Skip to main content
Erschienen in: Journal of Mammary Gland Biology and Neoplasia 4/2008

01.12.2008

Insulin Receptor Substrates (IRSs) and Breast Tumorigenesis

verfasst von: Bonita Tak-Yee Chan, Adrian V. Lee

Erschienen in: Journal of Mammary Gland Biology and Neoplasia | Ausgabe 4/2008

Einloggen, um Zugang zu erhalten

Abstract

Insulin receptor substrate (IRS)-1 and IRS-2 are adaptor proteins in the insulin-like growth factor I (IGF-I)/IGF-I receptor (IGF-IR) pathway that mediate cell proliferation, migration, and survival. In addition to their role as scaffolding proteins in the cytoplasm, they are able to translocate into the nucleus and regulate gene transcription. IRS levels are developmentally and hormonally regulated in the normal mammary gland and both are essential for normal mammary gland bud formation and lactation. Both IRS-1 and IRS-2 are transforming oncogenes, and induce transformation and metastasis in vitro and in vivo. In breast cancer IRSs have unique functions, with IRS-1 being mainly involved in cell proliferation and survival, whereas IRS-2 has clear roles in cell migration and metastasis. In this review we will discuss the roles of IRSs in mammary gland development and breast cancer.
Literatur
1.
Zurück zum Zitat Lee YH, White MF. Insulin receptor substrate proteins and diabetes. Arch Pharm Res. 2004;27(4):361–70.PubMedCrossRef Lee YH, White MF. Insulin receptor substrate proteins and diabetes. Arch Pharm Res. 2004;27(4):361–70.PubMedCrossRef
2.
Zurück zum Zitat Sun XJ, Rothenberg P, Kahn CR, Backer JM, Araki E, Wilden PA, et al. Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature. 1991;352(6330):73–7. doi:10.1038/352073a0.PubMedCrossRef Sun XJ, Rothenberg P, Kahn CR, Backer JM, Araki E, Wilden PA, et al. Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature. 1991;352(6330):73–7. doi:10.​1038/​352073a0.PubMedCrossRef
4.
Zurück zum Zitat Smith-Hall J, Pons S, Patti ME, Burks DJ, Yenush L, Sun XJ, et al. The 60 kDa insulin receptor substrate functions like an IRS protein (pp60IRS3) in adipose cells. Biochemistry. 1997;36(27):8304–10. doi:10.1021/bi9630974.PubMedCrossRef Smith-Hall J, Pons S, Patti ME, Burks DJ, Yenush L, Sun XJ, et al. The 60 kDa insulin receptor substrate functions like an IRS protein (pp60IRS3) in adipose cells. Biochemistry. 1997;36(27):8304–10. doi:10.​1021/​bi9630974.PubMedCrossRef
5.
Zurück zum Zitat Lavan BE, Fantin VR, Chang ET, Lane WS, Keller SR, Lienhard GE. A novel 160-kDa phosphotyrosine protein in insulin-treated embryonic kidney cells is a new member of the insulin receptor substrate family. J Biol Chem. 1997;272(34):21403–7. doi:10.1074/jbc.272.34.21403.PubMedCrossRef Lavan BE, Fantin VR, Chang ET, Lane WS, Keller SR, Lienhard GE. A novel 160-kDa phosphotyrosine protein in insulin-treated embryonic kidney cells is a new member of the insulin receptor substrate family. J Biol Chem. 1997;272(34):21403–7. doi:10.​1074/​jbc.​272.​34.​21403.PubMedCrossRef
7.
Zurück zum Zitat Sun XJ, Miralpeix M, Myers MG Jr, Glasheen EM, Backer JM, Kahn CR, et al. Expression and function of IRS-1 in insulin signal transmission. J Biol Chem. 1992;267(31):22662–72.PubMed Sun XJ, Miralpeix M, Myers MG Jr, Glasheen EM, Backer JM, Kahn CR, et al. Expression and function of IRS-1 in insulin signal transmission. J Biol Chem. 1992;267(31):22662–72.PubMed
9.
Zurück zum Zitat Hadsell DL, Alexeenko T, Klemintidis Y, Torres D, Lee AV. Inability of overexpressed des(1–3)human insulin-like growth factor I (IGF-I) to inhibit forced mammary gland involution is associated with decreased expression of IGF signaling molecules. Endocrinology. 2001;142(4):1479–88. doi:10.1210/en.142.4.1479.PubMedCrossRef Hadsell DL, Alexeenko T, Klemintidis Y, Torres D, Lee AV. Inability of overexpressed des(1–3)human insulin-like growth factor I (IGF-I) to inhibit forced mammary gland involution is associated with decreased expression of IGF signaling molecules. Endocrinology. 2001;142(4):1479–88. doi:10.​1210/​en.​142.​4.​1479.PubMedCrossRef
10.
Zurück zum Zitat Wu X, Sallinen K, Anttila L, Makinen M, Luo C, Pollanen P, et al. Expression of insulin-receptor substrate-1 and -2 in ovaries from women with insulin resistance and from controls. Fertil Steril. 2000;74(3):564–72. doi:10.1016/S0015-0282(00)00688-9.PubMedCrossRef Wu X, Sallinen K, Anttila L, Makinen M, Luo C, Pollanen P, et al. Expression of insulin-receptor substrate-1 and -2 in ovaries from women with insulin resistance and from controls. Fertil Steril. 2000;74(3):564–72. doi:10.​1016/​S0015-0282(00)00688-9.PubMedCrossRef
12.
