Skip to main content
Erschienen in: BMC Nephrology 1/2014

Open Access 01.12.2014 | Review

Is the inflammasome a potential therapeutic target in renal disease?

verfasst von: Clare M Turner, Nishkantha Arulkumaran, Mervyn Singer, Robert J Unwin, Frederick WK Tam

Erschienen in: BMC Nephrology | Ausgabe 1/2014

Abstract

The inflammasome is a large, multiprotein complex that drives proinflammatory cytokine production in response to infection and tissue injury. Pattern recognition receptors that are either membrane bound or cytoplasmic trigger inflammasome assembly. These receptors sense danger signals including damage-associated molecular patterns and pathogen-associated molecular patterns (DAMPS and PAMPS respectively). The best-characterized inflammasome is the NLRP3 inflammasome. On assembly of the NLRP3 inflammasome, post-translational processing and secretion of pro-inflammatory cytokines IL-1β and IL-18 occurs; in addition, cell death may be mediated via caspase-1. Intrinsic renal cells express components of the inflammasome pathway. This is most prominent in tubular epithelial cells and, to a lesser degree, in glomeruli. Several primary renal diseases and systemic diseases affecting the kidney are associated with NLRP3 inflammasome/IL-1β/IL-18 axis activation. Most of the disorders studied have been acute inflammatory diseases. The disease spectrum includes ureteric obstruction, ischaemia reperfusion injury, glomerulonephritis, sepsis, hypoxia, glycerol-induced renal failure, and crystal nephropathy. In addition to mediating renal disease, the IL-1/ IL-18 axis may also be responsible for development of CKD itself and its related complications, including vascular calcification and sepsis. Experimental models using genetic deletions and/or receptor antagonists/antiserum against the NLRP3 inflammasome pathway have shown decreased severity of disease. As such, the inflammasome is an attractive potential therapeutic target in a variety of renal diseases.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1471-2369-15-21) contains supplementary material, which is available to authorized users.

Competing interests

Clare M Turner
None declared
Nishkantha Arulkumaran
Wellcome Trust pre-doctoral training fellowship
Mervyn Singer
None declared
Robert J Unwin
Consultancy with AstraZeneca
Frederick Tam
Research project grants from Roche Palo Alto, AstraZeneca Limited, Cyclacel Limited and Baxter Biosciences
Consultancy for Roche Palo Alto and Baxter Biosciences

Authors' contributions

CT, NA, Writing manuscript, Figures, Tables. Writing manuscript, Tables. MS, RJU, FT, Editing manuscript. All authors read and approved the final manuscript.
Abkürzungen
AIM2
Absent in melanoma 2
ARF
Acute renal failure
BM
Bone marrow
CARD
Caspase recruitment domain
CPPD
Calcium pyrophosphate dehydrate
DAMP
Damage-associated molecular pattern
FIND
Domain with function to find
IFI16
Interferon-γ inducible protein 16
IL-1RA
Interleukin 1 receptor antagonist
LPS
Lipopolysaccharide
LRR
Leucine rich repeat
MDP
Muramyl dipeptide
MSU
Monosodium urate
NACHT
Nucleotide-binding and oligomerization domain
NAIP
NLR family apoptosis inhibitor
NLR
Nod-like receptor
NLRP3
Nod-like receptor protein 3
PAMP
Pathogen-associated molecular pattern
PRR
Pattern recognition receptor
PTEC
Proximal tubular epithelial cells
PYD
Pyrin domain
ROS
Reactive oxygen species
TEC
Tubular epithelial cell
TLR
Toll-like receptor.

Introduction

Inflammation is central to the pathogenesis of many renal diseases. The innate immune system, a first line defense against pathogens, is usually involved in the initiation and propagation of inflammation. It is activated by a series of germ-line encoded pattern recognition receptors (PRRs) that allow discrimination of ‘self’ from ‘non-self’ antigens. PRRs recognize conserved pathogen-associated molecular patterns (PAMPs) on invading organisms, or respond to host-derived danger-associated molecular patterns (DAMPs) released in response to stress, tissue injury, or cell death. Several classes of PRRs have been identified, including transmembrane Toll-like receptors (TLR), C-type lectin receptors (CLRs), the retinoic acid inducible gene-I (RIG-I) receptors, intracellular Nod-like receptors (NLRs), and the recently identified HIN-200 receptors [13]. Extracellular PAMPs and DAMPs are recognized by TLRs and CLRs, whereas NLRs and RIGs recognize intracellular molecular patterns (Table 1).
Table 1
Activators of the inflammasome
Sterile activators
Pathogen activators (PAMPS)
DAMPs
Environment derived
Bacteria derived
Virus-derived
Fungus-derived
Protozoa-derived
ATP
Alum
Pore-forming toxins
RNA
β-glucans
Hemozoin
Cholesterol crystals
Asbestos
Lethal toxin
M2 protein
Hyphae
MSU/CPPD crystals
Silica
Flagellin/rod proteins
 
Mannan
Glucose
Alloy particles
MDP
 
Zymosan
Amyloid β
UV radiation
RNA
Hyaluronian
Skin irritants
DNA
Activators of the inflammasome are divided into 2 categories: Sterile activators include host derived DAMPs and environment derived molecules, and pathogen activators include PAMPs derived from bacteria, virus, fungi and protozoa.
Abbreviations: CPPD Calcium pyrophosphate dehydrate, DAMP Damage-associated molecular pattern, MDP Muramyl dipeptide, MSU Monosodium urate, PAMP Pathogen associated molecular pattern.
PRRs are expressed primarily by innate immune cells, but also by endothelial and epithelial cells. The innate immune system is ‘primed’ by activation of PRRs by PAMPs or DAMPs, which leads to activation of numerous proinflammatory transcription factors, the best characterized being nuclear factor kappa-B (NF-κB) and activator protein-1 (AP-1), with subsequent transcription of multiple mediators (including cytokines and chemokines) and receptors.
A key mechanism responsible for the post-transcriptional processing and release of mature cytokines is formation of the inflammasome complex. The human genome encodes 23 NLR proteins broadly divided into NLRP (with a pyrin domain) and NLRC (with a caspase recruitment domain), a subset of which are capable of forming an inflammasome complex. This multiprotein cytosolic complex oligomerizes to provide a platform for processing and release of cytokines. Seven cytoplasmic receptors form an inflammasome complex: NLRP1 (NLR family, pyrin domain containing 1, also called NALP1), NLRP3 (also called NALP3 or cryopyrin), NLRP6, NLRP12, NLRC4 (NLR family, caspase recruitment domain (CARD) containing 4, also called IPAF), AIM2 (absent in melanoma-2), and RIG-1 (retinoic acid inducible gene 1). Of these receptors, the NLRP3 inflammasome is the best characterized.

Review

The NLRP3 inflammasome

This large multiprotein complex (>700 KDa) forms in response to diverse PAMPs, including lipopolysaccharide (LPS), peptidoglycan, bacterial DNA, viral RNA and fungi, and DAMPs such as monosodium urate crystals (MSU), calcium pyrophosphate dehydrate, cholesterol crystals, amyloid β, hyaluronan and, possibly, glucose [1] (Table 1).
Priming of the cell (signal 1) by activation of PRRs results in NFκB -dependent transcription of pro-IL-1β and upregulation of NLRP3. Assembly of the NLRP3 inflammasome relies on the adaptor molecule ASC (Apoptosis-associated Speck-like protein containing a C-terminal caspase recruitment domain (CARD)). The ASC protein is composed of PYD (N-terminal pyrin domain) and CARD domains. The N-terminus of NLRP3 also contains a PYD that mediates homotypic binding with ASC via a PYD-PYD interaction. Through its CARD, ASC interacts with procaspase-1 leading to autocatalytic activation of caspase-1. This results in processing of pro-IL-1β and pro-IL-18 to their active forms (IL-1β and IL-18) and their release (Figure 1).
The cell surface P2X7 receptor (P2X7R) facilitates assembly of the NLRP3 inflammasome [46]. ATP released into the extracellular milieu during inflammation is a potent stimulus for P2X7R activation [79]. This results in formation of an ion pore and K+ efflux, with reduction in intracellular K+, a key step in inflammasome activation [10]. Activation of P2X7R by LPS and ATP results in MyD88-dependent NFκB activation (signal 2), and transcription of pro-IL-1β [11]. Following LPS priming of monocytes, P2X7R activation stimulates NADPH oxidase generation of superoxide anions, thereby facilitating NLRP3 activation [12].

Other inflammasomes

NLRP1 was the first inflammasome to be described and is activated following cleavage by the lethal toxin from Bacillus anthracis[13]. The NLRP1 inflammasome has its own CARD, so can bypass the requirement of the adapter molecule ASC for inflammasome activation (Figure 2). Cleavage by the anthrax toxin directly activates CARD, leading to activation of caspase-1 [13]. An alternative mechanism of NLRP1 activation is by the toxin inhibiting p38 mitogen-activated protein kinase and Akt kinase, leading to opening of the connexion channel for ATP release, resulting in P2X7R signaling [14]. There are similarities with the mechanism of activation of the NLRP3 inflammasome.
A second class of inflammasomes contains members of the PYHIN family, rather than NLRs. These are characterised by N-terminal PYD and C-terminal HIN-200 (hemopoetic interferon-inducible nuclear antigen with 200 repeats) DNA binding domains. Examples include AIM2 and Interferon-γ inducible protein 16 (IFI16) inflammasomes. These lack a CARD domain and require ASC for recruitment of pro-caspase-1 to form a stable inflammasome complex. The PYD domain interacts with the PYD domain of ASC. Following detection of bacterial or viral dsDNA, AIM2 and IFI16 inflammasomes assemble with subsequent secretion of IL-1β and IL-18 [15], which is severely impaired in mice deficient in AIM2 that are highly susceptible to Mycobacterium tuberculosis infection [16]. AIM2 can recognise self-DNA, but this is limited under steady-state conditions because of its cytosolic location. In conditions where self-DNA is not cleared from the extracellular compartment, it is likely that DNA can activate AIM2 and drive inflammation. Of note, HIN-200 proteins are considered a candidate locus for susceptibility to lupus [17]. In contrast to AIM2, IFI16 is located within the nucleus; the mechanism by which it discriminates between self and viral DNA in the nucleus is currently unknown.
The NLRC4 inflammasome interacts directly with pro-caspase-1 via homotypic CARD interactions, leading to processing of caspase-1. This inflammasome complex plays an essential role in the innate immune response to the bacterial proteins flagellin and PrgJ [18]. Direct binding of NLRC4 with flagellin or PrgJ has not been shown; however, the proteins of the NAIP family (NLR family, apoptosis inhibitor) act as immune sensors that can interact with, and control, NLRC4 activation. The NAIP2-NLRC4 complex associates with PrgJ, while the NAIP5-NLRC4 complex associates with flagellin [19]. This suggests that distinct NAIP proteins allow the NLRC4 inflammasome to differentiate among different bacterial ligands.
The NLRP6 inflammasome associates with ASC, inducing caspase-dependent processing and release of IL-1β. At the mRNA level NLRP6 is highly expressed in mouse liver, kidney and small intestine, and plays a central role in modulating inflammatory responses in the gut to allow recovery from intestinal epithelial damage, tumorigenesis, and in controlling the composition of the gut microflora to prevent colonization by harmful bacteria [20, 21]. Data on NLRP6 and renal disease are limited and warrant further study.
The NLRP12 inflammasome is expressed in human myeloid cells. It acts as a negative regulator of inflammation by reducing NFκB activation and inhibiting chemokine expression through ATP hydrolysis [22]. NLRP12 also reduces NFκB activation by (i) TLR-signaling molecules MyD88, IRAK-1 (type I interleukin-1 receptor-associated protein kinase), and TRAF6 (TNF receptor (TNFR)-associated factor), and (ii) the TNFR signaling molecules TRAF2 and RIP1, but not the downstream NFκB subunit p65 [23]. NLRP12, like NLRP6, can contribute to the maintenance of intestinal epithelium, since mice deficient in NLRP12 are more susceptible to colonic inflammation and tumorigenesis [24].

Processing of IL-1α, IL-1β, IL-18, and caspase-1

IL-1 is a key cytokine in many inflammatory diseases. Activation of MAPK and NFκB signal transduction pathways is central to the diverse actions of IL-1, which include production and/or release of nitric oxide (NO), cyclooxygenase-2 (COX-2) and superoxide products, and other pro-inflammatory mediators [25, 26].
IL-1 has two biologically active isoforms, IL-1α and IL-1β, which bind to the same receptors [27, 28]. Both are produced as 31 kDa precursors that are stored within the cytosol. Pro-IL-1α is constitutively expressed, whereas pro-IL-1β is transcribed in response to an inflammatory or infectious stimulus [25]. Various inflammatory stimuli engage with the PRR receptors of immune cells, activating MAPK and/or NFκB signalling cascades, and resulting in the synthesis of pro-IL-1β from its pro-IL-1β precursor, which is also stored within the cytosol.
IL-1α release is typically described as being passive, as a consequence of non-apoptotic cell death [29]. IL-1α processing depends on calpain protease activity [30]. The activation of calpain-like may be NLRP3-inflammasome/caspase-1 dependent or independent, depending on the type of NLRP3 agonist [31]. Caspase-1 knockout cells are unable to secrete IL-1α in response to soluble NLRP3 stimuli while caspase inhibitors have no effect, suggesting that the catalytic activity of caspase-1 is not required [32]. This protease- independent function of caspase-1 in the release of IL-1α is not well established.
Although IL-1α has similar biological activity in its precursor and cleavage product forms; in contrast, IL-1β is only active after cleavage to its 17 kDa mature form. Caspase-1 is crucial for processing of intracellular pro-IL-1β, although extracellular pro-IL-1β can be processed by several proteases, including serine proteinase 3 and the metalloproteinases MMP-2 and MMP-9 [33, 34].
Caspase-1 is produced from the constitutively expressed 45 kDa cytoplasmic pro-enzyme, pro-caspase-1. This requires post-translational processing to form 20 and 10 kDa forms of active caspase-1 [34], and occurs following assembly of the NLRP3 inflammasome. Proteolytic activation of IL-1β occurs within the inflammasome complex. Mature IL-1β is released into the extracellular space by exocytosis or loss of membrane integrity [35].
Synthesis and release of IL-18 is closely linked to IL-1. IL-18 is a key mediator in the host response to infection and the inflammatory response [27, 36]. It is also constitutively produced as a precursor, pro-IL 18 [36], which is cleaved by either caspase-1 or proteinase-3 into its active form released into the extracellular space along with mature IL-1β.
Contact with a DAMP or PAMP (‘signal 1’) alone is insufficient for extracellular release of IL-1β and IL-18. An additional stimulus (‘signal 2’), mediated by a variety of ligands including extracellular ATP, nigericin, bacterial toxins, hypotonic stress and T cells, is usually required for the extracellular release of active IL-1β and IL-18. However, the best-established stimulus for this post-translational processing and release is ATP, acting via the P2X7R [33, 36].

