Skip to main content
Erschienen in: BMC Urology 1/2017

Open Access 01.12.2017 | Research article

Intraoperative and postoperative feasibility and safety of total tubeless, tubeless, small-bore tube, and standard percutaneous nephrolithotomy: a systematic review and network meta-analysis of 16 randomized controlled trials

verfasst von: Joo Yong Lee, Seong Uk Jeh, Man Deuk Kim, Dong Hyuk Kang, Jong Kyou Kwon, Won Sik Ham, Young Deuk Choi, Kang Su Cho

Erschienen in: BMC Urology | Ausgabe 1/2017

Abstract

Background

Percutaneous nephrolithotomy (PCNL) is performed to treat relatively large renal stones. Recent publications indicate that tubeless and total tubeless (stentless) PCNL is safe in selected patients. We performed a systematic review and network meta-analysis to evaluate the feasibility and safety of different PCNL procedures, including total tubeless, tubeless with stent, small-bore tube, and large-bore tube PCNLs.

Methods

PubMed, Cochrane Central Register of Controlled Trials, and EMBASE™ databases were searched to identify randomized controlled trials published before December 30, 2013. One researcher examined all titles and abstracts found by the searches. Two investigators independently evaluated the full-text articles to determine whether those met the inclusion criteria. Qualities of included studies were rated with Cochrane’s risk-of-bias assessment tool.

Results

Sixteen studies were included in the final syntheses including pairwise and network meta-analyses. Operation time, pain scores, and transfusion rates were not significantly different between PCNL procedures. Network meta-analyses demonstrated that for hemoglobin changes, total tubeless PCNL may be superior to standard PCNL (mean difference [MD] 0.65, 95% CI 0.14–1.13) and tubeless PCNLs with stent (MD -1.14, 95% CI -1.65–-0.62), and small-bore PCNL may be superior to tubeless PCNL with stent (MD 1.30, 95% CI 0.27–2.26). Network meta-analyses also showed that for length of hospital stay, total tubeless (MD 1.33, 95% CI 0.23–2.43) and tubeless PCNLs with stent (MD 0.99, 95% CI 0.19–1.79) may be superior to standard PCNL. In rank probability tests, small-bore tube and total tubeless PCNLs were superior for operation time, pain scores, and hemoglobin changes.

Conclusions

For hemoglobin changes, total tubeless and small-bore PCNLs may be superior to other methods. For hospital stay, total tubeless and tubeless PCNLs with stent may be superior to other procedures.
Abkürzungen
PCNL
Percutaneous nephrolithotomy
RCT
Randomized controlled trial
VAS
Visual analogue scale

Background

Urinary stone is one of the most prevalent urological disorders. Reports suggest that up to 12% of people will suffer from urinary tract calculi during their lifetime, and the rates of recurrence is close to 50% [1]. There are several treatment modalities for renal stones, including observation expecting spontaneous passage, extracorporeal shock wave lithotripsy (ESWL), percutaneous nephrolithotomy (PCNL), and retrograde intrarenal surgery (RIRS) using flexible ureterorenoscope [2]. PCNL is currently the standard treatment for large renal stones considered too large for or refractory to shock wave lithotripsy [3, 4]. Conventionally, a 20-24 French nephrostomy catheter is placed routinely after PCNL to provide urine drainage, prevent extravasation of urine, and make tamponade against bleeding [5, 6]. In addition, it can be used as a tract for a second-look PCNL [7]. The need for placing a conventional large-bore nephrostomy catheter has been questioned because of its accompanying increase in postoperative discomfort and other morbidity, and the low incidence of second-look operations [8, 9]. In recent years, tubeless or small-bore PCNL has been widely used, and previously reported systematic reviews have demonstrated the safety and efficacy in these techniques.
The recently introduced network meta-analysis is a meta-analysis in which multiple treatments are compared using both direct comparisons of interventions within randomized controlled trials (RCTs), and indirect comparisons across trials based on a common comparator [1014]. Thus, we performed a systematic review and network meta-analysis based on published relevant studies to evaluate the feasibility and safety of each PCNL procedure, including total tubeless, tubeless with stent, small-bore tube, and large-bore tube PCNLs, for the treatment of renal stones.

Methods

Inclusion and exclusion criteria

Reported RCTs that fitted the following criteria were selected: (i) a design of each study that involved comparing the feasibility and safety for least two PCNL procedures, including total tubeless, tubeless with stent, small-bore tube, and large-bore tube PCNLs; (ii) the study groups were matched for baseline characteristics, including the total number of subjects and the values of each variable; (iii) at least one of the following outcomes was assessed: operation time, hospital stay length, hemoglobin decrease, return to normal activity, and complication rate; and (iv) the full text of each study was accessible and written in English.
The exclusion criteria were as follows: (i) noncomparative studies; (ii) the trial included children; and (iii) the trial did not exclude patients who underwent bilateral simultaneous PCNL or had complete or partial staghorn stones, more than two nephrostomy tracts, anatomical anomalies, or urinary infection. This report was prepared in compliance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement (accessible at http://​www.​prisma-statement.​org/​) [15].

Search strategy

A literature search was performed to identify RCTS published prior to December 30, 2013 in PubMed, the Cochrane Central Register of Controlled Trials, and EMBASE™ online databases. A cross-reference search of eligible articles was performed to identify additional studies not found by the computerized search. Combinations of the following MeSH and key words were used: percutaneous nephrolithotomy or nephrostomy or percutaneous nephrostomy or nephrolithiasis or PCNL or PCN or PNL, and total tubeless or tubeless or nephrostomy free.

Data extraction

One researcher (J.Y.L.) screened the title and abstract of all articles retrieved using the search strategy. The other two investigators (D.H.K. and H.L.) independently assessed the full text of the articles to determine whether they met the inclusion criteria. For each included study, the following data were extracted independently as follows; authors, date, demographics of included patients, PCNL methods, feasibility, efficacy outcomes, complications, and inclusion of a reference standard. Disagreements arising in the study selection and data extraction processes were resolved by discussion until a consensus was reached or by arbitration employing another researcher (K.S.C.).

Study quality assessment

Once the final group of articles was agreed upon, two researchers (J.Y.L. and D.H.K.) independently examined the quality of each article using the Cochrane’s risk-of-bias as a quality assessment tool for RCTs. The assessment involves the assignment of a “yes,” “no,” or “unclear” rating for each domain, designating a low, high, or unclear risk of bias, respectively. If ≤1 domain was rated “unclear” or “no,” the study was classified as having a low risk of bias. If ≥4 domains were rated “unclear” or “no,” the study was classified as having a high risk of bias. If 2 or 3 domains were rated “unclear” or “no,” the study was classified as having a moderate risk of bias. [16]. Quality assessment was performed using Review Manager 5.2 (RevMan 5.2.11, Cochrane Collaboration, Oxford, UK).