Zurück zum Zitat White MF. IRS proteins and the common path to diabetes. Am J Physiol Endocrinol Metab. 2002;283(3):E413–22.PubMed White MF. IRS proteins and the common path to diabetes. Am J Physiol Endocrinol Metab. 2002;283(3):E413–22.PubMed
13.
Zurück zum Zitat Bjornholm M, Zierath JR. Insulin signal transduction in human skeletal muscle: identifying the defects in Type II diabetes. Biochem Soc Trans. 2005;33(Pt 2):354–7. doi:10.1042/BST0330354.PubMed Bjornholm M, Zierath JR. Insulin signal transduction in human skeletal muscle: identifying the defects in Type II diabetes. Biochem Soc Trans. 2005;33(Pt 2):354–7. doi:10.​1042/​BST0330354.PubMed
14.
Zurück zum Zitat He W, Craparo A, Zhu Y, O’Neill TJ, Wang LM, Pierce JH, et al. Interaction of insulin receptor substrate-2 (IRS-2) with the insulin and insulin-like growth factor I receptors. Evidence for two distinct phosphotyrosine-dependent interaction domains within IRS-2. J Biol Chem. 1996;271(20):11641–5. doi:10.1074/jbc.271.20.11641.PubMedCrossRef He W, Craparo A, Zhu Y, O’Neill TJ, Wang LM, Pierce JH, et al. Interaction of insulin receptor substrate-2 (IRS-2) with the insulin and insulin-like growth factor I receptors. Evidence for two distinct phosphotyrosine-dependent interaction domains within IRS-2. J Biol Chem. 1996;271(20):11641–5. doi:10.​1074/​jbc.​271.​20.​11641.PubMedCrossRef
15.
Zurück zum Zitat Sawka-Verhelle D, Tartare-Deckert S, White MF, Van Obberghen E. Insulin receptor substrate-2 binds to the insulin receptor through its phosphotyrosine-binding domain and through a newly identified domain comprising amino acids 591–786. J Biol Chem. 1996;271(11):5980–3. doi:10.1074/jbc.271.11.5980.PubMedCrossRef Sawka-Verhelle D, Tartare-Deckert S, White MF, Van Obberghen E. Insulin receptor substrate-2 binds to the insulin receptor through its phosphotyrosine-binding domain and through a newly identified domain comprising amino acids 591–786. J Biol Chem. 1996;271(11):5980–3. doi:10.​1074/​jbc.​271.​11.​5980.PubMedCrossRef
17.
Zurück zum Zitat Kuhne MR, Pawson T, Lienhard GE, Feng GS. The insulin receptor substrate 1 associates with the SH2-containing phosphotyrosine phosphatase Syp. J Biol Chem. 1993;268(16):11479–81.PubMed Kuhne MR, Pawson T, Lienhard GE, Feng GS. The insulin receptor substrate 1 associates with the SH2-containing phosphotyrosine phosphatase Syp. J Biol Chem. 1993;268(16):11479–81.PubMed
18.
19.
20.
Zurück zum Zitat Myers MG Jr, Sun XJ, Cheatham B, Jachna BR, Glasheen EM, Backer JM, et al. IRS-1 is a common element in insulin and insulin-like growth factor-I signaling to the phosphatidylinositol 3′-kinase. Endocrinology. 1993;132(4):1421–30. doi:10.1210/en.132.4.1421.PubMedCrossRef Myers MG Jr, Sun XJ, Cheatham B, Jachna BR, Glasheen EM, Backer JM, et al. IRS-1 is a common element in insulin and insulin-like growth factor-I signaling to the phosphatidylinositol 3′-kinase. Endocrinology. 1993;132(4):1421–30. doi:10.​1210/​en.​132.​4.​1421.PubMedCrossRef
21.
Zurück zum Zitat Ridderstrale M, Degerman E, Tornqvist H. Growth hormone stimulates the tyrosine phosphorylation of the insulin receptor substrate-1 and its association with phosphatidylinositol 3-kinase in primary adipocytes. J Biol Chem. 1995;270(8):3471–4. doi:10.1074/jbc.270.8.3471.PubMedCrossRef Ridderstrale M, Degerman E, Tornqvist H. Growth hormone stimulates the tyrosine phosphorylation of the insulin receptor substrate-1 and its association with phosphatidylinositol 3-kinase in primary adipocytes. J Biol Chem. 1995;270(8):3471–4. doi:10.​1074/​jbc.​270.​8.​3471.PubMedCrossRef
23.
Zurück zum Zitat Shepherd PR, Withers DJ, Siddle K. Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling. Biochem J. 1998;333(Pt 3):471–90.PubMed Shepherd PR, Withers DJ, Siddle K. Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling. Biochem J. 1998;333(Pt 3):471–90.PubMed
24.