Effects of IL-1α, IL-1β, IL-18

Il-1β has diverse functions relating to its unique ability to regulate inflammation at both the nuclear and membrane receptor levels. Unlike other cytokines, the effects of IL-1β on lymphocytes are largely indirect, mediated by the induction of gene expression and synthesis of cyclooxygenase-1 (COX-2), prostaglandin-E2, platelet activating factor, NO, and IL-6 [25, 26]. In turn, these mediators result in fever, vasodilation, hyperalgesia, and a repertoire of immune cell functions. IL-1α and IL-1β also act as co-stimulatory molecules of T cells with an antigen, and may contribute to T cell polarization (early Th17 differentiation in vivo and Th17-mediated autoimmunity) [37].
IL-1 induces angiogenesis via upregulation of VEGF. This mechanism is mediated primarily via the PI3-K/mTOR pathway in renal mesangial cells [38], and may be an important protective mechanism in ischemic injury. However, excessive IL-1 may be detrimental. IL-1β induces the expression of adhesion molecules, including intercellular adhesion molecule-1 and vascular cell adhesion molecule-1, on mesenchymal and endothelial cells [3942]. IL-1 knockout (KO) mice and antagonist-treated rats develop significantly less infiltration of polymorphonuclear leukocytes, and have less severe renal histological and biochemical derangement, in ischemia-reperfusion (I-R) injury [4345]. Deficiency or neutralization of IL-1 confers a similar protective effect in experimental glomerulonephritis (GN) [4648].
Excessive tissue destruction may be mediated in part by IL-1α. Unlike IL-1β, IL-1α is active in its precursor form. This active precursor is constitutively expressed in epithelial cells [49] and the inflammatory resulting from cell necrosis may be mediated by surface IL-1α [29]. Activity of IL-1α is controlled by endogenous expression of intracellular IL-1Ra, which prevents signal transduction [50], consistent with findings in a model of renal I-R injury: the number of apoptotic tubular cells was lower in IL-1RA-treated animals 24 h after ischemia, which was paralleled by a Bax/Bcl-2 mRNA ratio towards anti-apoptotic effects [45]. Biologically active IL-1α is also expressed on the membrane of monocytes and B-lymphocytes [51, 52]. In addition, the induction of many genes by IFN-gamma (INF-γ), including HLA-DR, ICAM-1, IL-18BP, and genes mediating its antiviral activity, depends on basal IL-1α but not IL-1β [53].
IL-18 (previously known as INF-γ inducing factor) is a member of the IL-1 cytokine family, with many properties distinguishing it from IL-1α and IL-1β. IL-18 is primarily expressed by macrophages and dendritic cells, but also by epithelial cells throughout the body [54, 55]. One of the key features of IL-18 is its ability to induce INF-γ production [55] and subsequent T cell polarization [56, 57]. IL-18 plays an important role in the TH1 response, primarily by its ability to induce IFN-γ production in T cells and natural killer cells [58]. Fas ligand-mediated cell death is also IL-18-dependent [59, 60], and IL-18 neutralization is associated with a reduction in renal tubular apoptosis in unilateral ureteric obstruction (UUO) and I-R injury [60, 61]. As well as to these distinguishing features, IL-18 also shares properties with other cytokines, including increases in cell adhesion molecules and chemokines, and NO synthesis [6265]. IL-18 deficiency or neutralization is associated with decreased immune cell infiltration and relatively preserved renal function in UUO, I-R injury, and GN [61, 6668].

Cell death and pyroptosis

Caspase-1 activation and subsequent production of IL-1β and IL-18 has a biphasic effect; low levels cause cytokine production but, above a certain threshold, can lead to pyroptosis [69]. This is a catastrophic form of cell death commonly found in monocytes, macrophages and dendritic cells, with morphological characteristics of apoptosis and necrosis. Cell lysis occurs due to caspase-1-dependent pore formation in the cell membrane, disruption of the cellular ionic gradient, osmotic driven water influx, and cell swelling [6, 7]. This leads to inflammasome activation, release of proinflammatory cytokines, damaged DNA, and metabolic enzymes and, ultimately, cellular disruption releasing other DAMPS. Release of mitochondria into the extracellular space results in discharge of ATP that acts as a DAMP.
An alternative mechanism of cell death relates to activation of the P2X7R. Here, irreversible pore formation allows the non-selective passage of ions and hydrophilic solutes of up to 900 Da, resulting in colloido-osmotic cell lysis [33]. P2X7R-induced shrinkage depends on K+ efflux via KCa3.1, a voltage-independent potassium channel activated by intracellular calcium, and a pathway of Cl- efflux distinct from that implicated previously in apoptosis [70].

Regulation of the inflammasome

Activation of the inflammasome results in a rapid and substantial inflammatory response. As such, the inflammasome is tightly regulated at both transcriptional and post-transcriptional levels. Basal expression of inflammasome components, in particular NLRP3, is relatively low [8]; pro-apoptotic pathways, such as FAS ligand-receptor interactions, are required to induce expression of ASC [9]. The subcellular location of inflammasome components facilitates its regulation. ASC is localized to the nucleus in quiescent cells, but it is recruited to the cytoplasm on cell activation [10].
Alternatively spliced inflammasome components generate protein variants with different activities. ASC has at least three different isoforms, one of which has an inhibitory effect on inflammasome activity [71]. Several proteins regulate inflammasome activity by sequestration of inflammasome components. Anti-apoptotic Bcl-2 proteins, including Bcl-2 and Bcl-xL, interact with NLRP1 to prevent ATP binding and inflammasome activation [12]. The pyrin-only proteins (POP) and the pyrin-containing NOD (PYNOD) proteins inhibit inflammasome formation via inhibition of NFκB and suppression of ASC, respectively [72, 73]. Other inhibitory proteins include COP (CARD only protein), INCA (inhibitory CARD), and ICEBERG all three proteins contain a CARD and they are believed to act as decoys inhibiting formation of an active inflammasome [74].

Drugs modulating the NLRP3 inflammasome /IL-1/IL-18 axis

Growing evidence suggests that the inflammasome and the IL-1β/IL-18 axis play an integral part in the pathogenesis of many acute and chronic conditions, including gout, rheumatoid arthritis, atherosclerosis, Alzheimer’s disease, diabetes mellitus, and, most recently, oxalate crystal nephropathy. Several components of the NLRP3 inflammasome have been implicated in renal disease (Table 2). Therapeutic interventions that modulate this pathway are being developed, and the functional significance of the inflammasome and the IL-1β/IL-18 axis in renal disease is of growing interest. Drugs inhibiting IL-1, P2X7R, and caspase-1 have been developed, although to date only IL-1 inhibitors have been successful in clinical studies of rheumatoid arthritis (RA) and cryopyrin-associated periodic syndrome (CAPS).
Table 2
Inflammasome and inflammatory renal diseases
P2X7
Disease
Species
Antagonist/genetic deletion
Effect
Renal localization of inflammasome component
Harada [75]
TNF-α stimulation
Rat
-
NA
Mesangial cells
Gonclaves [76]
Unilateral ureteric obstruction
Mouse
P2X7 −/−
Beneficial
PTEC
Vonend [77]
Hypertension
Rat
-
NA
Glomerular podocytes
Diabetes mellitus
Turner [78]
Experimental glomerulonephritis
Mouse
-
NA
Glomeruli and infiltrating macrophages
Rat
Glomeruli
 
Lupus nephritis
Humans
-
NA
Glomeruli
PTEC
Taylor [70]
Experimental glomerulonephritis
Rat
Antagonist
Beneficial
-
  
Mouse
P2X7 −/−
  
NLRP3
Disease
Species
Antagonist/genetic deletion
Effect
Renal localization of inflammasome component
Deplano [79]
Glomerulonephritis
Rat
Genetic susceptible strain (cf. Protected strain)
NA
Glomeruli and bone marrow derived macrophages
Vilaysane A [80]
Non-diabetic acute and chronic kidney diseases
Human
NA
NA
PTEC
Vilaysane A [80]
Unilateral ureteric obstruction
Mice
NLRP3 −/−
Beneficial
PTEC
Iyer S [81]
Ischaemia- reperfusion injury
Mice
NLRP3 −/−
Beneficial
-
Jalilian [82]
None
Dog
NA
NA
Epithelial cells
IL-1
Disease
Species
Antagonist/genetic deletion
Effect
Renal localization of inflammasome component
Yamagishi H [83]
Unilateral ureteric obstruction
Mouse
IL-1 RA
Beneficial
PTEC
Haq M [44]
Ischaemia- reperfusion injury
Mouse
IL-1 RA
Beneficial
-
IL-1R −/−
Chen A [46]
IgA nephropathy
Mice
IL-1 RA
Beneficial
-
Matsumoto [84]
Glomerulonephritis
Human
NA
NA
 
Tam [85]
Glomerulonephritis
Rat
NA
N/A
 
Lan [86]
Glomerulonephritis
Rat
IL-1RA
Beneficial
 
Karkar [87]
Glomerulonephritis
Rat
Antibody
Beneficial
 
Karkar [88]
Glomerulonephritis
Rat
IL-1RA and soluble IL-1R
Beneficial
 
Tam [89]
Timoshanko JR [48]
Crescentic glomerulonephritis
Mice
IL-1β −/−
Beneficial
-
IL-1R −/−
Lichtnekert [47]
Anti- GBM disease
Mice
NLRP3 −/−
No effect
Renal dendritic cells
Caspase1 −/−
No effect
ASC −/−
No effect
IL-1R1 −/−
Benefit
Il-18 −/−
Mild benefit
Schorlemmer H [90]
SLE-like disease
Mice
IL-1 RA
Beneficial
-
Furuichi [43]
Ischaemia- reperfusion injury
Mice
IL-1αβ −/−
Beneficial
glomeruli and cortical arterioles
IL-1RA −/−
Rusai [45]
Ischaemia- reperfusion injury
Rats
IL-1 RA
Beneficial
-
Granfeldt [91]
Endotoxaemia
Pigs
NA
NA
Endothelial cells of the cortical arterioles were positive for IL-1β
IL-1ra was detected in the glomerulus and tubular cells
Hertting [92]
E.Coli pyelonephritis
Mice
IL-1β −/−
Harmful
-
Caspase-1
Disease
Species
Antagonist/genetic deletion
Effect
Renal localization of inflammasome component
Homsi [93]
Glycerol- induced AKI
Rats
Caspase-1 inhibitor
Beneficial
Constitutive tubular expression of IL-18
Induction of tubular IL-1β
Wang [94]
Endotoxaemia
Mice
Caspase 1 −/−
Beneficial
-
IL-1 Ra
No effect
IL-18 antiserum
No effect
Gauer [95]
None
Humans
NA
NA
Collecting duct alpha- and beta-intercalated cells express P2X7, IL-18
Edelstein [96]
Hypoxia
Mice
Caspase 1 −/−
Beneficial
IL-18 in PTEC
   
IL-18 binding protein
No effect
 
IL-18
Disease
Species
Antagonist/genetic deletion
Effect
Renal localization of inflammasome component
Bani-Hani A [68]
Unilateral ureteric obstruction
Mice
Transgenic mice overexpressing human IL-18-binding protein
Beneficial
TECs
Wu H [66]
Ischaemia- reperfusion injury
Mice
IL-18 −/−
Beneficial
TECs
IL-18 −/− BM chimera
Beneficial
IL-18-binding protein
Beneficial
Sugiyama M [67]
Bovine serum albumin-induced glomerulonephritis
Mice
IL-18R −/−
Beneficial
-
Kinoshita K [97]
Autoimmune disease
Mice
IL-18R −/−
Beneficial
-
Wang [61]
Ischaemia-reperfusion injury
Rat
IL-18-binding protein
Beneficial
-
Zhang [60]
Unilateral ureteric obstruction
Mice
Overexpress human IL-18-binding protein isoform a
Beneficial
-
VanderBrink [98]
Unilateral ureteric obstruction
Mice
IL-18 −/−
NA
TECs
ASC
Disease
Species
Antagonist/genetic deletion
Effect
Renal localization of inflammasome component
Iyer S [81]
Ischaemia- reperfusion injury
Mice
ASC −/−
Beneficial
-
Abbreviations: PTEC Proximal tubular epithelial cells, NLRP3 Nod-like receptor protein 3, IL-1RA Interleukin 1 receptor antitagonist, ARF Acute renal failure, TEC Tubular epithelial cell, BM Bone marrow.

IL-1 inhibitors

The clinical application of IL-1 inhibitors has been slow, because the first generation of inhibitors, the recombinant IL-1 receptor antagonists, has a short circulatory half-life and limited affinity for the IL-1 receptor. A large molar excess of recombinant IL-1ra is needed to antagonize endogenous IL-1 effectively.
Drugs inhibiting the action of IL-1 include recombinant human IL-1ra (Anakinra), a humanized monoclonal IL-1β antibody (Canakinumab), and a neutralising antibody against IL-1α and IL-1β (Rilonacept). Anakinra competitively inhibits binding of IL-1 to the IL-1 receptor and has been successfully used in RA [99] and autoinflammatory syndromes [100]. Rilonacept is a dimeric protein consisting of the extracellular portion of the IL-1 receptor and the Fc portion of human IgG1[101]; it works by effectively neutralizing IL-1α and IL-1β. Preliminary data suggest it may be beneficial in patients with autoinflammatory syndromes [102, 103]. Canakinumab, a monoclonal antibody against IL-1β, has a longer half-life compared with the other antagonists, and may be useful in patients with RA and CAPS [104, 105]. Other diseases that may benefit from IL-1 blockade include acute gout [106], diabetes mellitus [100], inflammatory lung disease [107], adult-onset Still’s disease [108], and juvenile idiopathic arthritis [109].

P2X7R antagonists

Drugs inhibiting the P2X7R are currently in Phase 1 and 2 clinical trials [110]. At present there are no data to demonstrate a beneficial effect of P2X7R antagonism, although trials are still at an early stage. Preclinical data suggest P2X7R antagonists have a potential role in the treatment of inflammatory rheumatological [111, 112], renal [78, 113], and pulmonary diseases [114116]. Although Phase 1 and 2 studies have demonstrated safety, preliminary studies have so far not shown clinical efficacy in the management of RA [117].

Caspase-1 inhibitors

Small molecule inhibitors of caspase-1 have been used in experimental models. Only pralnacasan (VX-740) and VX-765 have been used so far in patients; however, concerns about liver toxicity with prolonged use of pralnacasan have resulted in discontinuation of clinical trials in RA, psoriasis, and osteoarthritis [118]. A Phase 2 clinical trial of VX-765 (NCT00205465) has been completed, although the results have yet to be published [118].

The inflammasome in renal disease

There is a better understanding of the role of IL-1 and IL-18 in renal disease, although the importance of the inflammasome in the activation and secretion of IL-1β and IL-18 has only been investigated recently. Several primary renal diseases are associated with NLRP3 inflammasome activation. Similarly, many systemic diseases affecting the kidneys are associated with NLRP3 inflammasome/IL-1β/IL-18 axis activation (Table 2). These include UUO [68, 76, 80, 83], I-R injury [4345, 61, 66, 81], GN [4648, 67, 70, 90, 97, 119], sepsis [91, 92, 94], CKD [80, 120], hypoxia [96], glycerol-induced renal failure [93], and crystal nephropathy [121]. Apart from two studies of CKD of various aetiologies [77, 80] most of the disorders studied have been acute inflammatory diseases. Recent data suggests that the NLRP3 inflammasome is the principle cause of progressive renal failure in oxalate nephropathy [122]. P2X7R, IL-1β, IL-18, caspase-1, ASC, and NLRP3 are all associated with renal inflammation and injury (Table 2). Virtually every experimental model using genetic deletions and/or receptor antagonists/antiserum against the NLRP3 inflammasome pathway has shown decreased severity of disease, although publication bias cannot be excluded.
However, the functional significance of the inflammasome remains unclear in certain conditions. For instance, conflicting data exists with respect to ischaemia reperfusion injury. Whilst some reports describe a protective effect of IL-1 receptor blockade with Anakinra in ischemia-reperfusion injury [45, 81], others demonstrate no benefit on renal injury responses [123]. This may be due to NLRP3 mediated injury that is independent of inflammasome activity [123]. In such circumstances, pharmacological inhibition of downstream targets may be less effective.
Intrinsic renal cells express components of the inflammasome pathway (Table 2). This is most prominent in tubular epithelial cells and, to a lesser degree, in glomeruli. The precise mechanisms involving the NLRP3 inflammasome in disease relate to both systemic and local (renal) activation. Limited studies using global knockouts and bone marrow chimeras suggest that systemic production of cytokines may have a greater effect on renal injury [66]. Findings related to genetic deletion or inhibition of the NLRP3 inflammasome pathway includes decreases in local cytokines and chemokines, inflammatory cell infiltrate, and apoptosis. It remains likely that locally released DAMPs result in inflammasome activation, resulting in chemokine release and immune cell infiltration. Differences in immune cell regulation of the inflammasome affect the susceptibility and severity of autoimmune GN [79].
The role of NLRP3 inflammasome activation in human renal disease is still uncertain. Consistent with experimental data P2X7R and NLRP3 are upregulated in lupus nephritis and non-diabetic CKD, respectively [80, 119]. The most extensively studied component of the NLRP3 inflammasome in relation to renal disease is IL-18. Collecting duct alpha- and beta-intercalated cells express P2X7R and IL-18 under basal conditions [95]. An elevated serum IL-18 correlates with the development of diabetic nephropathy [124], while urine IL-18 is elevated in acute kidney injury associated with critical illness [125], cardiac surgery [126], and radiocontrast [127], supporting the notion that the inflammasome is intimately involved in wider inflammatory renal disease. Further studies investigating the NLRP3 inflammasome pathway in human disease are needed.