Statistical analyses

Each outcome variable at specific time-points was compared by network meta-analysis using the odds ratio (OR) or mean difference (MD) with 95% confidence interval (CI). A random-effect model was used. Each analysis was based on non-informative priors for effect size and precision. Convergence and lack of auto-correlation were checked and confirmed after four chains and a 50,000-simulation burn-in phase, and direct probability statements were based on an additional 100,000-simulation phase. Calculation of the probability that each group had the lowest rate of clinical events was performed using Bayesian Markov Chain Monte Carlo modeling. Sensitivity analyses were performed by repeating the main computations using a fixed-effect method. Model fit was appraised by computing and comparing estimates for deviance and deviance information criterion. Pairwise inconsistency and inconsistency between direct and indirect effect estimates were assessed with the I2-statistic, with values <25%, 25% to 50%, and >50% representing mild, moderate, and severe inconsistency, respectively. The extent of small study effects/publication bias was assessed by visual inspection of funnel plots for the pairwise meta-analyses. All statistical analyses were performed using Review Manager 5 and R (R version 3.0.3, R Foundation for Statistical Computing, Vienna, Austria; http://​www.​r-project.​org) [17], and its meta, forestplot, gemtc, and R2WinBUGS packages for pairwise and network meta-analyses using Bayesian Markov Chain Monte Carlo modeling.

Results

Eligible studies

Our database search identified 43 studies that could be potentially included in the meta-analysis. Based on the inclusion and exclusion criteria, 18 articles were excluded during screening of the titles and abstracts because they were retrospective studies (11 articles) or case series (7 articles). This left 25 RCTS that evaluated various types of PCNL procedures for renal stones. After reviewing the full-text articles for these studies, 9 were excluded because they reported irrelevant results. Therefore, 16 RCTs were ultimately included in the qualitative analysis, as well as the quantitative synthesis using pairwise and network meta-analyses (Fig. 1).
There were differences in procedures among the included studies. Five studies included comparisons between standard and total tubeless PCNLs, and five RCTs also compared standard and tubeless PCNLs. Four trials reported on various factors in small-bore and tubeless PCNLs. In two studies, the results of three arms—standard, small-bore, and tubeless PCNLs—were published (Table 1). Finally, the included studies covered four different PCNL procedures: total tubeless, tubeless, standard and small-bore PCNLs (Fig. 2).
Table 1
Characteristics of included trials
Study
Year
Design
Procedures
Sample size
Age (year)
Stone burden
Tube
Stone-free rate
Quality assessment
Size
P-value
(%)
P-value
Chang et al. [41].
2011
RCT
Standard
63
58.7
24.86 ± 2.78 mm
0.722
20 Fr (7 Fr)
75%
0.51
Low
Total tubeless
68
59.2
24.74 ± 2.69 mm
 
None
74%
  
Aghamir et al. [42].
2011
RCT
Standard
35
40
2.87 ± 0.62 cm2
0.66
NA
83%
NA
Low
Total tubeless
35
38.4
2.81 ± 0.59 cm2
 
None
86%
  
Kara et al. [43].
2010
RCT
Standard
30
66.5
25.6 mm
NA
18 Fr
90%
>0.05
Low
Total tubeless
30
67.7
22.3 mm
 
None
96%
  
Mishra et al. [44].
2010
RCT
Standard
11
42.5
2737 μL
0.18
20 Fr
81.8%
0.14
Low
Tubeless
11
42.3
2934.2 μL
 
None (6 Fr)
72.7%
  
Istanbulluoglu et al. [45].
2009
RCT
Standard
45
43.9
432.35 ± 195.97 mm2
0.46
14 Fr
NA
NA
Low
Total tubeless
45
47.5
448.93 ± 249.13 mm2
 
None
NA
  
Crook et al. [46].
2008
RCT
Standard
25
53
17.5 mm
NA
26 Fr
84%
NA
Low
Total tubeless
25
52
21.6 mm
 
None
96%
  
Agrawal et al. [47].
2008
RCT
Standard
101
31
NA
NA
16 Fr
100%
Low
Tubeless
101
33
NA
 
None (6 Fr)
100%
  
Singh et al. [48].
2008
RCT
Standard
30
34
800 mm2
>0.05
22 Fr
93.3%
0.64
Moderate
Tubeless
30
31
750 mm2
 
None (NA)
90%
  
Shah et al. [18].
2008
RCT
Small-bore tube
32
46.7
495.92 mm2
0.88
8Fr
87.5%
0.96
Low
Tubeless
33
44.1
535.36 mm2
 
None (6 Fr)
87.9%
  
Sofikerim et al. [35].
2007
RCT
Standard
24
54.1
425 mm2
NA
24 Fr or 18 Fr
85% (24 Fr),
0.71
Moderate
Tubeless
24
47.8
428 mm2
 
None (6 Fr)
83% (18 Fr), 79%
  
Tefekli et al. [49].
2007
RCT
Standard
18
41.32
3.1 cm
NA
14 Fr
89%
>0.05
Moderate
Tubeless
17
38.4
2.8 cm
 
None (NA)
94%
  
Weiland et al. [50].
2007
RCT
Small-bore tube
9
65
6.7 cm2
0.15
8.3 Fr
  
Moderate
Tubeless
9
54
3.2 cm2
 
None (8.2 Fr)
   
Choi et al. [32].
2006
RCT
Small-bore tube
12
47
32.41 mm
0.77
8.2 Fr
91.7%
0.64
High
Tubeless
12
52.9
28.5 mm
 
None (6 Fr)
100%
  
Desai et al. [51].
2004
RCT
Standard
10
43.4
263.7 mm2
>0.05
20 Fr
100%
Moderate
Small-bore tube
10
44.8
243 mm2
 
9 Fr
100%
  
Tubeless
10
41.1
249.1 mm2
 
None (6 Fr)
100%
  
Marcovich et al. [52].
2004
RCT
Standard
20
58
3.6 cm
0.64
24 Fr
 
0.63
Moderate
Small-bore tube
20
61
3 cm
 
8 Fr
   
Tubeless
20
57
3.4 cm
 
None (NA)
   
Feng et al. [53].
2001
RCT
Standard
10
53
8.4 cm3
0.75
22 Fr
31.5%
NA
Moderate
Tubeless
8
62
4.4 cm3
 
None (NA)
71.4%
  
NA not applicable, RCT randomized controlled trial

Quality assessment and publication bias

Figures 3 and 4 present the details of quality assessment, as measured by the Cochrane Collaboration risk-of-bias tool. Seven trials exhibited a moderate risk of bias for all quality criteria and only one study was classified as having a high risk of bias (Table 1). For operation time, hemoglobin change, and transfusion rate, little evidence of publication bias was demonstrated on funnel plots; however, for the visual analogue scale (VAS) pain score and hospital stay, moderate evidence of publication bias was demonstrated on these plots (Fig. 5).

