with the structural M1 protein of the influenza virus, which provides a novel clue toward further understanding of the roles of M1 protein in the interactions between influenza virus and host cells.
Literatur
1.
Zurück zum Zitat Lamb RA, Lai CJ, Choppin PW (1981) Sequences of mRNAs derived from genome RNA segment 7 of influenza virus: colinear and interrupted mRNAs code for overlapping proteins. Proc Natl Acad Sci USA 78:4170–4174PubMedCrossRef Lamb RA, Lai CJ, Choppin PW (1981) Sequences of mRNAs derived from genome RNA segment 7 of influenza virus: colinear and interrupted mRNAs code for overlapping proteins. Proc Natl Acad Sci USA 78:4170–4174PubMedCrossRef
2.
Zurück zum Zitat Yasuda J, Bucher DJ, Ishihama A (1994) Growth control of influenza A virus by M1 protein: analysis of transfectant viruses carrying the chimerical M gene. J Virol 68:8141–8146PubMed Yasuda J, Bucher DJ, Ishihama A (1994) Growth control of influenza A virus by M1 protein: analysis of transfectant viruses carrying the chimerical M gene. J Virol 68:8141–8146PubMed
3.
Zurück zum Zitat Sha B, Luo M (1997) Structure of a bifunctional membrane-RNA binding protein, influenza virus matrix protein M1. Nat Struct Boil 4:239–244CrossRef Sha B, Luo M (1997) Structure of a bifunctional membrane-RNA binding protein, influenza virus matrix protein M1. Nat Struct Boil 4:239–244CrossRef
4.
Zurück zum Zitat Arzt S, Baudin F, Barge A et al (2001) Combined results from solution studies on intact influenza virus M1 protein and from a new crystal form of its N-terminal domain show that M1 is an elongated monomer. Virology 279:439–446PubMedCrossRef Arzt S, Baudin F, Barge A et al (2001) Combined results from solution studies on intact influenza virus M1 protein and from a new crystal form of its N-terminal domain show that M1 is an elongated monomer. Virology 279:439–446PubMedCrossRef
5.
Zurück zum Zitat Harris A, Forouhar F, Qiu S et al (2001) The crystal structure of the influenza matrix protein M1 at neutral pH: M1–M1 protein interfaces can rotate in the oligomeric structures of M1. Virology 289:34–44PubMedCrossRef Harris A, Forouhar F, Qiu S et al (2001) The crystal structure of the influenza matrix protein M1 at neutral pH: M1–M1 protein interfaces can rotate in the oligomeric structures of M1. Virology 289:34–44PubMedCrossRef
6.
Zurück zum Zitat Shishkov AV, Goldanskii VI, Baratova LA et al (1999) The in situ spatial arrangement of the influenza A virus matrix protein M1 assessed by tritium bombardment. Proc Natl Acad Sci USA 96:7827–7830PubMedCrossRef Shishkov AV, Goldanskii VI, Baratova LA et al (1999) The in situ spatial arrangement of the influenza A virus matrix protein M1 assessed by tritium bombardment. Proc Natl Acad Sci USA 96:7827–7830PubMedCrossRef
7.
Zurück zum Zitat Hui EK, Barman S, Tang DH et al (2006) YRKL sequence of influenza virus M1 functions as the L domain motif and interacts with VPS28 and Cdc42. J Virol 80:2291–2308PubMedCrossRef Hui EK, Barman S, Tang DH et al (2006) YRKL sequence of influenza virus M1 functions as the L domain motif and interacts with VPS28 and Cdc42. J Virol 80:2291–2308PubMedCrossRef
8.
Zurück zum Zitat Zhirnov OP (1990) Solubilization of matrix protein M1/M from virions occurs at different pH for orthomyxo- and paramyxoviruses. Virology 176:274–279PubMedCrossRef Zhirnov OP (1990) Solubilization of matrix protein M1/M from virions occurs at different pH for orthomyxo- and paramyxoviruses. Virology 176:274–279PubMedCrossRef
9.
Zurück zum Zitat Bui M, Whittaker G, Helenius A (1996) Effect of M1 protein and low pH on nuclear transport of influenza virus ribonucleoproteins. J Virol 70:8391–8401PubMed Bui M, Whittaker G, Helenius A (1996) Effect of M1 protein and low pH on nuclear transport of influenza virus ribonucleoproteins. J Virol 70:8391–8401PubMed
10.
Zurück zum Zitat Hankins RW, Nagata K, Kato A (1990) Mechanism of influenza virus transcription inhibition by matrix (M1) protein. Res Virol 141:305–314PubMedCrossRef Hankins RW, Nagata K, Kato A (1990) Mechanism of influenza virus transcription inhibition by matrix (M1) protein. Res Virol 141:305–314PubMedCrossRef
11.
Zurück zum Zitat Martin K, Helenius A (1991) Nuclear transport of influenza virus ribonucleoproteins: the Viral matrix protein (M1) promotes export and inhibits import. Cell 67:117–130PubMedCrossRef Martin K, Helenius A (1991) Nuclear transport of influenza virus ribonucleoproteins: the Viral matrix protein (M1) promotes export and inhibits import. Cell 67:117–130PubMedCrossRef