Zurück zum Zitat Dearth RK, Cui X, Kim HJ, Hadsell DL, Lee AV. Oncogenic transformation by the signaling adaptor proteins insulin receptor substrate (IRS)-1 and IRS-2. Cell Cycle. 2007;6(6):705–13.PubMed Dearth RK, Cui X, Kim HJ, Hadsell DL, Lee AV. Oncogenic transformation by the signaling adaptor proteins insulin receptor substrate (IRS)-1 and IRS-2. Cell Cycle. 2007;6(6):705–13.PubMed
27.
Zurück zum Zitat White MF, Yenush L. The IRS-signaling system: a network of docking proteins that mediate insulin and cytokine action. Curr Top Microbiol Immunol. 1998;228:179–208.PubMed White MF, Yenush L. The IRS-signaling system: a network of docking proteins that mediate insulin and cytokine action. Curr Top Microbiol Immunol. 1998;228:179–208.PubMed
28.
Zurück zum Zitat Yamauchi T, Kaburagi Y, Ueki K, Tsuji Y, Stark GR, Kerr IM, et al. Growth hormone and prolactin stimulate tyrosine phosphorylation of insulin receptor substrate-1, -2, and -3, their association with p85 phosphatidylinositol 3-kinase (PI3-kinase), and concomitantly PI3- kinase activation via JAK2 kinase. J Biol Chem. 1998;273(25):15719–26. doi:10.1074/jbc.273.25.15719.PubMedCrossRef Yamauchi T, Kaburagi Y, Ueki K, Tsuji Y, Stark GR, Kerr IM, et al. Growth hormone and prolactin stimulate tyrosine phosphorylation of insulin receptor substrate-1, -2, and -3, their association with p85 phosphatidylinositol 3-kinase (PI3-kinase), and concomitantly PI3- kinase activation via JAK2 kinase. J Biol Chem. 1998;273(25):15719–26. doi:10.​1074/​jbc.​273.​25.​15719.PubMedCrossRef
29.
Zurück zum Zitat Burfoot MS, Rogers NC, Watling D, Smith JM, Pons S, Paonessaw G, et al. Janus kinase-dependent activation of insulin receptor substrate 1 in response to interleukin-4, oncostatin M, and the interferons. J Biol Chem. 1997;272(39):24183–90. doi:10.1074/jbc.272.39.24183.PubMedCrossRef Burfoot MS, Rogers NC, Watling D, Smith JM, Pons S, Paonessaw G, et al. Janus kinase-dependent activation of insulin receptor substrate 1 in response to interleukin-4, oncostatin M, and the interferons. J Biol Chem. 1997;272(39):24183–90. doi:10.​1074/​jbc.​272.​39.​24183.PubMedCrossRef
30.
31.
Zurück zum Zitat Sisci D, Morelli C, Cascio S, Lanzino M, Garofalo C, Reiss K, et al. The estrogen receptor alpha:insulin receptor substrate 1 complex in breast cancer: structure–function relationships. Ann Oncol. 2007;18(Suppl 6):vi81–5. doi:10.1093/annonc/mdm232.PubMedCrossRef Sisci D, Morelli C, Cascio S, Lanzino M, Garofalo C, Reiss K, et al. The estrogen receptor alpha:insulin receptor substrate 1 complex in breast cancer: structure–function relationships. Ann Oncol. 2007;18(Suppl 6):vi81–5. doi:10.​1093/​annonc/​mdm232.PubMedCrossRef
32.
Zurück zum Zitat Prisco M, Santini F, Baffa R, Liu M, Drakas R, Wu A, et al. Nuclear translocation of insulin receptor substrate-1 by the simian virus 40 T antigen and the activated type 1 insulin-like growth factor receptor. J Biol Chem. 2002;277(35):32078–85. doi:10.1074/jbc.M204658200.PubMedCrossRef Prisco M, Santini F, Baffa R, Liu M, Drakas R, Wu A, et al. Nuclear translocation of insulin receptor substrate-1 by the simian virus 40 T antigen and the activated type 1 insulin-like growth factor receptor. J Biol Chem. 2002;277(35):32078–85. doi:10.​1074/​jbc.​M204658200.PubMedCrossRef
33.
Zurück zum Zitat Chen J, Wu A, Sun H, Drakas R, Garofalo C, Cascio S, et al. Functional significance of type 1 insulin-like growth factor-mediated nuclear translocation of the insulin receptor substrate-1 and beta-catenin. J Biol Chem. 2005;280(33):29912–20. doi:10.1074/jbc.M504516200.PubMedCrossRef Chen J, Wu A, Sun H, Drakas R, Garofalo C, Cascio S, et al. Functional significance of type 1 insulin-like growth factor-mediated nuclear translocation of the insulin receptor substrate-1 and beta-catenin. J Biol Chem. 2005;280(33):29912–20. doi:10.​1074/​jbc.​M504516200.PubMedCrossRef
35.
Zurück zum Zitat Trojanek J, Ho T, Croul S, Wang JY, Chintapalli J, Koptyra M, et al. IRS-1-Rad51 nuclear interaction sensitizes JCV T-antigen positive medulloblastoma cells to genotoxic treatment. Int J Cancer. 2006;119(3):539–48. doi:10.1002/ijc.21828.PubMedCrossRef Trojanek J, Ho T, Croul S, Wang JY, Chintapalli J, Koptyra M, et al. IRS-1-Rad51 nuclear interaction sensitizes JCV T-antigen positive medulloblastoma cells to genotoxic treatment. Int J Cancer. 2006;119(3):539–48. doi:10.​1002/​ijc.​21828.PubMedCrossRef
36.