Operation time

During the pairwise meta-analysis of operation time between standard and total tubeless PCNLs, there was a significant degree of heterogeneity among these studies, and data were pooled with a random effects model (P = 0.04, I2 = 69%). There was no statistically significant difference in operation time between standard and total tubeless PCNLs, although the MD was 6.19 (95% CI -0.14 to 12.52) (Fig. 6a). Between standard and tubeless PCNLs with stent, the MD also demonstrated no statistical difference (MD 7.43, 95% CI -1.70 to 16.57) (Fig. 6b). Likewise, the MDs did not exhibit statistically significant differences for standard versus small-bore PCNLs (MD -1.0, 95% CI -11.93 to 9.93) or tubeless versus small-bore PCNLs (MD 0.86, 95% CI -7.95 to 9.68) (Fig. 6c). Using network meta-analysis, there were no significant differences among all procedures (Fig. 7a) (Table 2), although total tubeless and small-bore PCNLs had higher rank probabilities than the other procedures (Fig. 8a).
Table 2
Results of network and pairwise meta-analyses comparing procedures for operation time, visual analogue scale pain score, hemoglobin change, and hospital stay
Procedures
Network meta-analysis
Pairwise meta-analysis
Mean difference
95% CI
Mean difference
95% CI
Operation time
 Standard
  Total tubeless
6.11
−3.14 – 17.02
6.19a
−0.14 – 12.52
  Tubeless
6.28
−2.71 – 17.06
7.43a
−1.70 – 16.57
  Small-bore tube
7.09
−6.03 – 20.95
NA
 
 Total tubeless
  Tubeless
0.08
−13.60 – 14.27
NA
 
  Small-bore tube
0.95
−16.46 – 17.52
NA
 
 Tubeless
  Small-bore tube
0.80
−14.27 – 13.60
0.86b
−7.95 – 9.68
Visual analogue scale pain score
 Standard
  Total tubeless
1.25
−2.80 – 5.22
NA
 
  Tubeless
1.20
−0.75 – 3.14
0.06a
−0.56 – 0.69
  Small-bore tube
2.00
−1.03 – 5.14
NA
 
 Total tubeless
  Tubeless
−0.07
−4.58 – 4.41
NA
 
  Small-bore tube
0.75
−4.37 – 5.89
NA
 
 Tubeless
  Small-bore tube
0.80
−1.51 – 3.24
1.21a
−0.02 – 2.44
Hemoglobin change
 Standard
  Total tubeless
0.65
0.14 – 1.13
0.23a
−0.12 – 0.58
  Tubeless
−0.48
−0.87 – −0.09
-0.29a
−0.53 – −0.05
  Small-bore tube
0.73
−0.21 – 1.60
NA
 
 Total tubeless
  Tubeless
−1.14
−1.65 – −0.62
NA
 
  Small-bore tube
0.06
−0.76 – 0.92
NA
 
Tubeless
  Small-bore tube
1.30
0.27 – 2.26
−0.02a
−1.13 – 1.10
Hospital stay
 Standard
  Total tubeless
1.33
0.23 – 2.43
1.42b
1.10 – 1.75
  Tubeless
0.99
0.19 – 1.79
0.54a
−1.03 – 2.11
  Small-bore tube
0.73
−0.57 – 1.98
NA
 
 Total tubeless
  Tubeless
−0.33
−1.71 – 1.04
NA
 
  Small-bore tube
−0.60
−2.29 – 1.08
NA
 
 Tubeless
  Small-bore tube
−0.28
−1.39 – 0.83
0.06a
−0.56 – 0.69
CI confidence interval, NA not applicable
aRandom-effect model with inverse variance method
bFixed-effect model with inverse variance method

Visual analogue scale pain score

In the pairwise meta-analysis of VAS pain scores, there was a significant degree of heterogeneity among studies and the data were pooled with a random effects model. There were no statistically significant differences comparing standard versus total tubeless PCNLs with stent (MD 0.06, 95% CI -0.56 to 0.69, P = 0.84) (Fig. 9a) or tubeless versus small-bore PCNLs (MD 1.21, 95% CI -0.02 to 2.44, P = 0.05) (Fig. 9b). In the network meta-analysis, there were no statistically significant differences among all procedures for VAS pain scores (Fig. 7b) (Table 2), although the rank probabilities demonstrated that small-bore and total tubeless PCNLs may be superior to the other procedures (Fig. 8b).

Hemoglobin change

Using pairwise meta-analysis for hemoglobin change, three comparisons, including standard versus total tubeless PCNLs, standard versus tubeless PCNLs with stent, and tubeless versus small-bore PCNLs, were examined (Fig. 10). Only one comparison for standard versus tubeless PCNLs with stent showed a statistically significant difference (MD -0.29, 95% CI -0.53 to −0.05, P = 0.02) (Fig. 10b). Network meta-analysis demonstrated that total tubeless PCNL may be superior to standard PCNL (MD 0.65, 95% CI 0.14 to 1.13). Total tubeless (MD -1.14, 95% CI -1.65 to −0.62), and small-bore PCNLs (MD 1.30, 95% CI 0.27 to 2.26) were also superior to tubeless PCNL with stent for hemoglobin change (Fig. 7c) (Table 2). In rank probabilities, total tubeless and small-bore PCNLs were ranked higher than the other procedures (Fig. 8c).

Hospital stay

The length of hospital stay in patients who underwent total tubeless PCNL was shorter than for those who underwent standard PCNL (MD 1.42, 95% CI 1.10 to 1.75, P < 0.01) during pairwise meta-analysis (Fig. 11). Network meta-analysis also demonstrated that total tubeless (MD 1.33, 95% CI 0.23 to 2.43) and tubeless PCNLs with stent (MD 0.99, 95% CI 0.19 to 1.79) may be superior to standard PCNL, producing a shorter hospital stay (Fig. 7d). However, there was no significant difference between total tubeless and tubeless PCNLs with stent (MD -0.33, 95% CI -1.71 to 1.04) (Table 2), although total tubeless PCNL showed the highest rank probability of all procedures (Fig. 8d).

Transfusion rate

The transfusion rate did not exhibit significant differences between any of the procedures during both pairwise analysis (Fig. 12) and network meta-analysis (Fig. 7e) (Table 3). Rank probabilities demonstrated that small-bore and tubeless PCNLs with stent may be superior to the other procedures (Fig. 8e).
Table 3
Results of network and pairwise meta-analyses comparing procedures for transfusion rate
Procedures
Network meta-analysis
Pairwise meta-analysisa
OR
95% CI
OR
95% CI
Standard
 Total tubeless
1.27
0.35–4.40
1.17
0.41–3.30
 Tubeless
2.94
0.73–14.06
3.79
0.75–19.20
 Small-bore tube
2.76
0.46–24.52
NA
 
Total tubeless
 Tubeless
2.37
0.34–18.19
NA
 
 Small-bore tube
2.39
0.24–22.21
NA
 
Tubeless
 Small-bore tube
1.00
0.19–5.30
1.23
0.34–4.53
CI confidence interval, OR odds ratio
aFixed-effect model with Mantel-Haenszel method