12.
Zurück zum Zitat Kretzschmar E, Bui M, Rose JK (1996) Membrane association of influenza virus matrix protein does not require specific hydrophobic domains or the viral glycoproteins. Virology 220:37–45PubMedCrossRef Kretzschmar E, Bui M, Rose JK (1996) Membrane association of influenza virus matrix protein does not require specific hydrophobic domains or the viral glycoproteins. Virology 220:37–45PubMedCrossRef
13.
Zurück zum Zitat Zhang J, Lamb RA (1996) Characterization of the membrane association of the influenza virus matrix protein in living cells. Virology 225:255–266PubMedCrossRef Zhang J, Lamb RA (1996) Characterization of the membrane association of the influenza virus matrix protein in living cells. Virology 225:255–266PubMedCrossRef
14.
Zurück zum Zitat Gomez-Puertas P, Albo C, Perez-Pastrana E et al (2000) Influenza virus matrix protein is the major driving force in virus budding. J Virol 74:11538–11547PubMedCrossRef Gomez-Puertas P, Albo C, Perez-Pastrana E et al (2000) Influenza virus matrix protein is the major driving force in virus budding. J Virol 74:11538–11547PubMedCrossRef
15.
Zurück zum Zitat Liu T, Ye Z (2005) Attenuating mutations of the matrix gene of influenza A/WSN/33 virus. J Virol 79:1918–1923PubMedCrossRef Liu T, Ye Z (2005) Attenuating mutations of the matrix gene of influenza A/WSN/33 virus. J Virol 79:1918–1923PubMedCrossRef
16.
Zurück zum Zitat Hui EK, Smee DF, Wong MH et al (2006) Mutations in influenza virus M1 CCHH, the putative zinc finger motif, cause attenuation in mice and protect mice against lethal influenza virus infection. J Virol 80:5697–5707PubMedCrossRef Hui EK, Smee DF, Wong MH et al (2006) Mutations in influenza virus M1 CCHH, the putative zinc finger motif, cause attenuation in mice and protect mice against lethal influenza virus infection. J Virol 80:5697–5707PubMedCrossRef
17.
Zurück zum Zitat Burleigh LM, Calder LJ, Skehel JJ et al (2005) Influenza a viruses with mutations in the m1 helix six domain display a wide variety of morphological phenotypes. J Virol 79:1262–1270PubMedCrossRef Burleigh LM, Calder LJ, Skehel JJ et al (2005) Influenza a viruses with mutations in the m1 helix six domain display a wide variety of morphological phenotypes. J Virol 79:1262–1270PubMedCrossRef
18.
Zurück zum Zitat Reinhardt J, Wolff T (2002) The influenza A virus M1 protein interacts with the cellular receptor of activated C kinase (RACK) 1 and can be phosphorylated by protein kinase C. Vet Microbiol 74:87–100CrossRef Reinhardt J, Wolff T (2002) The influenza A virus M1 protein interacts with the cellular receptor of activated C kinase (RACK) 1 and can be phosphorylated by protein kinase C. Vet Microbiol 74:87–100CrossRef
19.
Zurück zum Zitat Sato Y, Yoshioka K, Suzuki C et al (2003) Localization of influenza virus proteins to nuclear dot 10 structures in influenza virus-infected cells. Virology 310:29–40PubMedCrossRef Sato Y, Yoshioka K, Suzuki C et al (2003) Localization of influenza virus proteins to nuclear dot 10 structures in influenza virus-infected cells. Virology 310:29–40PubMedCrossRef
20.
Zurück zum Zitat Bui M, Whittaker G, Helenius A (1996) Effect of M1 protein and low pH on nuclear transport of influenza virus ribonucleoproteins. J Virol 70:8391–8401PubMed Bui M, Whittaker G, Helenius A (1996) Effect of M1 protein and low pH on nuclear transport of influenza virus ribonucleoproteins. J Virol 70:8391–8401PubMed
21.
Zurück zum Zitat Zhan Y, Hegde R, Srinivasula SM et al (2002) Death effector domain-containing proteins DEDD and FLAME-3 form nuclear complexes with the TFIIIC102 subunit of human transcription factor IIIC. Cell Death Differ 9:439–447PubMedCrossRef Zhan Y, Hegde R, Srinivasula SM et al (2002) Death effector domain-containing proteins DEDD and FLAME-3 form nuclear complexes with the TFIIIC102 subunit of human transcription factor IIIC. Cell Death Differ 9:439–447PubMedCrossRef
22.
Zurück zum Zitat Lee HJ, Pyo JO, Oh Y et al (2007) AK2 activates a novel apoptotic pathway through formation of a complex with FADD and caspase-10. Nat Cell Biol 9:1303–1310PubMedCrossRef Lee HJ, Pyo JO, Oh Y et al (2007) AK2 activates a novel apoptotic pathway through formation of a complex with FADD and caspase-10. Nat Cell Biol 9:1303–1310PubMedCrossRef