37.
Zurück zum Zitat Tu X, Batta P, Innocent N, Prisco M, Casaburi I, Belletti B, et al. Nuclear translocation of insulin receptor substrate-1 by oncogenes and Igf-I. Effect on ribosomal RNA synthesis. J Biol Chem. 2002;277(46):44357–65. doi:10.1074/jbc.M208001200.PubMedCrossRef Tu X, Batta P, Innocent N, Prisco M, Casaburi I, Belletti B, et al. Nuclear translocation of insulin receptor substrate-1 by oncogenes and Igf-I. Effect on ribosomal RNA synthesis. J Biol Chem. 2002;277(46):44357–65. doi:10.​1074/​jbc.​M208001200.PubMedCrossRef
38.
Zurück zum Zitat Sun H, Tu X, Prisco M, Wu A, Casiburi I, Baserga R. Insulin-like growth factor I receptor signaling and nuclear translocation of insulin receptor substrates 1 and 2. Mol Endocrinol. 2003;17(3):472–86. doi:10.1210/me.2002-0276.PubMedCrossRef Sun H, Tu X, Prisco M, Wu A, Casiburi I, Baserga R. Insulin-like growth factor I receptor signaling and nuclear translocation of insulin receptor substrates 1 and 2. Mol Endocrinol. 2003;17(3):472–86. doi:10.​1210/​me.​2002-0276.PubMedCrossRef
39.
Zurück zum Zitat Lee AV, Zhang P, Ivanova M, Bonnette S, Oesterreich S, Rosen JM, et al. Developmental and hormonal signals dramatically alter the localization and abundance of insulin receptor substrate proteins in the mammary gland. Endocrinology. 2003;144(6):2683–94. doi:10.1210/en.2002-221103.PubMedCrossRef Lee AV, Zhang P, Ivanova M, Bonnette S, Oesterreich S, Rosen JM, et al. Developmental and hormonal signals dramatically alter the localization and abundance of insulin receptor substrate proteins in the mammary gland. Endocrinology. 2003;144(6):2683–94. doi:10.​1210/​en.​2002-221103.PubMedCrossRef
40.
Zurück zum Zitat Hovey RC, Trott JF, Ginsburg E, Goldhar A, Sasaki MM, Fountain SJ, et al. Transcriptional and spatiotemporal regulation of prolactin receptor mRNA and cooperativity with progesterone receptor function during ductal branch growth in the mammary gland. Dev Dyn. 2001;222(2):192–205. doi:10.1002/dvdy.1179.PubMedCrossRef Hovey RC, Trott JF, Ginsburg E, Goldhar A, Sasaki MM, Fountain SJ, et al. Transcriptional and spatiotemporal regulation of prolactin receptor mRNA and cooperativity with progesterone receptor function during ductal branch growth in the mammary gland. Dev Dyn. 2001;222(2):192–205. doi:10.​1002/​dvdy.​1179.PubMedCrossRef
41.
Zurück zum Zitat Silberstein GB, Van Horn K, Shyamala G, Daniel CW. Progesterone receptors in the mouse mammary duct: distribution and developmental regulation. Cell Growth Differ. 1996;7(7):945–52.PubMed Silberstein GB, Van Horn K, Shyamala G, Daniel CW. Progesterone receptors in the mouse mammary duct: distribution and developmental regulation. Cell Growth Differ. 1996;7(7):945–52.PubMed
42.
Zurück zum Zitat Shyamala G, Chou YC, Louie SG, Guzman RC, Smith GH, Nandi S. Cellular expression of estrogen and progesterone receptors in mammary glands: regulation by hormones, development and aging. J Steroid Biochem Mol Biol. 2002;80(2):137–48. doi:10.1016/S0960-0760(01)00182-0.PubMedCrossRef Shyamala G, Chou YC, Louie SG, Guzman RC, Smith GH, Nandi S. Cellular expression of estrogen and progesterone receptors in mammary glands: regulation by hormones, development and aging. J Steroid Biochem Mol Biol. 2002;80(2):137–48. doi:10.​1016/​S0960-0760(01)00182-0.PubMedCrossRef
44.
Zurück zum Zitat Lee AV, Taylor ST, Greenall J, Mills JD, Tonge DW, Zhang P, et al. Rapid induction of IGF-IR signaling in normal and tumor tissue following intravenous injection of IGF-I in mice. Horm Metab Res. 2003;35(11–12):651–5.PubMed Lee AV, Taylor ST, Greenall J, Mills JD, Tonge DW, Zhang P, et al. Rapid induction of IGF-IR signaling in normal and tumor tissue following intravenous injection of IGF-I in mice. Horm Metab Res. 2003;35(11–12):651–5.PubMed
45.