Chronic kidney disease and inflammation

In addition to mediating acute forms of renal injury and disease, the IL-1/IL-18 axis may also be responsible for development of CKD itself and its related complications. Accelerated atherosclerosis and vascular calcification is a hallmark feature in CKD [128]. Vascular inflammation plays a role in vascular calcification and IL-18 may have a distinct role in mediating vascular injury among patients with advanced kidney disease. Basal levels of IL-18 are elevated in patients on maintenance haemodialysis [129]. The mechanism behind increased IL-18 production may relate to elevated levels of circulating MCP-1 in patients with CKD [130]. IL-18, through production of INF-γ, results in inflammation-related vascular injury, atherosclerotic plaque formation, and plaque instability [131133]. IL-18 levels correlate with aortic pulse wave velocity [134], a surrogate for aortic stiffness and a predictor of major adverse cardiovascular events among patients with CKD [135].
In addition to cardiovascular disease, sepsis accounts for the majority of critical care admissions and mortality among patients with end-stage kidney disease [136]. The underlying mechanism(s) behind the increased susceptibility to sepsis relates in part to altered levels of IL-1 and IL-1RA, and monocyte activity. Basal levels of IL-1β, TNFα, and IL-6 are elevated in CKD and in dialysis patients [137]. The IL-1ra/IL-1β ratio is also elevated [137, 138]. A higher IL-1ra/IL-1β ratio may participate in the complex immune disturbances by reducing the biological activity of this vital pro-inflammatory cytokine in playing a major role in the immune and inflammatory network.
Complications associated with CKD are clearly multifactorial and a greater understanding of the role of the NLRP3 inflammasome/IL-1/IL-18 axis in mediating these complications is required before any therapeutic strategy can be developed and applied.

Conclusions

The NLRP3 inflammasome is becoming increasingly recognized as integral to the pathogenesis of many renal diseases and their complications. However, much of our knowledge of the inflammasome is limited to experimental models, but we need to elucidate its role in human renal disease, especially in CKD and its complications. Moreover, apart from inhibitors of IL-1, therapeutic agents targeting the NLRP3 inflammasome pathway suitable for use in humans are still lacking. Yet the inflammasome is likely to prove to be key pathogenic mechanism in nephrology and should be the subject of more intensive research.
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( https://​creativecommons.​org/​publicdomain/​zero/​1.​0/​ ) applies to the data made available in this article, unless otherwise stated.

Competing interests

Clare M Turner
None declared
Nishkantha Arulkumaran
Wellcome Trust pre-doctoral training fellowship
Mervyn Singer
None declared
Robert J Unwin
Consultancy with AstraZeneca
Frederick Tam
Research project grants from Roche Palo Alto, AstraZeneca Limited, Cyclacel Limited and Baxter Biosciences
Consultancy for Roche Palo Alto and Baxter Biosciences

Authors' contributions

CT, NA, Writing manuscript, Figures, Tables. Writing manuscript, Tables. MS, RJU, FT, Editing manuscript. All authors read and approved the final manuscript.
Anhänge