Discussion

Conventionally, the placement of a nephrostomy tube after PCNL was considered a necessary safety option. However, the use of a nephrostomy tube has been associated with a prolonged hospital stay and more postoperative pain [18]. In 1997, Bellman et al. first reported the use of tubeless PCNL using a double-J ureteral stent and Council catheter [19]. They demonstrated that hospital length of stay, analgesia requirements, time to return to normal activities, and cost were significantly less with this procedure. Although the procedure gained popularity, tubeless PCNL with stent had two important problems: ureteral stent discomfort and loss of the advantages of a nephrostomy tube. Thus, some urologists used the approach of placing the smallest possible nephrostomy tube to minimize patient discomfort while maintaining access to the renal collecting system [20]. With the recent development of a high-density telescope, high-quality lithotripters, and radiological interventional techniques to embolize blood vessels, several investigators reported that tubeless and total tubeless (stentless) PCNL in selected patients was safe and associated with a reduced hospital length of stay and analgesic requirements.
The results of RCTs for each PCNL procedure have been reported, and previous systematic reviews and meta-analyses have been published. However, most of the studies reported in the previous meta-analyses compared standard PCNL versus tubeless PCNL with stent or standard PCNL versus total tubeless PCNL [2125]. Therefore, an integrated analysis of standard, small-bore tube, tubeless with stent, and total tubeless PCNLs has not yet been published.
In our study, using network meta-analysis, there were no significant differences in operation time for the four procedures. It is known that large stones increase operation time and complication rates [26, 27], and operation times vary depending on the size and characteristics of the stone.
We also detected no statistically significant differences between methods for the VAS pain scores. No significant differences were observed between standard versus total tubeless PCNLs and tubeless versus small-bore tube PCNLs not only during the network meta-analysis, but even during pairwise meta-analyses. Operation-related factors that may prolong pain after PCNL include the nephrostomy tube size [28] and stent discomfort caused by a double-J stent [29], but statistically significant differences between procedures were not observed. This finding is presumably due to the relatively small sample size (only eight studies reported the VAS pain scores), and the possibility of publication bias, as suggested by the asymmetric funnel plot (Fig. 5b). However, in the rank probability test of pain scores using Bayesian Markov Chain Monte Carlo modeling, small-bore tube PCNL was ranked highest, followed by the total tubeless PCNL and then tubeless PCNL with stent (Fig. 8b). Additional RCTs are necessary in the future to more definitively address this issue.
With regard to the hemoglobin changes, network meta-analysis showed that total tubeless and small-bore tube PCNLs were superior, and tubeless with stent PCNL was the worst. In addition, total tubeless and small-bore PCNLs showed similar superiority in the network meta-analysis and rank probability test (Fig. 8c). Considering that all enrolled studies were RCTs, the possibility of selection bias between patients who had total tubeless or small-bore tube PCNLs and other procedures should be relatively low. For tubeless PCNLs, the possibility of bleeding caused by ureteral stenting should be considered. In previous studies, hematuria accounted for 13.6% of early complications and 18.1% of late complications after tubeless PCNL with stent [29]. In contrast to the hemoglobin changes, transfusion rates were not different between the four procedures. This lack of difference is likely due to the development of high-quality surgical skills and patient monitoring approaches because of the popularity of PCNL procedures.
For the length of hospital stay, the total tubeless and tubeless PCNLs showed superiority. We assumed that this is because these methods do not require additional procedures, such as nephrostomy tube removal or tract revision.
During the rank probability for each variable, small-bore and tubeless PCNLs were ranked higher for operation time, VAS pain scores, and hemoglobin change. In addition, total tubeless PCNL was ranked highest for hospital stay and transfusion rate. Notably, total tubeless PCNL was ranked highest for each item. However, total tubeless PCNL has not been in widespread use, even considering the potential benefits of this approach, because of concerns that potentially fatal complications, such as massive bleeding without a nephrostomy tube in place, may occur [30]. Because omitting a nephrostomy catheter may potentially increase the risk of bleeding and serious complications, various methods have been used in an attempt to seal the tract. Milkahi and colleagues were the first to describe the instillation of the hemostatic agent Tiseel® into the nephrostomy tract [31]. However, they were unable to determine whether this diminished postoperative bleeding or urinary extravasation following tubeless PCNL. Choi et al. instilled gel matrix thrombin (Floseal®) into the tract whenever persistent bleeding was observed after omitting the nephrostomy catheter [32]. Okeke et al. explored cryoablation of the nephrostomy tract after tubeless PCNL, where they inserted a cryoprobe into the access tract and performed a 10-min freeze-thaw cycle at a temperature -20 °C. This method did not significantly affect the rate of delayed bleeding or urinary extravasation [33]. Recently, a randomized study by Cormio et al. showed that TachoSil® provided better tract control and a shorter hospital stay than nephrostomy tube placement, although it did not reduce pain or analgesic requirements [34].
Total tubeless PCNL is advocated by leading surgeons in the field of endourology. The future role of tubed PCNL will likely reside primarily in cases of severe intraoperative bleeding or major damage to the collecting system, and when there is the possibility of a second-look operation. However, some controversies remain about the feasibility and efficacy of tubeless PCNLs in certain clinical settings. In their prospective randomized study, Shoma et al. suggested that the tubeless approach might not be suitable for patients with chronic kidney disease or those who require a supracostal approach [30]. However, Shah et al. reported the successful use of a tubeless technique in a patient with chronic kidney disease. Likewise, Sofikerim et al. reported that tubeless PCNL is a safe and effective technique, even for supracostal access, and is associated with less postoperative pain and shorter hospital stay [35]. Resorlu et al. maintained that single or no nephrostomy drainage following multitract PCNL offered the potential advantages of decreased postoperative analgesic requirements and shorter hospital stay, without increasing the rate of complications [36].
A limitation of our study was that we did not perform subgroup analyses based on the size of the stone. We also did not compare success rates because the success rates were high in each study. In addition, there was some degree of publication bias. However, in the review of 48 articles from the Cochrane Database of Systematic Reviews performed by Sutton et al., publication or related biases were noted to be common within the sample of assessed meta-analyses, but did not affect the conclusions in most cases [37]. Additionally, the position of the patient during PCNL (prone or supine position) can influence the outcomes of a tubeless or not tubeless procedure. Anesthesiologists prefer the supine position because of better airway control during procedures. Another advantage of the supine position is that there is no need for position changes when performing additional endoscopic procedures, such as cystoscopic or ureteroscopic operations [38]. Endoscopic combined intrarenal surgery is also a novel way of performing PCNL in the supine position [39]. Better visualization with the procedure allows for correct puncture of the kidney, and thus, can improve the safety and feasibility of a tubeless or total tubeless procedure.
Despite these limitations and shortcomings, our study has the substantial advantage of including larger samples from each study than the previously conducted pairwise meta-analyses [40]. Moreover, this is the first study to use network meta-analysis to compare PCNL methods, which enhances the statistical confidence and overcomes the limitations of pairwise meta-analyses.