Zurück zum Zitat Hadsell DL, Olea W, Lawrence N, George J, Torres D, Kadowaki T, et al. Decreased lactation capacity and altered milk composition in insulin receptor substrate null mice is associated with decreased maternal body mass and reduced insulin-dependent phosphorylation of mammary Akt. J Endocrinol. 2007;194(2):327–36. doi:10.1677/JOE-07-0160.PubMedCrossRef Hadsell DL, Olea W, Lawrence N, George J, Torres D, Kadowaki T, et al. Decreased lactation capacity and altered milk composition in insulin receptor substrate null mice is associated with decreased maternal body mass and reduced insulin-dependent phosphorylation of mammary Akt. J Endocrinol. 2007;194(2):327–36. doi:10.​1677/​JOE-07-0160.PubMedCrossRef
46.
Zurück zum Zitat Heckman BM, Chakravarty G, Vargo-Gogola T, Gonzales-Rimbau M, Hadsell DL, Lee AV, et al. Crosstalk between the p190-B RhoGAP and IGF signaling pathways is required for embryonic mammary bud development. Dev Biol. 2007;309(1):137–49. doi:10.1016/j.ydbio.2007.07.002.PubMedCrossRef Heckman BM, Chakravarty G, Vargo-Gogola T, Gonzales-Rimbau M, Hadsell DL, Lee AV, et al. Crosstalk between the p190-B RhoGAP and IGF signaling pathways is required for embryonic mammary bud development. Dev Biol. 2007;309(1):137–49. doi:10.​1016/​j.​ydbio.​2007.​07.​002.PubMedCrossRef
47.
Zurück zum Zitat D’Ambrosio C, Keller SR, Morrione A, Lienhard GE, Baserga R, Surmacz E. Transforming potential of the insulin receptor substrate 1. Cell Growth Differ. 1995;6(5):557–62.PubMed D’Ambrosio C, Keller SR, Morrione A, Lienhard GE, Baserga R, Surmacz E. Transforming potential of the insulin receptor substrate 1. Cell Growth Differ. 1995;6(5):557–62.PubMed
48.
Zurück zum Zitat Ito T, Sasaki Y, Wands JR. Overexpression of human insulin receptor substrate 1 induces cellular transformation with activation of mitogen-activated protein kinases. Mol Cell Biol. 1996;16(3):943–51.PubMed Ito T, Sasaki Y, Wands JR. Overexpression of human insulin receptor substrate 1 induces cellular transformation with activation of mitogen-activated protein kinases. Mol Cell Biol. 1996;16(3):943–51.PubMed
49.
50.
Zurück zum Zitat Cristofanelli B, Valentinis B, Soddu S, Rizzo MG, Marchetti A, Bossi G, et al. Cooperative transformation of 32D cells by the combined expression of IRS-1 and V-Ha-Ras. Oncogene. 2000;19(29):3245–55. doi:10.1038/sj.onc.1203664.PubMedCrossRef Cristofanelli B, Valentinis B, Soddu S, Rizzo MG, Marchetti A, Bossi G, et al. Cooperative transformation of 32D cells by the combined expression of IRS-1 and V-Ha-Ras. Oncogene. 2000;19(29):3245–55. doi:10.​1038/​sj.​onc.​1203664.PubMedCrossRef
52.
Zurück zum Zitat Dearth RK, Cui X, Kim HJ, Kuiatse I, Lawrence NA, Zhang X, et al. Mammary tumorigenesis and metastasis caused by overexpression of insulin receptor substrate 1 (IRS-1) or IRS-2. Mol Cell Biol. 2006;26(24):9302–14. doi:10.1128/MCB.00260-06.PubMedCrossRef Dearth RK, Cui X, Kim HJ, Kuiatse I, Lawrence NA, Zhang X, et al. Mammary tumorigenesis and metastasis caused by overexpression of insulin receptor substrate 1 (IRS-1) or IRS-2. Mol Cell Biol. 2006;26(24):9302–14. doi:10.​1128/​MCB.​00260-06.PubMedCrossRef
53.
Zurück zum Zitat Aranda V, Haire T, Nolan ME, Calarco JP, Rosenberg AZ, Fawcett JP, et al. Par6-aPKC uncouples ErbB2 induced disruption of polarized epithelial organization from proliferation control. Nat Cell Biol. 2006;8(11):1235–45. doi:10.1038/ncb1485.PubMedCrossRef Aranda V, Haire T, Nolan ME, Calarco JP, Rosenberg AZ, Fawcett JP, et al. Par6-aPKC uncouples ErbB2 induced disruption of polarized epithelial organization from proliferation control. Nat Cell Biol. 2006;8(11):1235–45. doi:10.​1038/​ncb1485.PubMedCrossRef
54.
Zurück zum Zitat Ma Z, Gibson SL, Byrne MA, Zhang J, White MF, Shaw LM. Suppression of insulin receptor substrate-1 (lrs-1) promotes mammary tumor metastasis. Mol Cell Biol. 2006;26:9338–51.PubMedCrossRef Ma Z, Gibson SL, Byrne MA, Zhang J, White MF, Shaw LM. Suppression of insulin receptor substrate-1 (lrs-1) promotes mammary tumor metastasis. Mol Cell Biol. 2006;26:9338–51.PubMedCrossRef
56.