23.
Zurück zum Zitat Weins A, Schlondorff JS, Nakamura F et al (2007) Disease-associated mutant alpha-actinin-4 reveals a mechanism for regulating its F-actin-binding affinity. Proc Natl Acad Sci USA 104:16080–16085PubMedCrossRef Weins A, Schlondorff JS, Nakamura F et al (2007) Disease-associated mutant alpha-actinin-4 reveals a mechanism for regulating its F-actin-binding affinity. Proc Natl Acad Sci USA 104:16080–16085PubMedCrossRef
24.
Zurück zum Zitat Avalos RT, Yu Z, Nayak DP (1997) Association of influenza virus NP and M1 proteins with cellular cytoskeletal elements in influenza virus-infected cells. J Virol 71:2947–2958PubMed Avalos RT, Yu Z, Nayak DP (1997) Association of influenza virus NP and M1 proteins with cellular cytoskeletal elements in influenza virus-infected cells. J Virol 71:2947–2958PubMed
25.
Zurück zum Zitat Kiledjian M, Wang X, Liebhaber SA (1995) Identification of two KH domain proteins in the alpha-globin mRNP stability complex. Embo J 14:4357–4364PubMed Kiledjian M, Wang X, Liebhaber SA (1995) Identification of two KH domain proteins in the alpha-globin mRNP stability complex. Embo J 14:4357–4364PubMed
26.
Zurück zum Zitat Ruppert S, Wang EH, Tjian R (1993) Cloning and expression of human TAFII250: a TBP-associated factor implicated in cell-cycle regulation. Nature 362:175–179PubMedCrossRef Ruppert S, Wang EH, Tjian R (1993) Cloning and expression of human TAFII250: a TBP-associated factor implicated in cell-cycle regulation. Nature 362:175–179PubMedCrossRef
27.
Zurück zum Zitat Blatch GL, Lassle M (1999) The tetratricopeptide repeat: a structural motif mediating protein–protein interactions. BioEssays 21:932–939PubMedCrossRef Blatch GL, Lassle M (1999) The tetratricopeptide repeat: a structural motif mediating protein–protein interactions. BioEssays 21:932–939PubMedCrossRef
28.
Zurück zum Zitat Zhirnov OP, Ksenofontov AL, Kuzmina SG (2002) Interaction of influenza A virus M1 matrix protein with caspases. Biochemistry (Mosc) 67:534–539CrossRef Zhirnov OP, Ksenofontov AL, Kuzmina SG (2002) Interaction of influenza A virus M1 matrix protein with caspases. Biochemistry (Mosc) 67:534–539CrossRef
29.
Zurück zum Zitat Martin DA, Siegel RM, Zheng L (1978) Membrane oligomerization and cleavage activates the caspase-8 (FLICE/MACHalpha1) death signal. J Biol Chem 273:4345–4349CrossRef Martin DA, Siegel RM, Zheng L (1978) Membrane oligomerization and cleavage activates the caspase-8 (FLICE/MACHalpha1) death signal. J Biol Chem 273:4345–4349CrossRef
30.
Zurück zum Zitat Hsieh YJ, Wang Z, Kovelman R (1999) Cloning and characterization of two evolutionarily conserved subunits (TFIIIC102 and TFIIIC63) of human TFIIIC and their involvement in functional interactions with TFIIIB and RNA polymerase III. Mol Cell Biol 19:4944–4952PubMed Hsieh YJ, Wang Z, Kovelman R (1999) Cloning and characterization of two evolutionarily conserved subunits (TFIIIC102 and TFIIIC63) of human TFIIIC and their involvement in functional interactions with TFIIIB and RNA polymerase III. Mol Cell Biol 19:4944–4952PubMed
31.
Zurück zum Zitat Geiduschek EP, Kassavetis GA (2001) The RNA polymerase III transcription apparatus. J Mol Biol 310:1–26PubMedCrossRef Geiduschek EP, Kassavetis GA (2001) The RNA polymerase III transcription apparatus. J Mol Biol 310:1–26PubMedCrossRef
32.
Zurück zum Zitat Huang Y, Maraia RJ (2001) Comparison of the RNA polymerase III transcription machinery in Schizosaccharomyces pombe, Saccharomyces cerevisiae and human. Nucleic Acids Res 29:2675–2690PubMedCrossRef Huang Y, Maraia RJ (2001) Comparison of the RNA polymerase III transcription machinery in Schizosaccharomyces pombe, Saccharomyces cerevisiae and human. Nucleic Acids Res 29:2675–2690PubMedCrossRef
Metadaten
Titel
Influenza A virus matrix protein 1 interacts with hTFIIIC102-s, a short isoform of the polypeptide 3 subunit of human general transcription factor IIIC
verfasst von
Shengping Huang
Jingjing Chen
Huadong Wang
Bing Sun
Hanzhong Wang
Zhiping Zhang
Xianen Zhang
Ze Chen
Publikationsdatum
01.07.2009
Verlag
Springer Vienna
Erschienen in
Archives of Virology / Ausgabe 7/2009
Print ISSN: 0304-8608
Elektronische ISSN: 1432-8798
DOI
https://doi.org/10.1007/s00705-009-0416-7