Conclusions

In comparing each procedure through network meta-analysis, total tubeless and small-bore PCNLs were superior in terms of hemoglobin change, and total tubeless and tubeless PCNLs were superior with regard to the length of hospital stay. These findings indicate that conventional PCNL can be replaced with other techniques, especially total tubeless PCNL, in selected patients.

Funding

This study was supported by a faculty research grant from the Yonsei University College of Medicine for 2014 (6-2014-0156).

Availability of data and materials

All the data supporting our findings is contained within the manuscript.
This study was exempted by the institutional review boards because of meta-analysis.
Not applicable.

Competing interests

All the authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Teichman JM. Clinical practice. Acute renal colic from ureteral calculus. N Engl J Med. 2004;350:684–93.CrossRefPubMed Teichman JM. Clinical practice. Acute renal colic from ureteral calculus. N Engl J Med. 2004;350:684–93.CrossRefPubMed
2.
Zurück zum Zitat Lee JW, Park J, Lee SB, Son H, Cho SY, Jeong H. Mini-percutaneous Nephrolithotomy vs Retrograde Intrarenal Surgery for Renal Stones Larger Than 10 mm: A Prospective Randomized Controlled Trial. Urology. 2015;86:873–7.CrossRefPubMed Lee JW, Park J, Lee SB, Son H, Cho SY, Jeong H. Mini-percutaneous Nephrolithotomy vs Retrograde Intrarenal Surgery for Renal Stones Larger Than 10 mm: A Prospective Randomized Controlled Trial. Urology. 2015;86:873–7.CrossRefPubMed
3.
Zurück zum Zitat Sivalingam S, Al-Essawi T, Hosking D. Percutaneous nephrolithotomy with retrograde nephrostomy access: a forgotten technique revisited. J Urol. 2013;189:1753–6.CrossRefPubMed Sivalingam S, Al-Essawi T, Hosking D. Percutaneous nephrolithotomy with retrograde nephrostomy access: a forgotten technique revisited. J Urol. 2013;189:1753–6.CrossRefPubMed
4.
Zurück zum Zitat Jung GH, Jung JH, Ahn TS, Lee JS, Cho SY, Jeong CW, et al. Comparison of retrograde intrarenal surgery versus a single-session percutaneous nephrolithotomy for lower-pole stones with a diameter of 15 to 30 mm: A propensity score-matching study. Korean J Urol. 2015;56:525–32.CrossRefPubMedPubMedCentral Jung GH, Jung JH, Ahn TS, Lee JS, Cho SY, Jeong CW, et al. Comparison of retrograde intrarenal surgery versus a single-session percutaneous nephrolithotomy for lower-pole stones with a diameter of 15 to 30 mm: A propensity score-matching study. Korean J Urol. 2015;56:525–32.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Istanbulluoglu MO, Cicek T, Ozturk B, Gonen M, Ozkardes H. Percutaneous nephrolithotomy: nephrostomy or tubeless or totally tubeless? Urology. 2010;75:1043–6.CrossRefPubMed Istanbulluoglu MO, Cicek T, Ozturk B, Gonen M, Ozkardes H. Percutaneous nephrolithotomy: nephrostomy or tubeless or totally tubeless? Urology. 2010;75:1043–6.CrossRefPubMed
6.
Zurück zum Zitat Paul EM, Marcovich R, Lee BR, Smith AD. Choosing the ideal nephrostomy tube. BJU Int. 2003;92:672–7.CrossRefPubMed Paul EM, Marcovich R, Lee BR, Smith AD. Choosing the ideal nephrostomy tube. BJU Int. 2003;92:672–7.CrossRefPubMed
7.
Zurück zum Zitat Shah HN, Kausik VB, Hegde SS, Shah JN, Bansal MB. Tubeless percutaneous nephrolithotomy: a prospective feasibility study and review of previous reports. BJU Int. 2005;96:879–83.CrossRefPubMed Shah HN, Kausik VB, Hegde SS, Shah JN, Bansal MB. Tubeless percutaneous nephrolithotomy: a prospective feasibility study and review of previous reports. BJU Int. 2005;96:879–83.CrossRefPubMed
8.
Zurück zum Zitat Akman T, Binbay M, Yuruk E, Sari E, Seyrek M, Kaba M, et al. Tubeless Procedure is Most Important Factor in Reducing Length of Hospitalization After Percutaneous Nephrolithotomy: Results of Univariable and Multivariable Models. Urology. 2011;77:299–304.CrossRefPubMed Akman T, Binbay M, Yuruk E, Sari E, Seyrek M, Kaba M, et al. Tubeless Procedure is Most Important Factor in Reducing Length of Hospitalization After Percutaneous Nephrolithotomy: Results of Univariable and Multivariable Models. Urology. 2011;77:299–304.CrossRefPubMed
9.
Zurück zum Zitat Li H, Zhang Z, Li H, Xing Y, Zhang G, Kong X. Ultrasonography-guided percutaneous nephrolithotomy for the treatment of urolithiasis in patients with scoliosis. Int Surg. 2012;97:182–8.CrossRefPubMedPubMedCentral Li H, Zhang Z, Li H, Xing Y, Zhang G, Kong X. Ultrasonography-guided percutaneous nephrolithotomy for the treatment of urolithiasis in patients with scoliosis. Int Surg. 2012;97:182–8.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Caldwell DM, Ades AE, Higgins JP. Simultaneous comparison of multiple treatments: combining direct and indirect evidence. BMJ. 2005;331:897–900.CrossRefPubMedPubMedCentral Caldwell DM, Ades AE, Higgins JP. Simultaneous comparison of multiple treatments: combining direct and indirect evidence. BMJ. 2005;331:897–900.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Mills EJ, Thorlund K, Ioannidis JP. Demystifying trial networks and network meta-analysis. BMJ. 2013;346:f2914.CrossRefPubMed Mills EJ, Thorlund K, Ioannidis JP. Demystifying trial networks and network meta-analysis. BMJ. 2013;346:f2914.CrossRefPubMed
12.
Zurück zum Zitat Yuan J, Zhang R, Yang Z, Lee J, Liu Y, Tian J, et al. Comparative effectiveness and safety of oral phosphodiesterase type 5 inhibitors for erectile dysfunction: a systematic review and network meta-analysis. Eur Urol. 2013;63:902–12.CrossRefPubMed Yuan J, Zhang R, Yang Z, Lee J, Liu Y, Tian J, et al. Comparative effectiveness and safety of oral phosphodiesterase type 5 inhibitors for erectile dysfunction: a systematic review and network meta-analysis. Eur Urol. 2013;63:902–12.CrossRefPubMed
13.