Zurück zum Zitat Gibson SL, Ma Z, Shaw LM. Divergent roles for IRS-1 and IRS-2 in breast cancer metastasis. Cell Cycle. 2007;6(6):631–7.PubMed Gibson SL, Ma Z, Shaw LM. Divergent roles for IRS-1 and IRS-2 in breast cancer metastasis. Cell Cycle. 2007;6(6):631–7.PubMed
58.
Zurück zum Zitat Surmacz E, Burgard JL. Overexpression of IRS-1 in the human breast cancer cell line MCF-7 induces loss of estrogen requirements for growth and transformation. Clin Cancer Res. 1995;1:1429–36.PubMed Surmacz E, Burgard JL. Overexpression of IRS-1 in the human breast cancer cell line MCF-7 induces loss of estrogen requirements for growth and transformation. Clin Cancer Res. 1995;1:1429–36.PubMed
60.
Zurück zum Zitat Lanzino M, Garofalo C, Morelli C, Le Pera M, Casaburi I, McPhaul MJ, et al. Insulin receptor substrate 1 modulates the transcriptional activity and the stability of androgen receptor in breast cancer cells. Breast Cancer Res Treat. 2008 doi:10.1007/s10549-008-0079-1. Lanzino M, Garofalo C, Morelli C, Le Pera M, Casaburi I, McPhaul MJ, et al. Insulin receptor substrate 1 modulates the transcriptional activity and the stability of androgen receptor in breast cancer cells. Breast Cancer Res Treat. 2008 doi:10.​1007/​s10549-008-0079-1.
61.
Zurück zum Zitat Byron SA, Horwitz KB, Richer JK, Lange CA, Zhang X, Yee D. Insulin receptor substrates mediate distinct biological responses to insulin-like growth factor receptor activation in breast cancer cells. Br J Cancer. 2006;95(9):1220–8. doi:10.1038/sj.bjc.6603354.PubMedCrossRef Byron SA, Horwitz KB, Richer JK, Lange CA, Zhang X, Yee D. Insulin receptor substrates mediate distinct biological responses to insulin-like growth factor receptor activation in breast cancer cells. Br J Cancer. 2006;95(9):1220–8. doi:10.​1038/​sj.​bjc.​6603354.PubMedCrossRef
62.
Zurück zum Zitat Jackson JG, Zhang X, Yoneda T, Yee D. Regulation of breast cancer cell motility by insulin receptor substrate-2 (IRS-2) in metastatic variants of human breast cancer cell lines. Oncogene. 2001;20(50):7318–25. doi:10.1038/sj.onc.1204920.PubMedCrossRef Jackson JG, Zhang X, Yoneda T, Yee D. Regulation of breast cancer cell motility by insulin receptor substrate-2 (IRS-2) in metastatic variants of human breast cancer cell lines. Oncogene. 2001;20(50):7318–25. doi:10.​1038/​sj.​onc.​1204920.PubMedCrossRef
64.
Zurück zum Zitat Lee AV, Jackson JG, Gooch JL, Hilsenbeck SG, Coronado-Heinsohn E, Osborne CK, et al. Enhancement of insulin-like growth factor signaling in human breast cancer: estrogen regulation of insulin receptor substrate-1 expression in vitro and in vivo. Mol Endocrinol. 1999;13(5):787–96. doi:10.1210/me.13.5.787.PubMedCrossRef Lee AV, Jackson JG, Gooch JL, Hilsenbeck SG, Coronado-Heinsohn E, Osborne CK, et al. Enhancement of insulin-like growth factor signaling in human breast cancer: estrogen regulation of insulin receptor substrate-1 expression in vitro and in vivo. Mol Endocrinol. 1999;13(5):787–96. doi:10.​1210/​me.​13.​5.​787.PubMedCrossRef
65.
Zurück zum Zitat Bernard L, Legay C, Adriaenssens E, Mougel A, Ricort JM. Estradiol regulates the insulin-like growth factor-I (IGF-I) signalling pathway: a crucial role of phosphatidylinositol 3-kinase (PI 3-kinase) in estrogens requirement for growth of MCF-7 human breast carcinoma cells. Biochem Biophys Res Commun. 2006;350(4):916–21. doi:10.1016/j.bbrc.2006.09.116.PubMedCrossRef Bernard L, Legay C, Adriaenssens E, Mougel A, Ricort JM. Estradiol regulates the insulin-like growth factor-I (IGF-I) signalling pathway: a crucial role of phosphatidylinositol 3-kinase (PI 3-kinase) in estrogens requirement for growth of MCF-7 human breast carcinoma cells. Biochem Biophys Res Commun. 2006;350(4):916–21. doi:10.​1016/​j.​bbrc.​2006.​09.​116.PubMedCrossRef
66.
Zurück zum Zitat Cesarone G, Garofalo C, Abrams MT, Igoucheva O, Alexeev V, Yoon K, et al. RNAi-mediated silencing of insulin receptor substrate 1 (IRS-1) enhances tamoxifen-induced cell death in MCF-7 breast cancer cells. J Cell Biochem. 2006;98(2):440–50. doi:10.1002/jcb.20817.PubMedCrossRef Cesarone G, Garofalo C, Abrams MT, Igoucheva O, Alexeev V, Yoon K, et al. RNAi-mediated silencing of insulin receptor substrate 1 (IRS-1) enhances tamoxifen-induced cell death in MCF-7 breast cancer cells. J Cell Biochem. 2006;98(2):440–50. doi:10.​1002/​jcb.​20817.PubMedCrossRef
67.