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.
Literatur
1.
Zurück zum Zitat Ferrari D, Wesselborg S, Bauer MK, Schulze-Osthoff K: Extracellular ATP activates transcription factor NF-kappaB through the P2Z purinoreceptor by selectively targeting NF-kappaB p65. J Cell Biol. 1997, 139 (7): 1635-1643. 10.1083/jcb.139.7.1635.PubMedPubMedCentral Ferrari D, Wesselborg S, Bauer MK, Schulze-Osthoff K: Extracellular ATP activates transcription factor NF-kappaB through the P2Z purinoreceptor by selectively targeting NF-kappaB p65. J Cell Biol. 1997, 139 (7): 1635-1643. 10.1083/jcb.139.7.1635.PubMedPubMedCentral
2.
Zurück zum Zitat Kahlenberg JM, Lundberg KC, Kertesy SB, Qu Y, Dubyak GR: Potentiation of caspase-1 activation by the P2X7 receptor is dependent on TLR signals and requires NF-kappaB-driven protein synthesis. J Immunol. 2005, 175 (11): 7611-7622.PubMed Kahlenberg JM, Lundberg KC, Kertesy SB, Qu Y, Dubyak GR: Potentiation of caspase-1 activation by the P2X7 receptor is dependent on TLR signals and requires NF-kappaB-driven protein synthesis. J Immunol. 2005, 175 (11): 7611-7622.PubMed
3.
Zurück zum Zitat Wewers MD, Sarkar A: P2X(7) receptor and macrophage function. Purinergic Signalling. 2009, 5 (2): 189-195. 10.1007/s11302-009-9131-9.PubMedPubMedCentral Wewers MD, Sarkar A: P2X(7) receptor and macrophage function. Purinergic Signalling. 2009, 5 (2): 189-195. 10.1007/s11302-009-9131-9.PubMedPubMedCentral
4.
Zurück zum Zitat Bauernfeind F, Bartok E, Rieger A, Franchi L, Nunez G, Hornung V: Cutting edge: reactive oxygen species inhibitors block priming, but not activation, of the NLRP3 inflammasome. J Immunol. 2011, 187 (2): 613-617. 10.4049/jimmunol.1100613.PubMedPubMedCentral Bauernfeind F, Bartok E, Rieger A, Franchi L, Nunez G, Hornung V: Cutting edge: reactive oxygen species inhibitors block priming, but not activation, of the NLRP3 inflammasome. J Immunol. 2011, 187 (2): 613-617. 10.4049/jimmunol.1100613.PubMedPubMedCentral
5.
Zurück zum Zitat Bergsbaken T, Fink SL, den Hartigh AB, Loomis WP, Cookson BT: Coordinated host responses during pyroptosis: caspase-1-dependent lysosome exocytosis and inflammatory cytokine maturation. J Immunol. 2011, 187 (5): 2748-2754. 10.4049/jimmunol.1100477.PubMedPubMedCentral Bergsbaken T, Fink SL, den Hartigh AB, Loomis WP, Cookson BT: Coordinated host responses during pyroptosis: caspase-1-dependent lysosome exocytosis and inflammatory cytokine maturation. J Immunol. 2011, 187 (5): 2748-2754. 10.4049/jimmunol.1100477.PubMedPubMedCentral
6.
Zurück zum Zitat Miao EA, Rajan JV, Aderem A: Caspase-1-induced pyroptotic cell death. Immunol Rev. 2011, 243 (1): 206-214. 10.1111/j.1600-065X.2011.01044.x.PubMedPubMedCentral Miao EA, Rajan JV, Aderem A: Caspase-1-induced pyroptotic cell death. Immunol Rev. 2011, 243 (1): 206-214. 10.1111/j.1600-065X.2011.01044.x.PubMedPubMedCentral
7.
Zurück zum Zitat Fink SL, Cookson BT: Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell Microbiol. 2006, 8 (11): 1812-1825. 10.1111/j.1462-5822.2006.00751.x.PubMed Fink SL, Cookson BT: Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell Microbiol. 2006, 8 (11): 1812-1825. 10.1111/j.1462-5822.2006.00751.x.PubMed
8.
Zurück zum Zitat Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D, Fernandes-Alnemri T, Wu J, Monks BG, Fitzgerald KA, et al: Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol. 2009, 183 (2): 787-791. 10.4049/jimmunol.0901363.PubMedPubMedCentral Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D, Fernandes-Alnemri T, Wu J, Monks BG, Fitzgerald KA, et al: Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol. 2009, 183 (2): 787-791. 10.4049/jimmunol.0901363.PubMedPubMedCentral
9.
Zurück zum Zitat Shiohara M, Taniguchi S, Masumoto J, Yasui K, Koike K, Komiyama A, Sagara J: ASC, which is composed of a PYD and a CARD, is up-regulated by inflammation and apoptosis in human neutrophils. Biochem Biophys Res Commun. 2002, 293 (5): 1314-1318. 10.1016/S0006-291X(02)00384-4.PubMed Shiohara M, Taniguchi S, Masumoto J, Yasui K, Koike K, Komiyama A, Sagara J: ASC, which is composed of a PYD and a CARD, is up-regulated by inflammation and apoptosis in human neutrophils. Biochem Biophys Res Commun. 2002, 293 (5): 1314-1318. 10.1016/S0006-291X(02)00384-4.PubMed
10.
Zurück zum Zitat Bryan NB, Dorfleutner A, Rojanasakul Y, Stehlik C: Activation of inflammasomes requires intracellular redistribution of the apoptotic speck-like protein containing a caspase recruitment domain. J Immunol. 2009, 182 (5): 3173-3182. 10.4049/jimmunol.0802367.PubMedPubMedCentral Bryan NB, Dorfleutner A, Rojanasakul Y, Stehlik C: Activation of inflammasomes requires intracellular redistribution of the apoptotic speck-like protein containing a caspase recruitment domain. J Immunol. 2009, 182 (5): 3173-3182. 10.4049/jimmunol.0802367.PubMedPubMedCentral
11.
Zurück zum Zitat Liu Y, Xiao Y, Li Z: P2X7 receptor positively regulates MyD88-dependent NF-kappaB activation. Cytokine. 2011, 55 (2): 229-236. 10.1016/j.cyto.2011.05.003.PubMed Liu Y, Xiao Y, Li Z: P2X7 receptor positively regulates MyD88-dependent NF-kappaB activation. Cytokine. 2011, 55 (2): 229-236. 10.1016/j.cyto.2011.05.003.PubMed
12.
Zurück zum Zitat Bruey JM, Bruey-Sedano N, Luciano F, Zhai D, Balpai R, Xu C, Kress CL, Bailly-Maitre B, Li X, Osterman A, et al: Bcl-2 and Bcl-XL regulate proinflammatory caspase-1 activation by interaction with NALP1. Cell. 2007, 129 (1): 45-56. 10.1016/j.cell.2007.01.045.PubMed Bruey JM, Bruey-Sedano N, Luciano F, Zhai D, Balpai R, Xu C, Kress CL, Bailly-Maitre B, Li X, Osterman A, et al: Bcl-2 and Bcl-XL regulate proinflammatory caspase-1 activation by interaction with NALP1. Cell. 2007, 129 (1): 45-56. 10.1016/j.cell.2007.01.045.PubMed
13.
Zurück zum Zitat Levinsohn JL, Newman ZL, Hellmich KA, Fattah R, Getz MA, Liu S, Sastalla I, Leppla SH, Moayeri M: Anthrax lethal factor cleavage of Nlrp1 is required for activation of the inflammasome. PLoS Pathog. 2012, 8 (3): e1002638-10.1371/journal.ppat.1002638.PubMedPubMedCentral Levinsohn JL, Newman ZL, Hellmich KA, Fattah R, Getz MA, Liu S, Sastalla I, Leppla SH, Moayeri M: Anthrax lethal factor cleavage of Nlrp1 is required for activation of the inflammasome. PLoS Pathog. 2012, 8 (3): e1002638-10.1371/journal.ppat.1002638.PubMedPubMedCentral
14.
Zurück zum Zitat Ali SR, Timmer AM, Bilgrami S, Park EJ, Eckmann L, Nizet V, Karin M: Anthrax toxin induces macrophage death by p38 MAPK inhibition but leads to inflammasome activation via ATP leakage. Immunity. 2011, 35 (1): 34-44. 10.1016/j.immuni.2011.04.015.PubMedPubMedCentral Ali SR, Timmer AM, Bilgrami S, Park EJ, Eckmann L, Nizet V, Karin M: Anthrax toxin induces macrophage death by p38 MAPK inhibition but leads to inflammasome activation via ATP leakage. Immunity. 2011, 35 (1): 34-44. 10.1016/j.immuni.2011.04.015.PubMedPubMedCentral
15.
Zurück zum Zitat Roberts TL, Idris A, Dunn JA, Kelly GM, Burnton CM, Hodgson S, Hardy LL, Garceau V, Sweet MJ, Ross IL, et al: HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science. 2009, 323 (5917): 1057-1060. 10.1126/science.1169841.PubMed Roberts TL, Idris A, Dunn JA, Kelly GM, Burnton CM, Hodgson S, Hardy LL, Garceau V, Sweet MJ, Ross IL, et al: HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science. 2009, 323 (5917): 1057-1060. 10.1126/science.1169841.PubMed
16.
Zurück zum Zitat Saiga H, Kitada S, Shimada Y, Kamiyama N, Okuyama M, Makino M, Yamamoto M, Takeda K: Critical role of AIM2 in Mycobacterium tuberculosis infection. Int Immunol. 2012, 24 (10): 637-644. 10.1093/intimm/dxs062.PubMed Saiga H, Kitada S, Shimada Y, Kamiyama N, Okuyama M, Makino M, Yamamoto M, Takeda K: Critical role of AIM2 in Mycobacterium tuberculosis infection. Int Immunol. 2012, 24 (10): 637-644. 10.1093/intimm/dxs062.PubMed
17.
Zurück zum Zitat Choubey D, Panchanathan R, Duan X, Liu H, Liu H: Emerging roles for the interferon-inducible p200-family proteins in sex bias in systemic lupus erythematosus. J Interferon Cytokine Res. 2011, 31 (12): 893-906. 10.1089/jir.2011.0073.PubMedPubMedCentral Choubey D, Panchanathan R, Duan X, Liu H, Liu H: Emerging roles for the interferon-inducible p200-family proteins in sex bias in systemic lupus erythematosus. J Interferon Cytokine Res. 2011, 31 (12): 893-906. 10.1089/jir.2011.0073.PubMedPubMedCentral
18.
Zurück zum Zitat Zhao Y, Yang J, Shi J, Gong YN, Lu Q, Xu H, Liu L, Shao F: The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature. 2011, 477 (7366): 596-600. 10.1038/nature10510.PubMed Zhao Y, Yang J, Shi J, Gong YN, Lu Q, Xu H, Liu L, Shao F: The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature. 2011, 477 (7366): 596-600. 10.1038/nature10510.PubMed
19.
Zurück zum Zitat Kofoed EM, Vance RE: Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature. 2011, 477 (7366): 592-595. 10.1038/nature10394.PubMedPubMedCentral Kofoed EM, Vance RE: Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature. 2011, 477 (7366): 592-595. 10.1038/nature10394.PubMedPubMedCentral
20.
Zurück zum Zitat Lech M, Avila-Ferrufino A, Skuginna V, Susanti HE, Anders HJ: Quantitative expression of RIG-like helicase, NOD-like receptor and inflammasome-related mRNAs in humans and mice. Int Immunol. 2010, 22 (9): 717-728. 10.1093/intimm/dxq058.PubMed Lech M, Avila-Ferrufino A, Skuginna V, Susanti HE, Anders HJ: Quantitative expression of RIG-like helicase, NOD-like receptor and inflammasome-related mRNAs in humans and mice. Int Immunol. 2010, 22 (9): 717-728. 10.1093/intimm/dxq058.PubMed
21.
Zurück zum Zitat Chen GY, Liu M, Wang F, Bertin J, Nunez G: A functional role for Nlrp6 in intestinal inflammation and tumorigenesis. J Immunol. 2011, 186 (12): 7187-7194. 10.4049/jimmunol.1100412.PubMedPubMedCentral Chen GY, Liu M, Wang F, Bertin J, Nunez G: A functional role for Nlrp6 in intestinal inflammation and tumorigenesis. J Immunol. 2011, 186 (12): 7187-7194. 10.4049/jimmunol.1100412.PubMedPubMedCentral
22.
Zurück zum Zitat Ye Z, Lich JD, Moore CB, Duncan JA, Williams KL, Ting JP: ATP binding by monarch-1/NLRP12 is critical for its inhibitory function. Mol Cell Biol. 2008, 28 (5): 1841-1850. 10.1128/MCB.01468-07.PubMed Ye Z, Lich JD, Moore CB, Duncan JA, Williams KL, Ting JP: ATP binding by monarch-1/NLRP12 is critical for its inhibitory function. Mol Cell Biol. 2008, 28 (5): 1841-1850. 10.1128/MCB.01468-07.PubMed
23.
Zurück zum Zitat Williams KL, Lich JD, Duncan JA, Reed W, Rallabhandi P, Moore C, Kurtz S, Coffield VM, Accavitti-Loper MA, Su L, et al: The CATERPILLER protein monarch-1 is an antagonist of toll-like receptor-, tumor necrosis factor alpha-, and Mycobacterium tuberculosis-induced pro-inflammatory signals. J Biol Chem. 2005, 280 (48): 39914-39924. 10.1074/jbc.M502820200.PubMedPubMedCentral Williams KL, Lich JD, Duncan JA, Reed W, Rallabhandi P, Moore C, Kurtz S, Coffield VM, Accavitti-Loper MA, Su L, et al: The CATERPILLER protein monarch-1 is an antagonist of toll-like receptor-, tumor necrosis factor alpha-, and Mycobacterium tuberculosis-induced pro-inflammatory signals. J Biol Chem. 2005, 280 (48): 39914-39924. 10.1074/jbc.M502820200.PubMedPubMedCentral
24.
Zurück zum Zitat Allen IC, Wilson JE, Schneider M, Lich JD, Roberts RA, Arthur JC, Woodford RM, Davis BK, Uronis JM, Herfarth HH, et al: NLRP12 suppresses colon inflammation and tumorigenesis through the negative regulation of noncanonical NF-kappaB signaling. Immunity. 2012, 36 (5): 742-754. 10.1016/j.immuni.2012.03.012.PubMedPubMedCentral Allen IC, Wilson JE, Schneider M, Lich JD, Roberts RA, Arthur JC, Woodford RM, Davis BK, Uronis JM, Herfarth HH, et al: NLRP12 suppresses colon inflammation and tumorigenesis through the negative regulation of noncanonical NF-kappaB signaling. Immunity. 2012, 36 (5): 742-754. 10.1016/j.immuni.2012.03.012.PubMedPubMedCentral
25.
Zurück zum Zitat Dinarello CA: Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol. 2009, 27: 519-550. 10.1146/annurev.immunol.021908.132612.PubMed Dinarello CA: Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol. 2009, 27: 519-550. 10.1146/annurev.immunol.021908.132612.PubMed
26.
Zurück zum Zitat Parvathenani LK, Tertyshnikova S, Greco CR, Roberts SB, Robertson B, Posmantur R: P2X7 mediates superoxide production in primary microglia and is up-regulated in a transgenic mouse model of Alzheimer’s disease. J Biol Chem. 2003, 278 (15): 13309-13317. 10.1074/jbc.M209478200.PubMed Parvathenani LK, Tertyshnikova S, Greco CR, Roberts SB, Robertson B, Posmantur R: P2X7 mediates superoxide production in primary microglia and is up-regulated in a transgenic mouse model of Alzheimer’s disease. J Biol Chem. 2003, 278 (15): 13309-13317. 10.1074/jbc.M209478200.PubMed
27.
Zurück zum Zitat Dinarello CA: The IL-1 family and inflammatory diseases. Clin Exp Rheumatol. 2002, 20 (5 Suppl 27): S1-S13.PubMed Dinarello CA: The IL-1 family and inflammatory diseases. Clin Exp Rheumatol. 2002, 20 (5 Suppl 27): S1-S13.PubMed
28.
Zurück zum Zitat Bevilacqua MP, Stengelin S, Gimbrone MA, Seed B: Endothelial leukocyte adhesion molecule 1: an inducible receptor for neutrophils related to complement regulatory proteins and lectins. Science. 1989, 243 (4895): 1160-1165. 10.1126/science.2466335.PubMed Bevilacqua MP, Stengelin S, Gimbrone MA, Seed B: Endothelial leukocyte adhesion molecule 1: an inducible receptor for neutrophils related to complement regulatory proteins and lectins. Science. 1989, 243 (4895): 1160-1165. 10.1126/science.2466335.PubMed
29.
Zurück zum Zitat Chen CJ, Kono H, Golenbock D, Reed G, Akira S, Rock KL: Identification of a key pathway required for the sterile inflammatory response triggered by dying cells. Nat Med. 2007, 13 (7): 851-856. 10.1038/nm1603.PubMed Chen CJ, Kono H, Golenbock D, Reed G, Akira S, Rock KL: Identification of a key pathway required for the sterile inflammatory response triggered by dying cells. Nat Med. 2007, 13 (7): 851-856. 10.1038/nm1603.PubMed
30.
Zurück zum Zitat Kavita U, Mizel SB: Differential sensitivity of interleukin-1 alpha and -beta precursor proteins to cleavage by calpain, a calcium-dependent protease. J Biol Chem. 1995, 270 (46): 27758-27765. 10.1074/jbc.270.46.27758.PubMed Kavita U, Mizel SB: Differential sensitivity of interleukin-1 alpha and -beta precursor proteins to cleavage by calpain, a calcium-dependent protease. J Biol Chem. 1995, 270 (46): 27758-27765. 10.1074/jbc.270.46.27758.PubMed
31.
Zurück zum Zitat Yazdi AS, Drexler SK: Regulation of interleukin 1alpha secretion by inflammasomes. Ann Rheum Dis. 2013, 72 (Suppl 2): ii96-ii99.PubMed Yazdi AS, Drexler SK: Regulation of interleukin 1alpha secretion by inflammasomes. Ann Rheum Dis. 2013, 72 (Suppl 2): ii96-ii99.PubMed
32.
Zurück zum Zitat Gross O, Yazdi AS, Thomas CJ, Masin M, Heinz LX, Guarda G, Quadroni M, Drexler SK, Tschopp J: Inflammasome activators induce interleukin-1alpha secretion via distinct pathways with differential requirement for the protease function of caspase-1. Immunity. 2012, 36 (3): 388-400. 10.1016/j.immuni.2012.01.018.PubMed Gross O, Yazdi AS, Thomas CJ, Masin M, Heinz LX, Guarda G, Quadroni M, Drexler SK, Tschopp J: Inflammasome activators induce interleukin-1alpha secretion via distinct pathways with differential requirement for the protease function of caspase-1. Immunity. 2012, 36 (3): 388-400. 10.1016/j.immuni.2012.01.018.PubMed
33.
Zurück zum Zitat Ferrari D, Pizzirani C, Adinolfi E, Lemoli RM, Curti A, Idzko M, Panther E, di Virgilio F: The P2X7 receptor: a key player in IL-1 processing and release. J Immunol. 2006, 176 (7): 3877-3883.PubMed Ferrari D, Pizzirani C, Adinolfi E, Lemoli RM, Curti A, Idzko M, Panther E, di Virgilio F: The P2X7 receptor: a key player in IL-1 processing and release. J Immunol. 2006, 176 (7): 3877-3883.PubMed
34.
Zurück zum Zitat Thornberry NA, Bull HG, Calaycay JR, Chapman KT, Howard AD, Kostura MJ, Miller DK, Molineaux SM, Weidner JR, Aunins J, et al: A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature. 1992, 356 (6372): 768-774. 10.1038/356768a0.PubMed Thornberry NA, Bull HG, Calaycay JR, Chapman KT, Howard AD, Kostura MJ, Miller DK, Molineaux SM, Weidner JR, Aunins J, et al: A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature. 1992, 356 (6372): 768-774. 10.1038/356768a0.PubMed
35.
Zurück zum Zitat MacKenzie A, Wilson HL, Kiss-Toth E, Dower SK, North RA, Surprenant A: Rapid secretion of interleukin-1beta by microvesicle shedding. Immunity. 2001, 15 (5): 825-835. 10.1016/S1074-7613(01)00229-1.PubMed MacKenzie A, Wilson HL, Kiss-Toth E, Dower SK, North RA, Surprenant A: Rapid secretion of interleukin-1beta by microvesicle shedding. Immunity. 2001, 15 (5): 825-835. 10.1016/S1074-7613(01)00229-1.PubMed
36.
Zurück zum Zitat Dinarello CA: Interleukin-18 and the pathogenesis of inflammatory diseases. Semin Nephrol. 2007, 27 (1): 98-114. 10.1016/j.semnephrol.2006.09.013.PubMed Dinarello CA: Interleukin-18 and the pathogenesis of inflammatory diseases. Semin Nephrol. 2007, 27 (1): 98-114. 10.1016/j.semnephrol.2006.09.013.PubMed
37.
Zurück zum Zitat Chung Y, Chang SH, Martinez GJ, Yang XO, Nurieva R, Kang HS, Ma L, Watowich SS, Jetten AM, Tian Q, et al: Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity. 2009, 30 (4): 576-587. 10.1016/j.immuni.2009.02.007.PubMedPubMedCentral Chung Y, Chang SH, Martinez GJ, Yang XO, Nurieva R, Kang HS, Ma L, Watowich SS, Jetten AM, Tian Q, et al: Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity. 2009, 30 (4): 576-587. 10.1016/j.immuni.2009.02.007.PubMedPubMedCentral
38.
Zurück zum Zitat Sola-Villa D, Camacho M, Sola R, Soler M, Diaz JM, Vila L: IL-1beta induces VEGF, independently of PGE2 induction, mainly through the PI3-K/mTOR pathway in renal mesangial cells. Kidney Int. 2006, 70 (11): 1935-1941.PubMed Sola-Villa D, Camacho M, Sola R, Soler M, Diaz JM, Vila L: IL-1beta induces VEGF, independently of PGE2 induction, mainly through the PI3-K/mTOR pathway in renal mesangial cells. Kidney Int. 2006, 70 (11): 1935-1941.PubMed