Zurück zum Zitat Kwon JK, Cho KS, Oh CK, Kang DH, Lee H, Ham WS, et al. The beneficial effect of alpha-blockers for ureteral stent-related discomfort: systematic review and network meta-analysis for alfuzosin versus tamsulosin versus placebo. BMC Urol. 2015;15:55.CrossRefPubMedPubMedCentral Kwon JK, Cho KS, Oh CK, Kang DH, Lee H, Ham WS, et al. The beneficial effect of alpha-blockers for ureteral stent-related discomfort: systematic review and network meta-analysis for alfuzosin versus tamsulosin versus placebo. BMC Urol. 2015;15:55.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Lee JY, Cho KS, Kang DH, Jung HD, Kwon JK, Oh CK, et al. A network meta-analysis of therapeutic outcomes after new image technology-assisted transurethral resection for non-muscle invasive bladder cancer: 5-aminolaevulinic acid fluorescence vs hexylaminolevulinate fluorescence vs narrow band imaging. BMC Cancer. 2015;15:566.CrossRefPubMedPubMedCentral Lee JY, Cho KS, Kang DH, Jung HD, Kwon JK, Oh CK, et al. A network meta-analysis of therapeutic outcomes after new image technology-assisted transurethral resection for non-muscle invasive bladder cancer: 5-aminolaevulinic acid fluorescence vs hexylaminolevulinate fluorescence vs narrow band imaging. BMC Cancer. 2015;15:566.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097.CrossRefPubMedPubMedCentral Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Chung JH, Lee SW. Assessing the quality of randomized controlled urological trials conducted by korean medical institutions. Korean J Urol. 2013;54:289–96.CrossRefPubMedPubMedCentral Chung JH, Lee SW. Assessing the quality of randomized controlled urological trials conducted by korean medical institutions. Korean J Urol. 2013;54:289–96.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat R Development Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2011. Accessed at www.R-project.org on 18 Mar 2013 R Development Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2011. Accessed at www.​R-project.​org on 18 Mar 2013
18.
Zurück zum Zitat Shah HN, Sodha HS, Khandkar AA, Kharodawala S, Hegde SS, Bansal MB. A randomized trial evaluating type of nephrostomy drainage after percutaneous nephrolithotomy: small bore v tubeless. J Endourol. 2008;22:1433–9.CrossRefPubMed Shah HN, Sodha HS, Khandkar AA, Kharodawala S, Hegde SS, Bansal MB. A randomized trial evaluating type of nephrostomy drainage after percutaneous nephrolithotomy: small bore v tubeless. J Endourol. 2008;22:1433–9.CrossRefPubMed
19.
Zurück zum Zitat Bellman GC, Davidoff R, Candela J, Gerspach J, Kurtz S, Stout L. Tubeless percutaneous renal surgery. J Urol. 1997;157:1578–82.CrossRefPubMed Bellman GC, Davidoff R, Candela J, Gerspach J, Kurtz S, Stout L. Tubeless percutaneous renal surgery. J Urol. 1997;157:1578–82.CrossRefPubMed
20.
Zurück zum Zitat Kim SC, Tinmouth WW, Kuo RL, Paterson RF, Lingeman JE. Using and choosing a nephrostomy tube after percutaneous nephrolithotomy for large or complex stone disease: a treatment strategy. J Endourol. 2005;19:348–52.CrossRefPubMed Kim SC, Tinmouth WW, Kuo RL, Paterson RF, Lingeman JE. Using and choosing a nephrostomy tube after percutaneous nephrolithotomy for large or complex stone disease: a treatment strategy. J Endourol. 2005;19:348–52.CrossRefPubMed
21.
Zurück zum Zitat Zhong Q, Zheng C, Mo J, Piao Y, Zhou Y, Jiang Q. Total tubeless versus standard percutaneous nephrolithotomy: a meta-analysis. J Endourol. 2013;27:420–6.CrossRefPubMed Zhong Q, Zheng C, Mo J, Piao Y, Zhou Y, Jiang Q. Total tubeless versus standard percutaneous nephrolithotomy: a meta-analysis. J Endourol. 2013;27:420–6.CrossRefPubMed
22.
Zurück zum Zitat Yuan H, Zheng S, Liu L, Han P, Wang J, Wei Q. The efficacy and safety of tubeless percutaneous nephrolithotomy: a systematic review and meta-analysis. Urol Res. 2011;39:401–10.CrossRefPubMed Yuan H, Zheng S, Liu L, Han P, Wang J, Wei Q. The efficacy and safety of tubeless percutaneous nephrolithotomy: a systematic review and meta-analysis. Urol Res. 2011;39:401–10.CrossRefPubMed
23.
Zurück zum Zitat Wang J, Zhao C, Zhang C, Fan X, Lin Y, Jiang Q. Tubeless vs standard percutaneous nephrolithotomy: a meta-analysis. BJU Int. 2012;109:918–24.CrossRefPubMed Wang J, Zhao C, Zhang C, Fan X, Lin Y, Jiang Q. Tubeless vs standard percutaneous nephrolithotomy: a meta-analysis. BJU Int. 2012;109:918–24.CrossRefPubMed
24.
Zurück zum Zitat Shen P, Liu Y, Wang J. Nephrostomy tube-free versus nephrostomy tube for renal drainage after percutaneous nephrolithotomy: a systematic review and meta-analysis. Urol Int. 2012;88:298–306.CrossRefPubMed Shen P, Liu Y, Wang J. Nephrostomy tube-free versus nephrostomy tube for renal drainage after percutaneous nephrolithotomy: a systematic review and meta-analysis. Urol Int. 2012;88:298–306.CrossRefPubMed
25.
Zurück zum Zitat Borges CF, Fregonesi A, Silva DC, Sasse AD. Systematic Review and Meta-Analysis of Nephrostomy Placement Versus Tubeless Percutaneous Nephrolithotomy. J Endourol. 2010;24:1739–46. Borges CF, Fregonesi A, Silva DC, Sasse AD. Systematic Review and Meta-Analysis of Nephrostomy Placement Versus Tubeless Percutaneous Nephrolithotomy. J Endourol. 2010;24:1739–46.
26.
Zurück zum Zitat Michel MS, Trojan L, Rassweiler JJ. Complications in percutaneous nephrolithotomy. Eur Urol. 2007;51:899–906. discussionCrossRefPubMed Michel MS, Trojan L, Rassweiler JJ. Complications in percutaneous nephrolithotomy. Eur Urol. 2007;51:899–906. discussionCrossRefPubMed
28.
Zurück zum Zitat Pietrow PK, Auge BK, Lallas CD, Santa-Cruz RW, Newman GE, Albala DM, et al. Pain after percutaneous nephrolithotomy: impact of nephrostomy tube size. J Endourol. 2003;17:411–4.CrossRefPubMed Pietrow PK, Auge BK, Lallas CD, Santa-Cruz RW, Newman GE, Albala DM, et al. Pain after percutaneous nephrolithotomy: impact of nephrostomy tube size. J Endourol. 2003;17:411–4.CrossRefPubMed
29.