Zurück zum Zitat Oesterreich S, Zhang P, Guler RL, Sun X, Curran E, Welshons WV, et al. Re-expression of estrogen receptor α in estrogen receptror α-negative MCF-7 cells results in restoration of estrogen and IGF-mediated signaling and proliferation. Cancer Res. 2001;61(15):5771–7.PubMed Oesterreich S, Zhang P, Guler RL, Sun X, Curran E, Welshons WV, et al. Re-expression of estrogen receptor α in estrogen receptror α-negative MCF-7 cells results in restoration of estrogen and IGF-mediated signaling and proliferation. Cancer Res. 2001;61(15):5771–7.PubMed
68.
Zurück zum Zitat Cui X, Lazard Z, Zhang P, Hopp TA, Lee AV. Progesterone crosstalks with insulin-like growth factor signaling in breast cancer cells via induction of insulin receptor substrate-2. Oncogene. 2003;22(44):6937–41. doi:10.1038/sj.onc.1206803.PubMedCrossRef Cui X, Lazard Z, Zhang P, Hopp TA, Lee AV. Progesterone crosstalks with insulin-like growth factor signaling in breast cancer cells via induction of insulin receptor substrate-2. Oncogene. 2003;22(44):6937–41. doi:10.​1038/​sj.​onc.​1206803.PubMedCrossRef
69.
Zurück zum Zitat Ibrahim YH, Byron SA, Cui X, Lee AV, Yee D. Progesterone receptor-B regulation of insulin-like growth factor-stimulated cell migration in breast cancer cells via insulin receptor substrate-2. Mol Cancer Res. 2008;6(9):1491–8. doi:10.1158/1541-7786.MCR-07-2173.PubMedCrossRef Ibrahim YH, Byron SA, Cui X, Lee AV, Yee D. Progesterone receptor-B regulation of insulin-like growth factor-stimulated cell migration in breast cancer cells via insulin receptor substrate-2. Mol Cancer Res. 2008;6(9):1491–8. doi:10.​1158/​1541-7786.​MCR-07-2173.PubMedCrossRef
70.
Zurück zum Zitat Knowlden JM, Jones HE, Barrow D, Gee JM, Nicholson RI, Hutcheson IR. Insulin receptor substrate-1 involvement in epidermal growth factor receptor and insulin-like growth factor receptor signalling: implication for Gefitinib (‘Iressa’) response and resistance. Breast Cancer Res Treat. 2008;111(1):79–91. doi:10.1007/s10549-007-9763-9.PubMedCrossRef Knowlden JM, Jones HE, Barrow D, Gee JM, Nicholson RI, Hutcheson IR. Insulin receptor substrate-1 involvement in epidermal growth factor receptor and insulin-like growth factor receptor signalling: implication for Gefitinib (‘Iressa’) response and resistance. Breast Cancer Res Treat. 2008;111(1):79–91. doi:10.​1007/​s10549-007-9763-9.PubMedCrossRef
71.
Zurück zum Zitat Cui X, Kim HJ, Kuiatse I, Kim H, Brown PH, Lee AV. Epidermal growth factor induces insulin receptor substrate-2 in breast cancer cells via c-Jun NH(2)-terminal kinase/activator protein-1 signaling to regulate cell migration. Cancer Res. 2006;66(10):5304–13. doi:10.1158/0008-5472.CAN-05-2858.PubMedCrossRef Cui X, Kim HJ, Kuiatse I, Kim H, Brown PH, Lee AV. Epidermal growth factor induces insulin receptor substrate-2 in breast cancer cells via c-Jun NH(2)-terminal kinase/activator protein-1 signaling to regulate cell migration. Cancer Res. 2006;66(10):5304–13. doi:10.​1158/​0008-5472.​CAN-05-2858.PubMedCrossRef
73.
Zurück zum Zitat Rocha RL, Hilsenbeck SG, Jackson JG, Van Den Berg CL, Weng CN, Lee AV, et al. Insulin-like growth factor binding protein-3 and insulin receptor substrate-1 in breast cancer: correlation with clinical parameters and disease-free survival. Clin Cancer Res. 1997;3:103–9.PubMed Rocha RL, Hilsenbeck SG, Jackson JG, Van Den Berg CL, Weng CN, Lee AV, et al. Insulin-like growth factor binding protein-3 and insulin receptor substrate-1 in breast cancer: correlation with clinical parameters and disease-free survival. Clin Cancer Res. 1997;3:103–9.PubMed
75.
Zurück zum Zitat Sisci D, Morelli C, Garofalo C, Romeo F, Morabito L, Casaburi F, et al. Expression of nuclear insulin receptor substrate 1 (IRS-1) in breast cancer. J Clin Pathol. 2006;60:633–41.PubMedCrossRef Sisci D, Morelli C, Garofalo C, Romeo F, Morabito L, Casaburi F, et al. Expression of nuclear insulin receptor substrate 1 (IRS-1) in breast cancer. J Clin Pathol. 2006;60:633–41.PubMedCrossRef
76.