39.
Zurück zum Zitat Myers CL, Wertheimer SJ, Schembri-King J, Parks T, Wallace RW: Induction of ICAM-1 by TNF-alpha, IL-1 beta, and LPS in human endothelial cells after downregulation of PKC. Am J Physiol. 1992, 263 (4 Pt 1): C767-C772.PubMed Myers CL, Wertheimer SJ, Schembri-King J, Parks T, Wallace RW: Induction of ICAM-1 by TNF-alpha, IL-1 beta, and LPS in human endothelial cells after downregulation of PKC. Am J Physiol. 1992, 263 (4 Pt 1): C767-C772.PubMed
40.
Zurück zum Zitat Yang CM, Luo SF, Hsieh HL, Chi PL, Lin CC, Wu CC, Hsiao LD: Interleukin-1beta induces ICAM-1 expression enhancing leukocyte adhesion in human rheumatoid arthritis synovial fibroblasts: involvement of ERK, JNK, AP-1, and NF-kappaB. J Cell Physiol. 2010, 224 (2): 516-526. 10.1002/jcp.22153.PubMed Yang CM, Luo SF, Hsieh HL, Chi PL, Lin CC, Wu CC, Hsiao LD: Interleukin-1beta induces ICAM-1 expression enhancing leukocyte adhesion in human rheumatoid arthritis synovial fibroblasts: involvement of ERK, JNK, AP-1, and NF-kappaB. J Cell Physiol. 2010, 224 (2): 516-526. 10.1002/jcp.22153.PubMed
41.
Zurück zum Zitat Wang X, Feuerstein GZ, Gu JL, Lysko PG, Yue TL: Interleukin-1 beta induces expression of adhesion molecules in human vascular smooth muscle cells and enhances adhesion of leukocytes to smooth muscle cells. Atherosclerosis. 1995, 115 (1): 89-98. 10.1016/0021-9150(94)05503-B.PubMed Wang X, Feuerstein GZ, Gu JL, Lysko PG, Yue TL: Interleukin-1 beta induces expression of adhesion molecules in human vascular smooth muscle cells and enhances adhesion of leukocytes to smooth muscle cells. Atherosclerosis. 1995, 115 (1): 89-98. 10.1016/0021-9150(94)05503-B.PubMed
42.
Zurück zum Zitat Ren G, Zhao X, Zhang L, Zhang J, L’Huillier A, Ling W, Roberts AI, Le AD, Shi S, Shao C, et al: Inflammatory cytokine-induced intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in mesenchymal stem cells are critical for immunosuppression. J Immunol. 2010, 184 (5): 2321-2328. 10.4049/jimmunol.0902023.PubMedPubMedCentral Ren G, Zhao X, Zhang L, Zhang J, L’Huillier A, Ling W, Roberts AI, Le AD, Shi S, Shao C, et al: Inflammatory cytokine-induced intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in mesenchymal stem cells are critical for immunosuppression. J Immunol. 2010, 184 (5): 2321-2328. 10.4049/jimmunol.0902023.PubMedPubMedCentral
43.
Zurück zum Zitat Furuichi K, Wada T, Iwata Y, Kokubo S, Hara A, Yamahana J, Sugaya T, Iwakura Y, Matsushima K, Asano M, et al: Interleukin-1-dependent sequential chemokine expression and inflammatory cell infiltration in ischemia-reperfusion injury. Crit Care Med. 2006, 34 (9): 2447-2455. 10.1097/01.CCM.0000233878.36340.10.PubMed Furuichi K, Wada T, Iwata Y, Kokubo S, Hara A, Yamahana J, Sugaya T, Iwakura Y, Matsushima K, Asano M, et al: Interleukin-1-dependent sequential chemokine expression and inflammatory cell infiltration in ischemia-reperfusion injury. Crit Care Med. 2006, 34 (9): 2447-2455. 10.1097/01.CCM.0000233878.36340.10.PubMed
44.
Zurück zum Zitat Haq M, Norman J, Saba SR, Ramirez G, Rabb H: Role of IL-1 in renal ischemic reperfusion injury. J Am Soc Nephrol. 1998, 9 (4): 614-619.PubMed Haq M, Norman J, Saba SR, Ramirez G, Rabb H: Role of IL-1 in renal ischemic reperfusion injury. J Am Soc Nephrol. 1998, 9 (4): 614-619.PubMed
45.
Zurück zum Zitat Rusai K, Huang H, Sayed N, Strobl M, Roos M, Schmaderer C, Heemann U, Lutz J: Administration of interleukin-1 receptor antagonist ameliorates renal ischemia-reperfusion injury. Transpl Int. 2008, 21 (6): 572-580. 10.1111/j.1432-2277.2008.00651.x.PubMed Rusai K, Huang H, Sayed N, Strobl M, Roos M, Schmaderer C, Heemann U, Lutz J: Administration of interleukin-1 receptor antagonist ameliorates renal ischemia-reperfusion injury. Transpl Int. 2008, 21 (6): 572-580. 10.1111/j.1432-2277.2008.00651.x.PubMed
46.
Zurück zum Zitat Chen A, Sheu LF, Chou WY, Tsai SC, Chang DM, Liang SC, Lin FG, Lee WH: Interleukin-1 receptor antagonist modulates the progression of a spontaneously occurring IgA nephropathy in mice. Am J Kidney Dis. 1997, 30 (5): 693-702. 10.1016/S0272-6386(97)90495-9.PubMed Chen A, Sheu LF, Chou WY, Tsai SC, Chang DM, Liang SC, Lin FG, Lee WH: Interleukin-1 receptor antagonist modulates the progression of a spontaneously occurring IgA nephropathy in mice. Am J Kidney Dis. 1997, 30 (5): 693-702. 10.1016/S0272-6386(97)90495-9.PubMed
47.
Zurück zum Zitat Lichtnekert J, Kulkarni OP, Mulay SR, Rupanagudi KV, Ryu M, Allam R, Vielhauer V, Muruve D, Lindenmeyer MT, Cohen CD, et al: Anti-GBM glomerulonephritis involves IL-1 but is independent of NLRP3/ASC inflammasome-mediated activation of caspase-1. PLoS One. 2011, 6 (10): e26778-10.1371/journal.pone.0026778.PubMedPubMedCentral Lichtnekert J, Kulkarni OP, Mulay SR, Rupanagudi KV, Ryu M, Allam R, Vielhauer V, Muruve D, Lindenmeyer MT, Cohen CD, et al: Anti-GBM glomerulonephritis involves IL-1 but is independent of NLRP3/ASC inflammasome-mediated activation of caspase-1. PLoS One. 2011, 6 (10): e26778-10.1371/journal.pone.0026778.PubMedPubMedCentral
48.
Zurück zum Zitat Timoshanko JR, Kitching AR, Iwakura Y, Holdsworth SR, Tipping PG: Contributions of IL-1beta and IL-1alpha to crescentic glomerulonephritis in mice. J Am Soc Nephrol. 2004, 15 (4): 910-918. 10.1097/01.ASN.0000115704.86897.F4.PubMed Timoshanko JR, Kitching AR, Iwakura Y, Holdsworth SR, Tipping PG: Contributions of IL-1beta and IL-1alpha to crescentic glomerulonephritis in mice. J Am Soc Nephrol. 2004, 15 (4): 910-918. 10.1097/01.ASN.0000115704.86897.F4.PubMed
49.
Zurück zum Zitat Hacham M, Argov S, White RM, Segal S, Apte RN: Different patterns of interleukin-1alpha and interleukin-1beta expression in organs of normal young and old mice. Eur Cytokine Netw. 2002, 13 (1): 55-65.PubMed Hacham M, Argov S, White RM, Segal S, Apte RN: Different patterns of interleukin-1alpha and interleukin-1beta expression in organs of normal young and old mice. Eur Cytokine Netw. 2002, 13 (1): 55-65.PubMed
50.
Zurück zum Zitat Hammerberg C, Arend WP, Fisher GJ, Chan LS, Berger AE, Haskill JS, Voorhees JJ, Cooper KD: Interleukin-1 receptor antagonist in normal and psoriatic epidermis. J Clin Invest. 1992, 90 (2): 571-583. 10.1172/JCI115896.PubMedPubMedCentral Hammerberg C, Arend WP, Fisher GJ, Chan LS, Berger AE, Haskill JS, Voorhees JJ, Cooper KD: Interleukin-1 receptor antagonist in normal and psoriatic epidermis. J Clin Invest. 1992, 90 (2): 571-583. 10.1172/JCI115896.PubMedPubMedCentral
51.
Zurück zum Zitat Kurt-Jones EA, Beller DI, Mizel SB, Unanue ER: Identification of a membrane-associated interleukin 1 in macrophages. Proc Natl Acad Sci USA. 1985, 82 (4): 1204-1208. 10.1073/pnas.82.4.1204.PubMedPubMedCentral Kurt-Jones EA, Beller DI, Mizel SB, Unanue ER: Identification of a membrane-associated interleukin 1 in macrophages. Proc Natl Acad Sci USA. 1985, 82 (4): 1204-1208. 10.1073/pnas.82.4.1204.PubMedPubMedCentral
52.
Zurück zum Zitat Kaplanski G, Farnarier C, Kaplanski S, Porat R, Shapiro L, Bongrand P, Dinarello CA: Interleukin-1 induces interleukin-8 secretion from endothelial cells by a juxtacrine mechanism. Blood. 1994, 84 (12): 4242-4248.PubMed Kaplanski G, Farnarier C, Kaplanski S, Porat R, Shapiro L, Bongrand P, Dinarello CA: Interleukin-1 induces interleukin-8 secretion from endothelial cells by a juxtacrine mechanism. Blood. 1994, 84 (12): 4242-4248.PubMed
53.
Zurück zum Zitat Hurgin V, Novick D, Werman A, Dinarello CA, Rubinstein M: Antiviral and immunoregulatory activities of IFN-gamma depend on constitutively expressed IL-1alpha. Proc Natl Acad Sci USA. 2007, 104 (12): 5044-5049. 10.1073/pnas.0611608104.PubMedPubMedCentral Hurgin V, Novick D, Werman A, Dinarello CA, Rubinstein M: Antiviral and immunoregulatory activities of IFN-gamma depend on constitutively expressed IL-1alpha. Proc Natl Acad Sci USA. 2007, 104 (12): 5044-5049. 10.1073/pnas.0611608104.PubMedPubMedCentral
54.
Zurück zum Zitat Perregaux DG, McNiff P, Laliberte R, Conklyn M, Gabel CA: ATP acts as an agonist to promote stimulus-induced secretion of IL-1 beta and IL-18 in human blood. J Immunol. 2000, 165 (8): 4615-4623.PubMed Perregaux DG, McNiff P, Laliberte R, Conklyn M, Gabel CA: ATP acts as an agonist to promote stimulus-induced secretion of IL-1 beta and IL-18 in human blood. J Immunol. 2000, 165 (8): 4615-4623.PubMed
55.
Zurück zum Zitat Takeuchi M, Okura T, Mori T, Akita K, Ohta T, Ikeda M, Ikegami H, Kurimoto M: Intracellular production of interleukin-18 in human epithelial-like cell lines is enhanced by hyperosmotic stress in vitro. Cell Tissue Res. 1999, 297 (3): 467-473. 10.1007/s004410051373.PubMed Takeuchi M, Okura T, Mori T, Akita K, Ohta T, Ikeda M, Ikegami H, Kurimoto M: Intracellular production of interleukin-18 in human epithelial-like cell lines is enhanced by hyperosmotic stress in vitro. Cell Tissue Res. 1999, 297 (3): 467-473. 10.1007/s004410051373.PubMed
56.
Zurück zum Zitat Takeda K, Tsutsui H, Yoshimoto T, Adachi O, Yoshida N, Kishimoto T, Okamura H, Nakanishi K, Akira S: Defective NK cell activity and Th1 response in IL-18-deficient mice. Immunity. 1998, 8 (3): 383-390. 10.1016/S1074-7613(00)80543-9.PubMed Takeda K, Tsutsui H, Yoshimoto T, Adachi O, Yoshida N, Kishimoto T, Okamura H, Nakanishi K, Akira S: Defective NK cell activity and Th1 response in IL-18-deficient mice. Immunity. 1998, 8 (3): 383-390. 10.1016/S1074-7613(00)80543-9.PubMed
57.
Zurück zum Zitat Tomura M, Maruo S, Mu J, Zhou XY, Ahn HJ, Hamaoka T, Okamura H, Nakanishi K, Clark S, Kurimoto M, et al: Differential capacities of CD4+, CD8+, and CD4-CD8- T cell subsets to express IL-18 receptor and produce IFN-gamma in response to IL-18. J Immunol. 1998, 160 (8): 3759-3765.PubMed Tomura M, Maruo S, Mu J, Zhou XY, Ahn HJ, Hamaoka T, Okamura H, Nakanishi K, Clark S, Kurimoto M, et al: Differential capacities of CD4+, CD8+, and CD4-CD8- T cell subsets to express IL-18 receptor and produce IFN-gamma in response to IL-18. J Immunol. 1998, 160 (8): 3759-3765.PubMed
58.
Zurück zum Zitat Dinarello CA: IL-18: A TH1-inducing, proinflammatory cytokine and new member of the IL-1 family. J Allergy Clin Immunol. 1999, 103 (1 Pt 1): 11-24.PubMed Dinarello CA: IL-18: A TH1-inducing, proinflammatory cytokine and new member of the IL-1 family. J Allergy Clin Immunol. 1999, 103 (1 Pt 1): 11-24.PubMed
59.
Zurück zum Zitat Dao T, Ohashi K, Kayano T, Kurimoto M, Okamura H: Interferon-gamma-inducing factor, a novel cytokine, enhances Fas ligand-mediated cytotoxicity of murine T helper 1 cells. Cell Immunol. 1996, 173 (2): 230-235. 10.1006/cimm.1996.0272.PubMed Dao T, Ohashi K, Kayano T, Kurimoto M, Okamura H: Interferon-gamma-inducing factor, a novel cytokine, enhances Fas ligand-mediated cytotoxicity of murine T helper 1 cells. Cell Immunol. 1996, 173 (2): 230-235. 10.1006/cimm.1996.0272.PubMed
60.
Zurück zum Zitat Zhang H, Hile KL, Asanuma H, Vanderbrink B, Franke EI, Campbell MT, Meldrum KK: IL-18 mediates proapoptotic signaling in renal tubular cells through a Fas ligand-dependent mechanism. Am J Physiol Renal Physiol. 2011, 301 (1): F171-F178. 10.1152/ajprenal.00339.2010.PubMedPubMedCentral Zhang H, Hile KL, Asanuma H, Vanderbrink B, Franke EI, Campbell MT, Meldrum KK: IL-18 mediates proapoptotic signaling in renal tubular cells through a Fas ligand-dependent mechanism. Am J Physiol Renal Physiol. 2011, 301 (1): F171-F178. 10.1152/ajprenal.00339.2010.PubMedPubMedCentral
61.
Zurück zum Zitat Wang J, Long Q, Zhang W, Chen N: Protective effects of exogenous interleukin 18-binding protein in a rat model of acute renal ischemia-reperfusion injury. Shock. 2012, 37 (3): 333-340. 10.1097/SHK.0b013e318240bdc8.PubMed Wang J, Long Q, Zhang W, Chen N: Protective effects of exogenous interleukin 18-binding protein in a rat model of acute renal ischemia-reperfusion injury. Shock. 2012, 37 (3): 333-340. 10.1097/SHK.0b013e318240bdc8.PubMed
62.
Zurück zum Zitat Puren AJ, Razeghi P, Fantuzzi G, Dinarello CA: Interleukin-18 enhances lipopolysaccharide-induced interferon-gamma production in human whole blood cultures. J Infect Dis. 1998, 178 (6): 1830-1834. 10.1086/314481.PubMed Puren AJ, Razeghi P, Fantuzzi G, Dinarello CA: Interleukin-18 enhances lipopolysaccharide-induced interferon-gamma production in human whole blood cultures. J Infect Dis. 1998, 178 (6): 1830-1834. 10.1086/314481.PubMed
63.
Zurück zum Zitat Kohka H, Yoshino T, Iwagaki H, Sakuma I, Tanimoto T, Matsuo Y, Kurimoto M, Orita K, Akagi T, Tanaka N: Interleukin-18/interferon-gamma-inducing factor, a novel cytokine, up-regulates ICAM-1 (CD54) expression in KG-1 cells. J Leukoc Biol. 1998, 64 (4): 519-527.PubMed Kohka H, Yoshino T, Iwagaki H, Sakuma I, Tanimoto T, Matsuo Y, Kurimoto M, Orita K, Akagi T, Tanaka N: Interleukin-18/interferon-gamma-inducing factor, a novel cytokine, up-regulates ICAM-1 (CD54) expression in KG-1 cells. J Leukoc Biol. 1998, 64 (4): 519-527.PubMed
64.
Zurück zum Zitat Ueno N, Kashiwamura S, Ueda H, Okamura H, Tsuji NM, Hosohara K, Kotani J, Marukawa S: Role of interleukin 18 in nitric oxide production and pancreatic damage during acute pancreatitis. Shock. 2005, 24 (6): 564-570. 10.1097/01.shk.0000184285.57375.bc.PubMed Ueno N, Kashiwamura S, Ueda H, Okamura H, Tsuji NM, Hosohara K, Kotani J, Marukawa S: Role of interleukin 18 in nitric oxide production and pancreatic damage during acute pancreatitis. Shock. 2005, 24 (6): 564-570. 10.1097/01.shk.0000184285.57375.bc.PubMed
65.
Zurück zum Zitat Morel JC, Park CC, Woods JM, Koch AE: A novel role for interleukin-18 in adhesion molecule induction through NF kappa B and phosphatidylinositol (PI) 3-kinase-dependent signal transduction pathways. J Biol Chem. 2001, 276 (40): 37069-37075. 10.1074/jbc.M103574200.PubMed Morel JC, Park CC, Woods JM, Koch AE: A novel role for interleukin-18 in adhesion molecule induction through NF kappa B and phosphatidylinositol (PI) 3-kinase-dependent signal transduction pathways. J Biol Chem. 2001, 276 (40): 37069-37075. 10.1074/jbc.M103574200.PubMed
66.
Zurück zum Zitat Wu H, Craft ML, Wang P, Wyburn KR, Chen G, Ma J, Hambly B, Chadban SJ: IL-18 contributes to renal damage after ischemia-reperfusion. J Am Soc Nephrol. 2008, 19 (12): 2331-2341. 10.1681/ASN.2008020170.PubMedPubMedCentral Wu H, Craft ML, Wang P, Wyburn KR, Chen G, Ma J, Hambly B, Chadban SJ: IL-18 contributes to renal damage after ischemia-reperfusion. J Am Soc Nephrol. 2008, 19 (12): 2331-2341. 10.1681/ASN.2008020170.PubMedPubMedCentral
67.
Zurück zum Zitat Sugiyama M, Kinoshita K, Kishimoto K, Shimazu H, Nozaki Y, Ikoma S, Funauchi M: Deletion of IL-18 receptor ameliorates renal injury in bovine serum albumin-induced glomerulonephritis. Clin Immunol. 2008, 128 (1): 103-108. 10.1016/j.clim.2008.03.501.PubMed Sugiyama M, Kinoshita K, Kishimoto K, Shimazu H, Nozaki Y, Ikoma S, Funauchi M: Deletion of IL-18 receptor ameliorates renal injury in bovine serum albumin-induced glomerulonephritis. Clin Immunol. 2008, 128 (1): 103-108. 10.1016/j.clim.2008.03.501.PubMed
68.
Zurück zum Zitat Bani-Hani AH, Leslie JA, Asanuma H, Dinarello CA, Campbell MT, Meldrum DR, Zhang H, Hile K, Meldrum KK: IL-18 neutralization ameliorates obstruction-induced epithelial-mesenchymal transition and renal fibrosis. Kidney Int. 2009, 76 (5): 500-511. 10.1038/ki.2009.216.PubMed Bani-Hani AH, Leslie JA, Asanuma H, Dinarello CA, Campbell MT, Meldrum DR, Zhang H, Hile K, Meldrum KK: IL-18 neutralization ameliorates obstruction-induced epithelial-mesenchymal transition and renal fibrosis. Kidney Int. 2009, 76 (5): 500-511. 10.1038/ki.2009.216.PubMed
69.
Zurück zum Zitat Bergsbaken T, Cookson BT: Macrophage activation redirects yersinia-infected host cell death from apoptosis to caspase-1-dependent pyroptosis. PLoS Pathog. 2007, 3 (11): e161-10.1371/journal.ppat.0030161.PubMedPubMedCentral Bergsbaken T, Cookson BT: Macrophage activation redirects yersinia-infected host cell death from apoptosis to caspase-1-dependent pyroptosis. PLoS Pathog. 2007, 3 (11): e161-10.1371/journal.ppat.0030161.PubMedPubMedCentral
70.
Zurück zum Zitat Taylor SR, Gonzalez-Begne M, Dewhurst S, Chimini G, Higgins CF, Melvin JE, Elliott JI: Sequential shrinkage and swelling underlie P2X7-stimulated lymphocyte phosphatidylserine exposure and death. J Immunol. 2008, 180 (1): 300-308.PubMed Taylor SR, Gonzalez-Begne M, Dewhurst S, Chimini G, Higgins CF, Melvin JE, Elliott JI: Sequential shrinkage and swelling underlie P2X7-stimulated lymphocyte phosphatidylserine exposure and death. J Immunol. 2008, 180 (1): 300-308.PubMed
71.
Zurück zum Zitat Bryan NB, Dorfleutner A, Kramer SJ, Yun C, Rojanasakul Y, Stehlik C: Differential splicing of the apoptosis-associated speck like protein containing a caspase recruitment domain (ASC) regulates inflammasomes. J Inflamm (Lond). 2010, 7: 23-10.1186/1476-9255-7-23. Bryan NB, Dorfleutner A, Kramer SJ, Yun C, Rojanasakul Y, Stehlik C: Differential splicing of the apoptosis-associated speck like protein containing a caspase recruitment domain (ASC) regulates inflammasomes. J Inflamm (Lond). 2010, 7: 23-10.1186/1476-9255-7-23.
72.
Zurück zum Zitat Dorfleutner A, Bryan NB, Talbott SJ, Funya KN, Rellick SL, Reed JC, Shi X, Rojanasakul Y, Flynn DC, Stehlik C: Cellular pyrin domain-only protein 2 is a candidate regulator of inflammasome activation. Infect Immun. 2007, 75 (3): 1484-1492. 10.1128/IAI.01315-06.PubMed Dorfleutner A, Bryan NB, Talbott SJ, Funya KN, Rellick SL, Reed JC, Shi X, Rojanasakul Y, Flynn DC, Stehlik C: Cellular pyrin domain-only protein 2 is a candidate regulator of inflammasome activation. Infect Immun. 2007, 75 (3): 1484-1492. 10.1128/IAI.01315-06.PubMed
73.