Zurück zum Zitat Damiano R, Oliva A, Esposito C, De Sio M, Autorino R, D'Armiento M. Early and late complications of double pigtail ureteral stent. Urol Int. 2002;69:136–40.CrossRefPubMed Damiano R, Oliva A, Esposito C, De Sio M, Autorino R, D'Armiento M. Early and late complications of double pigtail ureteral stent. Urol Int. 2002;69:136–40.CrossRefPubMed
30.
Zurück zum Zitat Shoma AM, Elshal AM. Nephrostomy tube placement after percutaneous nephrolithotomy: critical evaluation through a prospective randomized study. Urology. 2012;79:771–6.CrossRefPubMed Shoma AM, Elshal AM. Nephrostomy tube placement after percutaneous nephrolithotomy: critical evaluation through a prospective randomized study. Urology. 2012;79:771–6.CrossRefPubMed
31.
Zurück zum Zitat Mikhail AA, Kaptein JS, Bellman GC. Use of fibrin glue in percutaneous nephrolithotomy. Urology. 2003;61:910–4. discussion 4CrossRefPubMed Mikhail AA, Kaptein JS, Bellman GC. Use of fibrin glue in percutaneous nephrolithotomy. Urology. 2003;61:910–4. discussion 4CrossRefPubMed
32.
Zurück zum Zitat Choi M, Brusky J, Weaver J, Amantia M, Bellman GC. Randomized trial comparing modified tubeless percutaneous nephrolithotomy with tailed stent with percutaneous nephrostomy with small-bore tube. J Endourol. 2006;20:766–70.CrossRefPubMed Choi M, Brusky J, Weaver J, Amantia M, Bellman GC. Randomized trial comparing modified tubeless percutaneous nephrolithotomy with tailed stent with percutaneous nephrostomy with small-bore tube. J Endourol. 2006;20:766–70.CrossRefPubMed
33.
Zurück zum Zitat Okeke Z, Lee BR. Small renal masses: the case for cryoablation. J Endourol. 2008;22:1921–3.CrossRefPubMed Okeke Z, Lee BR. Small renal masses: the case for cryoablation. J Endourol. 2008;22:1921–3.CrossRefPubMed
34.
Zurück zum Zitat Cormio L, Perrone A, Di Fino G, Ruocco N, De Siati M, de la Rosette J, et al. TachoSil((R)) sealed tubeless percutaneous nephrolithotomy to reduce urine leakage and bleeding: outcome of a randomized controlled study. J Urol. 2012;188:145–50.CrossRefPubMed Cormio L, Perrone A, Di Fino G, Ruocco N, De Siati M, de la Rosette J, et al. TachoSil((R)) sealed tubeless percutaneous nephrolithotomy to reduce urine leakage and bleeding: outcome of a randomized controlled study. J Urol. 2012;188:145–50.CrossRefPubMed
35.
Zurück zum Zitat Sofikerim M, Demirci D, Huri E, Ersekerci E, Karacagil M. Tubeless percutaneous nephrolithotomy: safe even in supracostal access. J Endourol. 2007;21:967–72.CrossRefPubMed Sofikerim M, Demirci D, Huri E, Ersekerci E, Karacagil M. Tubeless percutaneous nephrolithotomy: safe even in supracostal access. J Endourol. 2007;21:967–72.CrossRefPubMed
36.
Zurück zum Zitat Resorlu B, Kara C, Sahin E, Unsal A. Comparison of nephrostomy drainage types following percutaneous nephrolithotomy requiring multiple tracts: single tube versus multiple tubes versus tubeless. Urol Int. 2011;87:23–7.CrossRefPubMed Resorlu B, Kara C, Sahin E, Unsal A. Comparison of nephrostomy drainage types following percutaneous nephrolithotomy requiring multiple tracts: single tube versus multiple tubes versus tubeless. Urol Int. 2011;87:23–7.CrossRefPubMed
37.
Zurück zum Zitat Sutton AJ, Duval SJ, Tweedie RL, Abrams KR, Jones DR. Empirical assessment of effect of publication bias on meta-analyses. BMJ. 2000;320:1574–7.CrossRefPubMedPubMedCentral Sutton AJ, Duval SJ, Tweedie RL, Abrams KR, Jones DR. Empirical assessment of effect of publication bias on meta-analyses. BMJ. 2000;320:1574–7.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Chung DY, Lee JY, Kim KH, Choi JH, Cho KS. Feasibility and efficacy of intermediate-supine percutaneous nephrolithotomy: initial experience. Chonnam Med J. 2014;50:52–7.CrossRefPubMedPubMedCentral Chung DY, Lee JY, Kim KH, Choi JH, Cho KS. Feasibility and efficacy of intermediate-supine percutaneous nephrolithotomy: initial experience. Chonnam Med J. 2014;50:52–7.CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Cracco CM, Scoffone CM. ECIRS (Endoscopic Combined Intrarenal Surgery) in the Galdakao-modified supine Valdivia position: a new life for percutaneous surgery? World J Urol. 2011;29:821–7.CrossRefPubMed Cracco CM, Scoffone CM. ECIRS (Endoscopic Combined Intrarenal Surgery) in the Galdakao-modified supine Valdivia position: a new life for percutaneous surgery? World J Urol. 2011;29:821–7.CrossRefPubMed
40.
Zurück zum Zitat Li K, Lin T, Zhang C, Fan X, Xu K, Bi L, et al. Optimal frequency of shock wave lithotripsy in urolithiasis treatment: a systematic review and meta-analysis of randomized controlled trials. J Urol. 2013;190:1260–7.CrossRefPubMed Li K, Lin T, Zhang C, Fan X, Xu K, Bi L, et al. Optimal frequency of shock wave lithotripsy in urolithiasis treatment: a systematic review and meta-analysis of randomized controlled trials. J Urol. 2013;190:1260–7.CrossRefPubMed
41.
Zurück zum Zitat Chang CH, Wang CJ, Huang SW. Totally tubeless percutaneous nephrolithotomy: a prospective randomized controlled study. Urol Res. 2011;39:459–65.CrossRefPubMed Chang CH, Wang CJ, Huang SW. Totally tubeless percutaneous nephrolithotomy: a prospective randomized controlled study. Urol Res. 2011;39:459–65.CrossRefPubMed
42.
Zurück zum Zitat Aghamir SM, Modaresi SS, Aloosh M, Tajik A. Totally tubeless percutaneous nephrolithotomy for upper pole renal stone using subcostal access. J Endourol. 2011;25:583–6.CrossRefPubMed Aghamir SM, Modaresi SS, Aloosh M, Tajik A. Totally tubeless percutaneous nephrolithotomy for upper pole renal stone using subcostal access. J Endourol. 2011;25:583–6.CrossRefPubMed
43.
Zurück zum Zitat Kara C, Resorlu B, Bayindir M, Unsal A. A randomized comparison of totally tubeless and standard percutaneous nephrolithotomy in elderly patients. Urology. 2010;76:289–93.CrossRefPubMed Kara C, Resorlu B, Bayindir M, Unsal A. A randomized comparison of totally tubeless and standard percutaneous nephrolithotomy in elderly patients. Urology. 2010;76:289–93.CrossRefPubMed