Zurück zum Zitat McGettrick AJ, Feener EP, Kahn CR. Human insulin receptor substrate-1 (IRS-1) polymorphism G972R causes IRS-1 to associate with the insulin receptor and inhibit receptor autophosphorylation. J Biol Chem. 2005;280(8):6441–6. doi:10.1074/jbc.M412300200.PubMedCrossRef McGettrick AJ, Feener EP, Kahn CR. Human insulin receptor substrate-1 (IRS-1) polymorphism G972R causes IRS-1 to associate with the insulin receptor and inhibit receptor autophosphorylation. J Biol Chem. 2005;280(8):6441–6. doi:10.​1074/​jbc.​M412300200.PubMedCrossRef
77.
Zurück zum Zitat Slattery ML, Sweeney C, Wolff R, Herrick J, Baumgartner K, Giuliano A, et al. Genetic variation in IGF1, IGFBP3, IRS1, IRS2 and risk of breast cancer in women living in Southwestern United States. Breast Cancer Res Treat. 2007;104(2):197–209. doi:10.1007/s10549-006-9403-9.PubMedCrossRef Slattery ML, Sweeney C, Wolff R, Herrick J, Baumgartner K, Giuliano A, et al. Genetic variation in IGF1, IGFBP3, IRS1, IRS2 and risk of breast cancer in women living in Southwestern United States. Breast Cancer Res Treat. 2007;104(2):197–209. doi:10.​1007/​s10549-006-9403-9.PubMedCrossRef
79.
80.
Zurück zum Zitat Boyd NF, Dite GS, Stone J, Gunasekara A, English DR, McCredie MR, et al. Heritability of mammographic density, a risk factor for breast cancer. N Engl J Med. 2002;347(12):886–94. doi:10.1056/NEJMoa013390.PubMedCrossRef Boyd NF, Dite GS, Stone J, Gunasekara A, English DR, McCredie MR, et al. Heritability of mammographic density, a risk factor for breast cancer. N Engl J Med. 2002;347(12):886–94. doi:10.​1056/​NEJMoa013390.PubMedCrossRef
81.
Zurück zum Zitat Diorio C, Brisson J, Berube S, Pollak M. Genetic polymorphisms involved in insulin-like growth factor (IGF) pathway in relation to mammographic breast density and IGF levels. Cancer Epidemiol Biomark Prev. 2008;17(4):880–8. doi:10.1158/1055-9965.EPI-07-2500.CrossRef Diorio C, Brisson J, Berube S, Pollak M. Genetic polymorphisms involved in insulin-like growth factor (IGF) pathway in relation to mammographic breast density and IGF levels. Cancer Epidemiol Biomark Prev. 2008;17(4):880–8. doi:10.​1158/​1055-9965.​EPI-07-2500.CrossRef
82.
Zurück zum Zitat Fan J, McKean-Cowdin R, Bernstein L, Stanczyk FZ, Li AX, Ballard-Barbash R, et al. An association between a common variant (G972R) in the IRS-1 gene and sex hormone levels in post-menopausal breast cancer survivors. Breast Cancer Res Treat. 2006;99(3):323–31. doi:10.1007/s10549-006-9211-2.PubMedCrossRef Fan J, McKean-Cowdin R, Bernstein L, Stanczyk FZ, Li AX, Ballard-Barbash R, et al. An association between a common variant (G972R) in the IRS-1 gene and sex hormone levels in post-menopausal breast cancer survivors. Breast Cancer Res Treat. 2006;99(3):323–31. doi:10.​1007/​s10549-006-9211-2.PubMedCrossRef
83.
Zurück zum Zitat Feigelson HS, Teras LR, Diver WR, Tang W, Patel AV, Stevens VL, et al. Genetic variation in candidate obesity genes ADRB2, ADRB3, GHRL, HSD11B1, IRS1, IRS2, and SHC1 and risk for breast cancer in the Cancer Prevention Study II. Breast Cancer Res. 2008;10(4):R57. doi:10.1186/bcr2114.PubMedCrossRef Feigelson HS, Teras LR, Diver WR, Tang W, Patel AV, Stevens VL, et al. Genetic variation in candidate obesity genes ADRB2, ADRB3, GHRL, HSD11B1, IRS1, IRS2, and SHC1 and risk for breast cancer in the Cancer Prevention Study II. Breast Cancer Res. 2008;10(4):R57. doi:10.​1186/​bcr2114.PubMedCrossRef
Metadaten
Titel
Insulin Receptor Substrates (IRSs) and Breast Tumorigenesis
verfasst von
Bonita Tak-Yee Chan
Adrian V. Lee
Publikationsdatum
01.12.2008
Verlag
Springer US
Erschienen in
Journal of Mammary Gland Biology and Neoplasia / Ausgabe 4/2008
Print ISSN: 1083-3021
Elektronische ISSN: 1573-7039
DOI
https://doi.org/10.1007/s10911-008-9101-9

Weitere Artikel der Ausgabe 4/2008

Journal of Mammary Gland Biology and Neoplasia 4/2008 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.