Zurück zum Zitat Imamura R, Wang Y, Kinoshita T, Suzuki M, Noda T, Sagara J, Taniguchi S, Okamoto H, Suda T: Anti-inflammatory activity of PYNOD and its mechanism in humans and mice. J Immunol. 2010, 184 (10): 5874-5884. 10.4049/jimmunol.0900779.PubMed Imamura R, Wang Y, Kinoshita T, Suzuki M, Noda T, Sagara J, Taniguchi S, Okamoto H, Suda T: Anti-inflammatory activity of PYNOD and its mechanism in humans and mice. J Immunol. 2010, 184 (10): 5874-5884. 10.4049/jimmunol.0900779.PubMed
74.
Zurück zum Zitat Kersse K, Vanden Berghe T, Lamkanfi M, Vandenabeele P: A phylogenetic and functional overview of inflammatory caspases and caspase-1-related CARD-only proteins. Biochem Soc Trans. 2007, 35 (Pt 6): 1508-1511.PubMed Kersse K, Vanden Berghe T, Lamkanfi M, Vandenabeele P: A phylogenetic and functional overview of inflammatory caspases and caspase-1-related CARD-only proteins. Biochem Soc Trans. 2007, 35 (Pt 6): 1508-1511.PubMed
75.
Zurück zum Zitat Harada H, Chan CM, Loesch A, Unwin R, Burnstock G: Induction of proliferation and apoptotic cell death via P2Y and P2X receptors, respectively, in rat glomerular mesangial cells. Kidney Int. 2000, 57 (3): 949-958. 10.1046/j.1523-1755.2000.00911.x.PubMed Harada H, Chan CM, Loesch A, Unwin R, Burnstock G: Induction of proliferation and apoptotic cell death via P2Y and P2X receptors, respectively, in rat glomerular mesangial cells. Kidney Int. 2000, 57 (3): 949-958. 10.1046/j.1523-1755.2000.00911.x.PubMed
76.
Zurück zum Zitat Goncalves RG, Gabrich L, Rosario A, Takiya CM, Ferreira ML, Chiarini LB, Persechini PM, Coutinho-Silva R, Leite M: The role of purinergic P2X7 receptors in the inflammation and fibrosis of unilateral ureteral obstruction in mice. Kidney Int. 2006, 70 (9): 1599-1606. 10.1038/sj.ki.5001804.PubMed Goncalves RG, Gabrich L, Rosario A, Takiya CM, Ferreira ML, Chiarini LB, Persechini PM, Coutinho-Silva R, Leite M: The role of purinergic P2X7 receptors in the inflammation and fibrosis of unilateral ureteral obstruction in mice. Kidney Int. 2006, 70 (9): 1599-1606. 10.1038/sj.ki.5001804.PubMed
77.
Zurück zum Zitat Vonend O, Turner CM, Chan CM, Loesch A, Dell’Anna GC, Srai KS, Burnstock G, Unwin RJ: Glomerular expression of the ATP-sensitive P2X receptor in diabetic and hypertensive rat models. Kidney Int. 2004, 66 (1): 157-166. 10.1111/j.1523-1755.2004.00717.x.PubMed Vonend O, Turner CM, Chan CM, Loesch A, Dell’Anna GC, Srai KS, Burnstock G, Unwin RJ: Glomerular expression of the ATP-sensitive P2X receptor in diabetic and hypertensive rat models. Kidney Int. 2004, 66 (1): 157-166. 10.1111/j.1523-1755.2004.00717.x.PubMed
78.
Zurück zum Zitat Turner CM, Tam FW, Lai PC, Tarzi RM, Burnstock G, Pusey CD, Cook HT, Unwin RJ: Increased expression of the pro-apoptotic ATP-sensitive P2X7 receptor in experimental and human glomerulonephritis. Nephrol Dial Transplant. 2007, 22 (2): 386-395.PubMed Turner CM, Tam FW, Lai PC, Tarzi RM, Burnstock G, Pusey CD, Cook HT, Unwin RJ: Increased expression of the pro-apoptotic ATP-sensitive P2X7 receptor in experimental and human glomerulonephritis. Nephrol Dial Transplant. 2007, 22 (2): 386-395.PubMed
79.
Zurück zum Zitat Deplano S, Cook HT, Russell R, Franchi L, Schneiter S, Bhangal G, Unwin RJ, Pusey CD, Tam FW, Behmoaras J: P2X7 receptor-mediated Nlrp3-inflammasome activation is a genetic determinant of macrophage-dependent crescentic glomerulonephritis. J Leukoc Biol. 2013, 93 (1): 127-134. 10.1189/jlb.0612284.PubMed Deplano S, Cook HT, Russell R, Franchi L, Schneiter S, Bhangal G, Unwin RJ, Pusey CD, Tam FW, Behmoaras J: P2X7 receptor-mediated Nlrp3-inflammasome activation is a genetic determinant of macrophage-dependent crescentic glomerulonephritis. J Leukoc Biol. 2013, 93 (1): 127-134. 10.1189/jlb.0612284.PubMed
80.
Zurück zum Zitat Vilaysane A, Chun J, Seamone ME, Wang W, Chin R, Hirota S, Li Y, Clark SA, Tschopp J, Trpkov K, et al: The NLRP3 inflammasome promotes renal inflammation and contributes to CKD. J Am Soc Nephrol. 2010, 21 (10): 1732-1744. 10.1681/ASN.2010020143.PubMedPubMedCentral Vilaysane A, Chun J, Seamone ME, Wang W, Chin R, Hirota S, Li Y, Clark SA, Tschopp J, Trpkov K, et al: The NLRP3 inflammasome promotes renal inflammation and contributes to CKD. J Am Soc Nephrol. 2010, 21 (10): 1732-1744. 10.1681/ASN.2010020143.PubMedPubMedCentral
81.
Zurück zum Zitat Iyer SS, Pulskens WP, Sadler JJ, Butter LM, Teske GJ, Ulland TK, Eisenbarth SC, Florquin S, Flavell RA, Leemans JC, et al: Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome. Proc Natl Acad Sci USA. 2009, 106 (48): 20388-20393. 10.1073/pnas.0908698106.PubMedPubMedCentral Iyer SS, Pulskens WP, Sadler JJ, Butter LM, Teske GJ, Ulland TK, Eisenbarth SC, Florquin S, Flavell RA, Leemans JC, et al: Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome. Proc Natl Acad Sci USA. 2009, 106 (48): 20388-20393. 10.1073/pnas.0908698106.PubMedPubMedCentral
82.
Zurück zum Zitat Jalilian I, Spildrejorde M, Seavers A, Curtis BL, McArthur JD, Sluyter R: Functional expression of the damage-associated molecular pattern receptor P2X7 on canine kidney epithelial cells. Vet Immunol Immunopathol. 2012, 150 (3-4): 228-233. 10.1016/j.vetimm.2012.09.040.PubMed Jalilian I, Spildrejorde M, Seavers A, Curtis BL, McArthur JD, Sluyter R: Functional expression of the damage-associated molecular pattern receptor P2X7 on canine kidney epithelial cells. Vet Immunol Immunopathol. 2012, 150 (3-4): 228-233. 10.1016/j.vetimm.2012.09.040.PubMed
83.
Zurück zum Zitat Yamagishi H, Yokoo T, Imasawa T, Mitarai T, Kawamura T, Utsunomiya Y: Genetically modified bone marrow-derived vehicle cells site specifically deliver an anti-inflammatory cytokine to inflamed interstitium of obstructive nephropathy. J Immunol. 2001, 166 (1): 609-616.PubMed Yamagishi H, Yokoo T, Imasawa T, Mitarai T, Kawamura T, Utsunomiya Y: Genetically modified bone marrow-derived vehicle cells site specifically deliver an anti-inflammatory cytokine to inflamed interstitium of obstructive nephropathy. J Immunol. 2001, 166 (1): 609-616.PubMed
84.
Zurück zum Zitat Matsumoto K, Dowling J, Atkins RC: Production of interleukin 1 in glomerular cell cultures from patients with rapidly progressive crescentic glomerulonephritis. Am J Nephrol. 1988, 8 (6): 463-470. 10.1159/000167656.PubMed Matsumoto K, Dowling J, Atkins RC: Production of interleukin 1 in glomerular cell cultures from patients with rapidly progressive crescentic glomerulonephritis. Am J Nephrol. 1988, 8 (6): 463-470. 10.1159/000167656.PubMed
85.
Zurück zum Zitat Tam FW, Smith J, Cashman SJ, Wang Y, Thompson EM, Rees AJ: Glomerular expression of interleukin-1 receptor antagonist and interleukin-1 beta genes in antibody-mediated glomerulonephritis. Am J Pathol. 1994, 145 (1): 126-136.PubMedPubMedCentral Tam FW, Smith J, Cashman SJ, Wang Y, Thompson EM, Rees AJ: Glomerular expression of interleukin-1 receptor antagonist and interleukin-1 beta genes in antibody-mediated glomerulonephritis. Am J Pathol. 1994, 145 (1): 126-136.PubMedPubMedCentral
86.
Zurück zum Zitat Lan HY, Nikolic-Paterson DJ, Mu W, Vannice JL, Atkins RC: Interleukin-1 receptor antagonist halts the progression of established crescentic glomerulonephritis in the rat. Kidney Int. 1995, 47 (5): 1303-1309. 10.1038/ki.1995.185.PubMed Lan HY, Nikolic-Paterson DJ, Mu W, Vannice JL, Atkins RC: Interleukin-1 receptor antagonist halts the progression of established crescentic glomerulonephritis in the rat. Kidney Int. 1995, 47 (5): 1303-1309. 10.1038/ki.1995.185.PubMed
87.
Zurück zum Zitat Karkar AM, Koshino Y, Cashman SJ, Dash AC, Bonnefoy J, Meager A, Rees AJ: Passive immunization against tumour necrosis factor-alpha (TNF-alpha) and IL-1 beta protects from LPS enhancing glomerular injury in nephrotoxic nephritis in rats. Clin Exp Immunol. 1992, 90 (2): 312-318.PubMedPubMedCentral Karkar AM, Koshino Y, Cashman SJ, Dash AC, Bonnefoy J, Meager A, Rees AJ: Passive immunization against tumour necrosis factor-alpha (TNF-alpha) and IL-1 beta protects from LPS enhancing glomerular injury in nephrotoxic nephritis in rats. Clin Exp Immunol. 1992, 90 (2): 312-318.PubMedPubMedCentral
88.
Zurück zum Zitat Karkar AM, Tam FW, Steinkasserer A, Kurrle R, Langner K, Scallon BJ, Meager A, Rees AJ: Modulation of antibody-mediated glomerular injury in vivo by IL-1ra, soluble IL-1 receptor, and soluble TNF receptor. Kidney Int. 1995, 48 (6): 1738-1746. 10.1038/ki.1995.472.PubMed Karkar AM, Tam FW, Steinkasserer A, Kurrle R, Langner K, Scallon BJ, Meager A, Rees AJ: Modulation of antibody-mediated glomerular injury in vivo by IL-1ra, soluble IL-1 receptor, and soluble TNF receptor. Kidney Int. 1995, 48 (6): 1738-1746. 10.1038/ki.1995.472.PubMed
89.
Zurück zum Zitat Tam FW, Karkar AM, Smith J, Yoshimura T, Steinkasserer A, Kurrle R, Langner K, Rees AJ: Differential expression of macrophage inflammatory protein-2 and monocyte chemoattractant protein-1 in experimental glomerulonephritis. Kidney Int. 1996, 49 (3): 715-721. 10.1038/ki.1996.100.PubMed Tam FW, Karkar AM, Smith J, Yoshimura T, Steinkasserer A, Kurrle R, Langner K, Rees AJ: Differential expression of macrophage inflammatory protein-2 and monocyte chemoattractant protein-1 in experimental glomerulonephritis. Kidney Int. 1996, 49 (3): 715-721. 10.1038/ki.1996.100.PubMed
90.
Zurück zum Zitat Schorlemmer HU, Kanzy EJ, Langner KD, Kurrle R: Immunoregulation of SLE-like disease by the IL-1 receptor: disease modifying activity on BDF1 hybrid mice and MRL autoimmune mice. Agents Actions. 1993, 39 Spec No: C117-C120.PubMed Schorlemmer HU, Kanzy EJ, Langner KD, Kurrle R: Immunoregulation of SLE-like disease by the IL-1 receptor: disease modifying activity on BDF1 hybrid mice and MRL autoimmune mice. Agents Actions. 1993, 39 Spec No: C117-C120.PubMed
91.
Zurück zum Zitat Granfeldt A, Ebdrup L, Tonnesen E, Wogensen L: Renal cytokine profile in an endotoxemic porcine model. Acta Anaesthesiol Scand. 2008, 52 (5): 614-620. 10.1111/j.1399-6576.2008.01625.x.PubMed Granfeldt A, Ebdrup L, Tonnesen E, Wogensen L: Renal cytokine profile in an endotoxemic porcine model. Acta Anaesthesiol Scand. 2008, 52 (5): 614-620. 10.1111/j.1399-6576.2008.01625.x.PubMed
92.
Zurück zum Zitat Hertting O, Khalil A, Jaremko G, Chromek M, Li YH, Bakhiet M, Bartfai T, Tullus K, Brauner A: Enhanced chemokine response in experimental acute Escherichia coli pyelonephritis in IL-1beta-deficient mice. Clin Exp Immunol. 2003, 131 (2): 225-233. 10.1046/j.1365-2249.2003.02076.x.PubMedPubMedCentral Hertting O, Khalil A, Jaremko G, Chromek M, Li YH, Bakhiet M, Bartfai T, Tullus K, Brauner A: Enhanced chemokine response in experimental acute Escherichia coli pyelonephritis in IL-1beta-deficient mice. Clin Exp Immunol. 2003, 131 (2): 225-233. 10.1046/j.1365-2249.2003.02076.x.PubMedPubMedCentral
93.
Zurück zum Zitat Homsi E, Janino P, de Faria JB: Role of caspases on cell death, inflammation, and cell cycle in glycerol-induced acute renal failure. Kidney Int. 2006, 69 (8): 1385-1392.PubMed Homsi E, Janino P, de Faria JB: Role of caspases on cell death, inflammation, and cell cycle in glycerol-induced acute renal failure. Kidney Int. 2006, 69 (8): 1385-1392.PubMed
94.
Zurück zum Zitat Wang W, Faubel S, Ljubanovic D, Mitra A, Falk SA, Kim J, Tao Y, Soloviev A, Reznikov LL, Dinarello CA, et al: Endotoxemic acute renal failure is attenuated in caspase-1-deficient mice. Am J Physiol Renal Physiol. 2005, 288 (5): F997-F1004. 10.1152/ajprenal.00130.2004.PubMed Wang W, Faubel S, Ljubanovic D, Mitra A, Falk SA, Kim J, Tao Y, Soloviev A, Reznikov LL, Dinarello CA, et al: Endotoxemic acute renal failure is attenuated in caspase-1-deficient mice. Am J Physiol Renal Physiol. 2005, 288 (5): F997-F1004. 10.1152/ajprenal.00130.2004.PubMed
95.
Zurück zum Zitat Gauer S, Sichler O, Obermuller N, Holzmann Y, Kiss E, Sobkowiak E, Pfeilschifter J, Geiger H, Muhl H, Hauser IA: IL-18 is expressed in the intercalated cell of human kidney. Kidney Int. 2007, 72 (9): 1081-1087. 10.1038/sj.ki.5002473.PubMed Gauer S, Sichler O, Obermuller N, Holzmann Y, Kiss E, Sobkowiak E, Pfeilschifter J, Geiger H, Muhl H, Hauser IA: IL-18 is expressed in the intercalated cell of human kidney. Kidney Int. 2007, 72 (9): 1081-1087. 10.1038/sj.ki.5002473.PubMed
96.
Zurück zum Zitat Edelstein CL, Hoke TS, Somerset H, Fang W, Klein CL, Dinarello CA, Faubel S: Proximal tubules from caspase-1-deficient mice are protected against hypoxia-induced membrane injury. Nephrol Dial Transplant. 2007, 22 (4): 1052-1061. 10.1093/ndt/gfl775.PubMed Edelstein CL, Hoke TS, Somerset H, Fang W, Klein CL, Dinarello CA, Faubel S: Proximal tubules from caspase-1-deficient mice are protected against hypoxia-induced membrane injury. Nephrol Dial Transplant. 2007, 22 (4): 1052-1061. 10.1093/ndt/gfl775.PubMed
97.
Zurück zum Zitat Kinoshita K, Yamagata T, Nozaki Y, Sugiyama M, Ikoma S, Funauchi M, Kanamaru A: Blockade of IL-18 receptor signaling delays the onset of autoimmune disease in MRL-Faslpr mice. J Immunol. 2004, 173 (8): 5312-5318.PubMed Kinoshita K, Yamagata T, Nozaki Y, Sugiyama M, Ikoma S, Funauchi M, Kanamaru A: Blockade of IL-18 receptor signaling delays the onset of autoimmune disease in MRL-Faslpr mice. J Immunol. 2004, 173 (8): 5312-5318.PubMed
98.
Zurück zum Zitat VanderBrink BA, Asanuma H, Hile K, Zhang H, Rink RC, Meldrum KK: Interleukin-18 stimulates a positive feedback loop during renal obstruction via interleukin-18 receptor. J Urol. 2011, 186 (4): 1502-1508. 10.1016/j.juro.2011.05.046.PubMed VanderBrink BA, Asanuma H, Hile K, Zhang H, Rink RC, Meldrum KK: Interleukin-18 stimulates a positive feedback loop during renal obstruction via interleukin-18 receptor. J Urol. 2011, 186 (4): 1502-1508. 10.1016/j.juro.2011.05.046.PubMed
99.
Zurück zum Zitat Nuki G, Bresnihan B, Bear MB, McCabe D: Long-term safety and maintenance of clinical improvement following treatment with anakinra (recombinant human interleukin-1 receptor antagonist) in patients with rheumatoid arthritis: extension phase of a randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 2002, 46 (11): 2838-2846. 10.1002/art.10578.PubMed Nuki G, Bresnihan B, Bear MB, McCabe D: Long-term safety and maintenance of clinical improvement following treatment with anakinra (recombinant human interleukin-1 receptor antagonist) in patients with rheumatoid arthritis: extension phase of a randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 2002, 46 (11): 2838-2846. 10.1002/art.10578.PubMed
100.
Zurück zum Zitat Sumpter KM, Adhikari S, Grishman EK, White PC: Preliminary studies related to anti-interleukin-1beta therapy in children with newly diagnosed type 1 diabetes. Pediatr Diabetes. 2011, 12 (7): 656-667. 10.1111/j.1399-5448.2011.00761.x.PubMed Sumpter KM, Adhikari S, Grishman EK, White PC: Preliminary studies related to anti-interleukin-1beta therapy in children with newly diagnosed type 1 diabetes. Pediatr Diabetes. 2011, 12 (7): 656-667. 10.1111/j.1399-5448.2011.00761.x.PubMed
101.
Zurück zum Zitat Economides AN, Carpenter LR, Rudge JS, Wong V, Koehler-Stec EM, Hartnett C, Pyles EA, Xu X, Daly TJ, Young MR, et al: Cytokine traps: multi-component, high-affinity blockers of cytokine action. Nat Med. 2003, 9 (1): 47-52.PubMed Economides AN, Carpenter LR, Rudge JS, Wong V, Koehler-Stec EM, Hartnett C, Pyles EA, Xu X, Daly TJ, Young MR, et al: Cytokine traps: multi-component, high-affinity blockers of cytokine action. Nat Med. 2003, 9 (1): 47-52.PubMed
102.
Zurück zum Zitat Goldbach-Mansky R, Shroff SD, Wilson M, Snyder C, Plehn S, Barham B, Pham TH, Pucino F, Wesley RA, Papadopoulos JH, et al: A pilot study to evaluate the safety and efficacy of the long-acting interleukin-1 inhibitor rilonacept (interleukin-1 Trap) in patients with familial cold autoinflammatory syndrome. Arthritis Rheum. 2008, 58 (8): 2432-2442. 10.1002/art.23620.PubMedPubMedCentral Goldbach-Mansky R, Shroff SD, Wilson M, Snyder C, Plehn S, Barham B, Pham TH, Pucino F, Wesley RA, Papadopoulos JH, et al: A pilot study to evaluate the safety and efficacy of the long-acting interleukin-1 inhibitor rilonacept (interleukin-1 Trap) in patients with familial cold autoinflammatory syndrome. Arthritis Rheum. 2008, 58 (8): 2432-2442. 10.1002/art.23620.PubMedPubMedCentral
103.
Zurück zum Zitat Hoffman HM, Throne ML, Amar NJ, Sebai M, Kivitz AJ, Kavanaugh A, Weinstein SP, Belomestnov P, Yancopoulos GD, Stahl N, et al: Efficacy and safety of rilonacept (interleukin-1 Trap) in patients with cryopyrin-associated periodic syndromes: results from two sequential placebo-controlled studies. Arthritis Rheum. 2008, 58 (8): 2443-2452. 10.1002/art.23687.PubMed Hoffman HM, Throne ML, Amar NJ, Sebai M, Kivitz AJ, Kavanaugh A, Weinstein SP, Belomestnov P, Yancopoulos GD, Stahl N, et al: Efficacy and safety of rilonacept (interleukin-1 Trap) in patients with cryopyrin-associated periodic syndromes: results from two sequential placebo-controlled studies. Arthritis Rheum. 2008, 58 (8): 2443-2452. 10.1002/art.23687.PubMed
104.
Zurück zum Zitat Lachmann HJ, Kone-Paut I, Kuemmerle-Deschner JB, Leslie KS, Hachulla E, Quartier P, Gitton X, Widmer A, Patel N, Hawkins PN: Use of canakinumab in the cryopyrin-associated periodic syndrome. N Engl J Med. 2009, 360 (23): 2416-2425. 10.1056/NEJMoa0810787.PubMed Lachmann HJ, Kone-Paut I, Kuemmerle-Deschner JB, Leslie KS, Hachulla E, Quartier P, Gitton X, Widmer A, Patel N, Hawkins PN: Use of canakinumab in the cryopyrin-associated periodic syndrome. N Engl J Med. 2009, 360 (23): 2416-2425. 10.1056/NEJMoa0810787.PubMed
105.
Zurück zum Zitat Alten R, Gram H, Joosten LA, van den Berg WB, Sieper J, Wassenberg S, Burmester G, van Riel P, Diaz-Lorente M, Bruin GJ, et al: The human anti-IL-1 beta monoclonal antibody ACZ885 is effective in joint inflammation models in mice and in a proof-of-concept study in patients with rheumatoid arthritis. Arthritis Res Ther. 2008, 10 (3): R67-10.1186/ar2438.PubMedPubMedCentral Alten R, Gram H, Joosten LA, van den Berg WB, Sieper J, Wassenberg S, Burmester G, van Riel P, Diaz-Lorente M, Bruin GJ, et al: The human anti-IL-1 beta monoclonal antibody ACZ885 is effective in joint inflammation models in mice and in a proof-of-concept study in patients with rheumatoid arthritis. Arthritis Res Ther. 2008, 10 (3): R67-10.1186/ar2438.PubMedPubMedCentral