Weitere Artikel der Ausgabe 7/2009

Archives of Virology 7/2009 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Echinokokkose medikamentös behandeln oder operieren?

06.05.2024 DCK 2024 Kongressbericht

Die Therapie von Echinokokkosen sollte immer in spezialisierten Zentren erfolgen. Eine symptomlose Echinokokkose kann – egal ob von Hunde- oder Fuchsbandwurm ausgelöst – konservativ erfolgen. Wenn eine Op. nötig ist, kann es sinnvoll sein, vorher Zysten zu leeren und zu desinfizieren. 

Umsetzung der POMGAT-Leitlinie läuft

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

Proximale Humerusfraktur: Auch 100-Jährige operieren?

01.05.2024 DCK 2024 Kongressbericht

Mit dem demographischen Wandel versorgt auch die Chirurgie immer mehr betagte Menschen. Von Entwicklungen wie Fast-Track können auch ältere Menschen profitieren und bei proximaler Humerusfraktur können selbst manche 100-Jährige noch sicher operiert werden.

Die „Zehn Gebote“ des Endokarditis-Managements

30.04.2024 Endokarditis Leitlinie kompakt

Worauf kommt es beim Management von Personen mit infektiöser Endokarditis an? Eine Kardiologin und ein Kardiologe fassen die zehn wichtigsten Punkte der neuen ESC-Leitlinie zusammen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.