44.
Zurück zum Zitat Mishra S, Sabnis RB, Kurien A, Ganpule A, Muthu V, Desai M. Questioning the wisdom of tubeless percutaneous nephrolithotomy (PCNL): a prospective randomized controlled study of early tube removal vs tubeless PCNL. BJU Int. 2010;106:1045–8. discussion 8–9CrossRefPubMed Mishra S, Sabnis RB, Kurien A, Ganpule A, Muthu V, Desai M. Questioning the wisdom of tubeless percutaneous nephrolithotomy (PCNL): a prospective randomized controlled study of early tube removal vs tubeless PCNL. BJU Int. 2010;106:1045–8. discussion 8–9CrossRefPubMed
45.
Zurück zum Zitat Istanbulluoglu MO, Ozturk B, Gonen M, Cicek T, Ozkardes H. Effectiveness of totally tubeless percutaneous nephrolithotomy in selected patients: a prospective randomized study. Int Urol Nephrol. 2009;41:541–5.CrossRefPubMed Istanbulluoglu MO, Ozturk B, Gonen M, Cicek T, Ozkardes H. Effectiveness of totally tubeless percutaneous nephrolithotomy in selected patients: a prospective randomized study. Int Urol Nephrol. 2009;41:541–5.CrossRefPubMed
46.
Zurück zum Zitat Crook TJ, Lockyer CR, Keoghane SR, Walmsley BH. A randomized controlled trial of nephrostomy placement versus tubeless percutaneous nephrolithotomy. J Urol. 2008;180:612–4.CrossRefPubMed Crook TJ, Lockyer CR, Keoghane SR, Walmsley BH. A randomized controlled trial of nephrostomy placement versus tubeless percutaneous nephrolithotomy. J Urol. 2008;180:612–4.CrossRefPubMed
47.
Zurück zum Zitat Agrawal MS, Agrawal M, Gupta A, Bansal S, Yadav A, Goyal J. A randomized comparison of tubeless and standard percutaneous nephrolithotomy. J Endourol. 2008;22:439–42.CrossRefPubMed Agrawal MS, Agrawal M, Gupta A, Bansal S, Yadav A, Goyal J. A randomized comparison of tubeless and standard percutaneous nephrolithotomy. J Endourol. 2008;22:439–42.CrossRefPubMed
48.
Zurück zum Zitat Singh I, Singh A, Mittal G. Tubeless percutaneous nephrolithotomy: is it really less morbid? J Endourol. 2008;22:427–34.CrossRefPubMed Singh I, Singh A, Mittal G. Tubeless percutaneous nephrolithotomy: is it really less morbid? J Endourol. 2008;22:427–34.CrossRefPubMed
49.
Zurück zum Zitat Tefekli A, Altunrende F, Tepeler K, Tas A, Aydin S, Muslumanoglu AY. Tubeless percutaneous nephrolithotomy in selected patients: a prospective randomized comparison. Int Urol Nephrol. 2007;39:57–63.CrossRefPubMed Tefekli A, Altunrende F, Tepeler K, Tas A, Aydin S, Muslumanoglu AY. Tubeless percutaneous nephrolithotomy in selected patients: a prospective randomized comparison. Int Urol Nephrol. 2007;39:57–63.CrossRefPubMed
50.
Zurück zum Zitat Weiland D, Pedro RN, Anderson JK, Best SL, Lee C, Hendlin K, et al. Randomized prospective evaluation of nephrostomy tube configuration: impact on postoperative pain. Int Braz J Urol. 2007;33:313–8. discussion 9–22CrossRefPubMed Weiland D, Pedro RN, Anderson JK, Best SL, Lee C, Hendlin K, et al. Randomized prospective evaluation of nephrostomy tube configuration: impact on postoperative pain. Int Braz J Urol. 2007;33:313–8. discussion 9–22CrossRefPubMed
51.
Zurück zum Zitat Desai MR, Kukreja RA, Desai MM, Mhaskar SS, Wani KA, Patel SH, et al. A prospective randomized comparison of type of nephrostomy drainage following percutaneous nephrostolithotomy: large bore versus small bore versus tubeless. J Urol. 2004;172:565–7.CrossRefPubMed Desai MR, Kukreja RA, Desai MM, Mhaskar SS, Wani KA, Patel SH, et al. A prospective randomized comparison of type of nephrostomy drainage following percutaneous nephrostolithotomy: large bore versus small bore versus tubeless. J Urol. 2004;172:565–7.CrossRefPubMed
52.
Zurück zum Zitat Marcovich R, Jacobson AI, Singh J, Shah D, El-Hakim A, Lee BR, et al. No panacea for drainage after percutaneous nephrolithotomy. J Endourol. 2004;18:743–7.CrossRefPubMed Marcovich R, Jacobson AI, Singh J, Shah D, El-Hakim A, Lee BR, et al. No panacea for drainage after percutaneous nephrolithotomy. J Endourol. 2004;18:743–7.CrossRefPubMed
53.
Zurück zum Zitat Feng MI, Tamaddon K, Mikhail A, Kaptein JS, Bellman GC. Prospective randomized study of various techniques of percutaneous nephrolithotomy. Urology. 2001;58:345–50.CrossRefPubMed Feng MI, Tamaddon K, Mikhail A, Kaptein JS, Bellman GC. Prospective randomized study of various techniques of percutaneous nephrolithotomy. Urology. 2001;58:345–50.CrossRefPubMed
Metadaten
Titel
Intraoperative and postoperative feasibility and safety of total tubeless, tubeless, small-bore tube, and standard percutaneous nephrolithotomy: a systematic review and network meta-analysis of 16 randomized controlled trials
verfasst von
Joo Yong Lee
Seong Uk Jeh
Man Deuk Kim
Dong Hyuk Kang
Jong Kyou Kwon
Won Sik Ham
Young Deuk Choi
Kang Su Cho
Publikationsdatum
01.12.2017
Verlag
BioMed Central
Erschienen in
BMC Urology / Ausgabe 1/2017
Elektronische ISSN: 1471-2490
DOI
https://doi.org/10.1186/s12894-017-0239-x

Weitere Artikel der Ausgabe 1/2017

BMC Urology 1/2017 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

Stufenschema weist Prostatakarzinom zuverlässig nach

22.04.2024 Prostatakarzinom Nachrichten

Erst PSA-Test, dann Kallikrein-Score, schließlich MRT und Biopsie – ein vierstufiges Screening-Schema kann die Zahl der unnötigen Prostatabiopsien erheblich reduzieren: Die Hälfte der Männer, die in einer finnischen Studie eine Biopsie benötigten, hatte einen hochgradigen Tumor.

Harnwegsinfektprophylaxe: Es geht auch ohne Antibiotika

20.04.2024 EAU 2024 Kongressbericht

Beim chronischen Harnwegsinfekt bei Frauen wird bisher meist eine Antibiotikaprophylaxe eingesetzt. Angesichts der zunehmenden Antibiotikaresistenz erweist sich das Antiseptikum Methenamin-Hippurat als vielversprechende Alternative, so die Auswertung einer randomisierten kontrollierten Studie.

Update Urologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.