106.
Zurück zum Zitat So A, de Smedt T, Revaz S, Tschopp J: A pilot study of IL-1 inhibition by anakinra in acute gout. Arthritis Res Ther. 2007, 9 (2): R28-10.1186/ar2143.PubMedPubMedCentral So A, de Smedt T, Revaz S, Tschopp J: A pilot study of IL-1 inhibition by anakinra in acute gout. Arthritis Res Ther. 2007, 9 (2): R28-10.1186/ar2143.PubMedPubMedCentral
107.
Zurück zum Zitat Dostert C, Petrilli V, van Bruggen R, Steele C, Mossman BT, Tschopp J: Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science. 2008, 320 (5876): 674-677. 10.1126/science.1156995.PubMedPubMedCentral Dostert C, Petrilli V, van Bruggen R, Steele C, Mossman BT, Tschopp J: Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science. 2008, 320 (5876): 674-677. 10.1126/science.1156995.PubMedPubMedCentral
108.
Zurück zum Zitat Nordstrom D, Knight A, Luukkainen R, van Vollenhoven R, Rantalaiho V, Kajalainen A, Brun JG, Proven A, Ljung L, Kautiainen H, et al: Beneficial effect of interleukin 1 inhibition with Anakinra in adult-onset Still’s disease. An open, randomized, multicenter study. J Rheumatol. 2012, 39 (10): 2008-2011. 10.3899/jrheum.111549.PubMed Nordstrom D, Knight A, Luukkainen R, van Vollenhoven R, Rantalaiho V, Kajalainen A, Brun JG, Proven A, Ljung L, Kautiainen H, et al: Beneficial effect of interleukin 1 inhibition with Anakinra in adult-onset Still’s disease. An open, randomized, multicenter study. J Rheumatol. 2012, 39 (10): 2008-2011. 10.3899/jrheum.111549.PubMed
109.
Zurück zum Zitat Pascual V, Allantaz F, Arce E, Punaro M, Banchereau J: Role of interleukin-1 (IL-1) in the pathogenesis of systemic onset juvenile idiopathic arthritis and clinical response to IL-1 blockade. J Exp Med. 2005, 201 (9): 1479-1486. 10.1084/jem.20050473.PubMedPubMedCentral Pascual V, Allantaz F, Arce E, Punaro M, Banchereau J: Role of interleukin-1 (IL-1) in the pathogenesis of systemic onset juvenile idiopathic arthritis and clinical response to IL-1 blockade. J Exp Med. 2005, 201 (9): 1479-1486. 10.1084/jem.20050473.PubMedPubMedCentral
110.
Zurück zum Zitat Arulkumaran N, Unwin RJ, Tam FW: A potential therapeutic role for P2X7 receptor (P2X7R) antagonists in the treatment of inflammatory diseases. Expert Opin Investig Drugs. 2011, 20 (7): 897-915. 10.1517/13543784.2011.578068.PubMedPubMedCentral Arulkumaran N, Unwin RJ, Tam FW: A potential therapeutic role for P2X7 receptor (P2X7R) antagonists in the treatment of inflammatory diseases. Expert Opin Investig Drugs. 2011, 20 (7): 897-915. 10.1517/13543784.2011.578068.PubMedPubMedCentral
111.
Zurück zum Zitat Dell’Antonio G, Quattrini A, Dal Cin E, Fulgenzi A, Ferrero ME: Antinociceptive effect of a new P(2Z)/P2X7 antagonist, oxidized ATP, in arthritic rats. Neurosci Lett. 2002, 327 (2): 87-90. 10.1016/S0304-3940(02)00385-3.PubMed Dell’Antonio G, Quattrini A, Dal Cin E, Fulgenzi A, Ferrero ME: Antinociceptive effect of a new P(2Z)/P2X7 antagonist, oxidized ATP, in arthritic rats. Neurosci Lett. 2002, 327 (2): 87-90. 10.1016/S0304-3940(02)00385-3.PubMed
112.
Zurück zum Zitat Dell’Antonio G, Quattrini A, Cin ED, Fulgenzi A, Ferrero ME: Relief of inflammatory pain in rats by local use of the selective P2X7 ATP receptor inhibitor, oxidized ATP. Arthritis Rheum. 2002, 46 (12): 3378-3385. 10.1002/art.10678.PubMed Dell’Antonio G, Quattrini A, Cin ED, Fulgenzi A, Ferrero ME: Relief of inflammatory pain in rats by local use of the selective P2X7 ATP receptor inhibitor, oxidized ATP. Arthritis Rheum. 2002, 46 (12): 3378-3385. 10.1002/art.10678.PubMed
113.
Zurück zum Zitat Taylor SR, Turner CM, Elliott JI, McDaid J, Hewitt R, Smith J, Pickering MC, Whitehouse DL, Cook HT, Burnstock G, et al: P2X7 deficiency attenuates renal injury in experimental glomerulonephritis. J Am Soc Nephrol. 2009, 20 (6): 1275-1281. 10.1681/ASN.2008060559.PubMedPubMedCentral Taylor SR, Turner CM, Elliott JI, McDaid J, Hewitt R, Smith J, Pickering MC, Whitehouse DL, Cook HT, Burnstock G, et al: P2X7 deficiency attenuates renal injury in experimental glomerulonephritis. J Am Soc Nephrol. 2009, 20 (6): 1275-1281. 10.1681/ASN.2008060559.PubMedPubMedCentral
114.
Zurück zum Zitat Wareham K, Vial C, Wykes RC, Bradding P, Seward EP: Functional evidence for the expression of P2X1, P2X4 and P2X7 receptors in human lung mast cells. Br J Pharmacol. 2009, 157 (7): 1215-1224. 10.1111/j.1476-5381.2009.00287.x.PubMedPubMedCentral Wareham K, Vial C, Wykes RC, Bradding P, Seward EP: Functional evidence for the expression of P2X1, P2X4 and P2X7 receptors in human lung mast cells. Br J Pharmacol. 2009, 157 (7): 1215-1224. 10.1111/j.1476-5381.2009.00287.x.PubMedPubMedCentral
115.
Zurück zum Zitat Kolliputi N, Shaik RS, Waxman AB: The inflammasome mediates hyperoxia-induced alveolar cell permeability. J Immunol. 2010, 184 (10): 5819-5826. 10.4049/jimmunol.0902766.PubMedPubMedCentral Kolliputi N, Shaik RS, Waxman AB: The inflammasome mediates hyperoxia-induced alveolar cell permeability. J Immunol. 2010, 184 (10): 5819-5826. 10.4049/jimmunol.0902766.PubMedPubMedCentral
116.
Zurück zum Zitat Fernando SL, Saunders BM, Sluyter R, Skarratt KK, Goldberg H, Marks GB, Wiley JS, Britton WJ: A polymorphism in the P2X7 gene increases susceptibility to extrapulmonary tuberculosis. Am J Respir Crit Care Med. 2007, 175 (4): 360-366. 10.1164/rccm.200607-970OC.PubMed Fernando SL, Saunders BM, Sluyter R, Skarratt KK, Goldberg H, Marks GB, Wiley JS, Britton WJ: A polymorphism in the P2X7 gene increases susceptibility to extrapulmonary tuberculosis. Am J Respir Crit Care Med. 2007, 175 (4): 360-366. 10.1164/rccm.200607-970OC.PubMed
117.
Zurück zum Zitat Keystone EC, Wang MM, Layton M, Hollis S, McInnes IB: Clinical evaluation of the efficacy of the P2X7 purinergic receptor antagonist AZD9056 on the signs and symptoms of rheumatoid arthritis in patients with active disease despite treatment with methotrexate or sulphasalazine. Ann Rheum Dis. 2012, 71 (10): 1630-1635. 10.1136/annrheumdis-2011-143578.PubMed Keystone EC, Wang MM, Layton M, Hollis S, McInnes IB: Clinical evaluation of the efficacy of the P2X7 purinergic receptor antagonist AZD9056 on the signs and symptoms of rheumatoid arthritis in patients with active disease despite treatment with methotrexate or sulphasalazine. Ann Rheum Dis. 2012, 71 (10): 1630-1635. 10.1136/annrheumdis-2011-143578.PubMed
118.
Zurück zum Zitat Cornelis S, Kersse K, Festjens N, Lamkanfi M, Vandenabeele P: Inflammatory caspases: targets for novel therapies. Curr Pharm Des. 2007, 13 (4): 367-385. 10.2174/138161207780163006.PubMed Cornelis S, Kersse K, Festjens N, Lamkanfi M, Vandenabeele P: Inflammatory caspases: targets for novel therapies. Curr Pharm Des. 2007, 13 (4): 367-385. 10.2174/138161207780163006.PubMed
119.
Zurück zum Zitat Turner CM, Ramesh B, Srai SK, Burnstock G, Unwin RJ: Altered ATP-sensitive P2 receptor subtype expression in the Han:SPRD cy/+ rat, a model of autosomal dominant polycystic kidney disease. Cells Tissues Organs. 2004, 178 (3): 168-179. 10.1159/000082247.PubMed Turner CM, Ramesh B, Srai SK, Burnstock G, Unwin RJ: Altered ATP-sensitive P2 receptor subtype expression in the Han:SPRD cy/+ rat, a model of autosomal dominant polycystic kidney disease. Cells Tissues Organs. 2004, 178 (3): 168-179. 10.1159/000082247.PubMed
120.
Zurück zum Zitat von Bernuth H, Picard C, Jin Z, Pankla R, Xiao H, Ku CL, Chrabieh M, Mustapha IB, Ghandil P, Camcioglu Y, et al: Pyogenic bacterial infections in humans with MyD88 deficiency. Science. 2008, 321 (5889): 691-696. 10.1126/science.1158298.PubMedPubMedCentral von Bernuth H, Picard C, Jin Z, Pankla R, Xiao H, Ku CL, Chrabieh M, Mustapha IB, Ghandil P, Camcioglu Y, et al: Pyogenic bacterial infections in humans with MyD88 deficiency. Science. 2008, 321 (5889): 691-696. 10.1126/science.1158298.PubMedPubMedCentral
121.
Zurück zum Zitat Mulay SR, Kulkarni OP, Rupanagudi KV, Migliorini A, Darisipudi MN, Vilaysane A, Muruve D, Shi Y, Munro F, Liapis H, et al: Calcium oxalate crystals induce renal inflammation by NLRP3-mediated IL-1beta secretion. J Clin Invest. 2013, 123 (1): 236-246. 10.1172/JCI63679.PubMed Mulay SR, Kulkarni OP, Rupanagudi KV, Migliorini A, Darisipudi MN, Vilaysane A, Muruve D, Shi Y, Munro F, Liapis H, et al: Calcium oxalate crystals induce renal inflammation by NLRP3-mediated IL-1beta secretion. J Clin Invest. 2013, 123 (1): 236-246. 10.1172/JCI63679.PubMed
122.
Zurück zum Zitat Knauf F, Asplin JR, Granja I, Schmidt IM, Moeckel GW, David RJ, Flavell RA, Aronson PS: NALP3-mediated inflammation is a principal cause of progressive renal failure in oxalate nephropathy. Kidney Int. 2013, 84 (5): 895-901. 10.1038/ki.2013.207.PubMedPubMedCentral Knauf F, Asplin JR, Granja I, Schmidt IM, Moeckel GW, David RJ, Flavell RA, Aronson PS: NALP3-mediated inflammation is a principal cause of progressive renal failure in oxalate nephropathy. Kidney Int. 2013, 84 (5): 895-901. 10.1038/ki.2013.207.PubMedPubMedCentral
123.
Zurück zum Zitat Shigeoka AA, Mueller JL, Kambo A, Mathison JC, King AJ, Hall WF, Correia Jda S, Ulevitch RJ, Hoffman HM, McKay DB: An inflammasome-independent role for epithelial-expressed Nlrp3 in renal ischemia-reperfusion injury. J Immunol. 2010, 185 (10): 6277-6285. 10.4049/jimmunol.1002330.PubMedPubMedCentral Shigeoka AA, Mueller JL, Kambo A, Mathison JC, King AJ, Hall WF, Correia Jda S, Ulevitch RJ, Hoffman HM, McKay DB: An inflammasome-independent role for epithelial-expressed Nlrp3 in renal ischemia-reperfusion injury. J Immunol. 2010, 185 (10): 6277-6285. 10.4049/jimmunol.1002330.PubMedPubMedCentral
124.
Zurück zum Zitat Fujita T, Ogihara N, Kamura Y, Satomura A, Fuke Y, Shimizu C, Wada Y, Matsumoto K: Interleukin-18 contributes more closely to the progression of diabetic nephropathy than other diabetic complications. Acta Diabetol. 2012, 49 (2): 111-117. 10.1007/s00592-010-0178-4.PubMed Fujita T, Ogihara N, Kamura Y, Satomura A, Fuke Y, Shimizu C, Wada Y, Matsumoto K: Interleukin-18 contributes more closely to the progression of diabetic nephropathy than other diabetic complications. Acta Diabetol. 2012, 49 (2): 111-117. 10.1007/s00592-010-0178-4.PubMed
125.
Zurück zum Zitat Siew ED, Ikizler TA, Gebretsadik T, Shintani A, Wickersham N, Bossert F, Peterson JF, Parikh CR, May AK, Ware LB: Elevated urinary IL-18 levels at the time of ICU admission predict adverse clinical outcomes. Clin J Am Soc Nephrol. 2010, 5 (8): 1497-1505. 10.2215/CJN.09061209.PubMedPubMedCentral Siew ED, Ikizler TA, Gebretsadik T, Shintani A, Wickersham N, Bossert F, Peterson JF, Parikh CR, May AK, Ware LB: Elevated urinary IL-18 levels at the time of ICU admission predict adverse clinical outcomes. Clin J Am Soc Nephrol. 2010, 5 (8): 1497-1505. 10.2215/CJN.09061209.PubMedPubMedCentral
126.
Zurück zum Zitat Parikh CR, Mishra J, Thiessen-Philbrook H, Dursun B, Ma Q, Kelly C, Dent C, Devarajan P, Edelstein CL: Urinary IL-18 is an early predictive biomarker of acute kidney injury after cardiac surgery. Kidney Int. 2006, 70 (1): 199-203. 10.1038/sj.ki.5001527.PubMed Parikh CR, Mishra J, Thiessen-Philbrook H, Dursun B, Ma Q, Kelly C, Dent C, Devarajan P, Edelstein CL: Urinary IL-18 is an early predictive biomarker of acute kidney injury after cardiac surgery. Kidney Int. 2006, 70 (1): 199-203. 10.1038/sj.ki.5001527.PubMed
127.
Zurück zum Zitat Turkmen F, Isitmangil G, Berber I, Arslan G, Sevinc C, Ozdemir A: Comparison of serum creatinine and spot urine interleukin-18 levels following radiocontrast administration. Indian J Nephrol. 2012, 22 (3): 196-199. 10.4103/0971-4065.98756.PubMedPubMedCentral Turkmen F, Isitmangil G, Berber I, Arslan G, Sevinc C, Ozdemir A: Comparison of serum creatinine and spot urine interleukin-18 levels following radiocontrast administration. Indian J Nephrol. 2012, 22 (3): 196-199. 10.4103/0971-4065.98756.PubMedPubMedCentral
128.
Zurück zum Zitat Mizobuchi M, Towler D, Slatopolsky E: Vascular calcification: the killer of patients with chronic kidney disease. J Am Soc Nephrol. 2009, 20 (7): 1453-1464. 10.1681/ASN.2008070692.PubMed Mizobuchi M, Towler D, Slatopolsky E: Vascular calcification: the killer of patients with chronic kidney disease. J Am Soc Nephrol. 2009, 20 (7): 1453-1464. 10.1681/ASN.2008070692.PubMed
129.
Zurück zum Zitat Gangemi S, Mallamace A, Minciullo PL, Santoro D, Merendino RA, Savica V, Bellinghieri G: Involvement of interleukin-18 in patients on maintenance haemodialysis. Am J Nephrol. 2002, 22 (5–6): 417-421.PubMed Gangemi S, Mallamace A, Minciullo PL, Santoro D, Merendino RA, Savica V, Bellinghieri G: Involvement of interleukin-18 in patients on maintenance haemodialysis. Am J Nephrol. 2002, 22 (5–6): 417-421.PubMed
130.
Zurück zum Zitat Fukami A, Yamagishi S, Adachi H, Matsui T, Yoshikawa K, Ogata K, Kasahara A, Tsukagawa E, Yokoi K, Imaizumi T: High white blood cell count and low estimated glomerular filtration rate are independently associated with serum level of monocyte chemoattractant protein-1 in a general population. Clin Cardiol. 2011, 34 (3): 189-194. 10.1002/clc.20834.PubMed Fukami A, Yamagishi S, Adachi H, Matsui T, Yoshikawa K, Ogata K, Kasahara A, Tsukagawa E, Yokoi K, Imaizumi T: High white blood cell count and low estimated glomerular filtration rate are independently associated with serum level of monocyte chemoattractant protein-1 in a general population. Clin Cardiol. 2011, 34 (3): 189-194. 10.1002/clc.20834.PubMed
131.
Zurück zum Zitat Ranjbaran H, Sokol SI, Gallo A, Eid RE, Iakimov AO, D’Alessio A, Kapoor JR, Akhtar S, Howes CJ, Aslan M, et al: An inflammatory pathway of IFN-gamma production in coronary atherosclerosis. J Immunol. 2007, 178 (1): 592-604.PubMed Ranjbaran H, Sokol SI, Gallo A, Eid RE, Iakimov AO, D’Alessio A, Kapoor JR, Akhtar S, Howes CJ, Aslan M, et al: An inflammatory pathway of IFN-gamma production in coronary atherosclerosis. J Immunol. 2007, 178 (1): 592-604.PubMed
132.
Zurück zum Zitat Whitman SC, Ravisankar P, Daugherty A: Interleukin-18 enhances atherosclerosis in apolipoprotein E(−/−) mice through release of interferon-gamma. Circ Res. 2002, 90 (2): E34-E38. 10.1161/hh0202.105292.PubMed Whitman SC, Ravisankar P, Daugherty A: Interleukin-18 enhances atherosclerosis in apolipoprotein E(−/−) mice through release of interferon-gamma. Circ Res. 2002, 90 (2): E34-E38. 10.1161/hh0202.105292.PubMed
133.
Zurück zum Zitat Mallat Z, Corbaz A, Scoazec A, Besnard S, Leseche G, Chvatchko Y, Tedgui A: Expression of interleukin-18 in human atherosclerotic plaques and relation to plaque instability. Circulation. 2001, 104 (14): 1598-1603. 10.1161/hc3901.096721.PubMed Mallat Z, Corbaz A, Scoazec A, Besnard S, Leseche G, Chvatchko Y, Tedgui A: Expression of interleukin-18 in human atherosclerotic plaques and relation to plaque instability. Circulation. 2001, 104 (14): 1598-1603. 10.1161/hc3901.096721.PubMed
134.
Zurück zum Zitat Porazko T, Kuzniar J, Kusztal M, Kuzniar TJ, Weyde W, Kuriata-Kordek M, Klinger M: IL-18 is involved in vascular injury in end-stage renal disease patients. Nephrol Dial Transplant. 2009, 24 (2): 589-596.PubMed Porazko T, Kuzniar J, Kusztal M, Kuzniar TJ, Weyde W, Kuriata-Kordek M, Klinger M: IL-18 is involved in vascular injury in end-stage renal disease patients. Nephrol Dial Transplant. 2009, 24 (2): 589-596.PubMed
135.
Zurück zum Zitat Covic A, Haydar AA, Bhamra-Ariza P, Gusbeth-Tatomir P, Goldsmith DJ: Aortic pulse wave velocity and arterial wave reflections predict the extent and severity of coronary artery disease in chronic kidney disease patients. J Nephrol. 2005, 18 (4): 388-396.PubMed Covic A, Haydar AA, Bhamra-Ariza P, Gusbeth-Tatomir P, Goldsmith DJ: Aortic pulse wave velocity and arterial wave reflections predict the extent and severity of coronary artery disease in chronic kidney disease patients. J Nephrol. 2005, 18 (4): 388-396.PubMed
136.
Zurück zum Zitat Arulkumaran N, Annear NM, Singer M: Patients with end-stage renal disease admitted to the intensive care unit: systematic review. Br J Anaesth. 2013, 110 (1): 13-20. 10.1093/bja/aes401.PubMed Arulkumaran N, Annear NM, Singer M: Patients with end-stage renal disease admitted to the intensive care unit: systematic review. Br J Anaesth. 2013, 110 (1): 13-20. 10.1093/bja/aes401.PubMed
137.
Zurück zum Zitat le Meur Y, Lorgeot V, Aldigier JC, Wijdenes J, Leroux-Robert C, Praloran V: Whole blood production of monocytic cytokines (IL-1beta, IL-6, TNF-alpha, sIL-6R, IL-1Ra) in haemodialysed patients. Nephrol Dial Transplant. 1999, 14 (10): 2420-2426. 10.1093/ndt/14.10.2420.PubMed le Meur Y, Lorgeot V, Aldigier JC, Wijdenes J, Leroux-Robert C, Praloran V: Whole blood production of monocytic cytokines (IL-1beta, IL-6, TNF-alpha, sIL-6R, IL-1Ra) in haemodialysed patients. Nephrol Dial Transplant. 1999, 14 (10): 2420-2426. 10.1093/ndt/14.10.2420.PubMed
138.
Zurück zum Zitat Pereira BJ, Shapiro L, King AJ, Falagas ME, Strom JA, Dinarello CA: Plasma levels of IL-1 beta, TNF alpha and their specific inhibitors in undialyzed chronic renal failure, CAPD and hemodialysis patients. Kidney Int. 1994, 45 (3): 890-896. 10.1038/ki.1994.117.PubMed Pereira BJ, Shapiro L, King AJ, Falagas ME, Strom JA, Dinarello CA: Plasma levels of IL-1 beta, TNF alpha and their specific inhibitors in undialyzed chronic renal failure, CAPD and hemodialysis patients. Kidney Int. 1994, 45 (3): 890-896. 10.1038/ki.1994.117.PubMed
Metadaten
Titel
Is the inflammasome a potential therapeutic target in renal disease?
verfasst von
Clare M Turner
Nishkantha Arulkumaran
Mervyn Singer
Robert J Unwin
Frederick WK Tam
Publikationsdatum
01.12.2014
Verlag
BioMed Central
Erschienen in
BMC Nephrology / Ausgabe 1/2014
Elektronische ISSN: 1471-2369
DOI
https://doi.org/10.1186/1471-2369-15-21

Weitere Artikel der Ausgabe 1/2014

BMC Nephrology 1/2014 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Echinokokkose medikamentös behandeln oder operieren?

06.05.2024 DCK 2024 Kongressbericht

Die Therapie von Echinokokkosen sollte immer in spezialisierten Zentren erfolgen. Eine symptomlose Echinokokkose kann – egal ob von Hunde- oder Fuchsbandwurm ausgelöst – konservativ erfolgen. Wenn eine Op. nötig ist, kann es sinnvoll sein, vorher Zysten zu leeren und zu desinfizieren. 

Umsetzung der POMGAT-Leitlinie läuft

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

Proximale Humerusfraktur: Auch 100-Jährige operieren?

01.05.2024 DCK 2024 Kongressbericht

Mit dem demographischen Wandel versorgt auch die Chirurgie immer mehr betagte Menschen. Von Entwicklungen wie Fast-Track können auch ältere Menschen profitieren und bei proximaler Humerusfraktur können selbst manche 100-Jährige noch sicher operiert werden.

Die „Zehn Gebote“ des Endokarditis-Managements

30.04.2024 Endokarditis Leitlinie kompakt

Worauf kommt es beim Management von Personen mit infektiöser Endokarditis an? Eine Kardiologin und ein Kardiologe fassen die zehn wichtigsten Punkte der neuen ESC-Leitlinie zusammen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.