Skip to main content
Erschienen in: Diabetologia 2/2004

01.02.2004 | Review

Modulation of insulin action

verfasst von: L. Pirola, A. M. Johnston, Prof. Dr. E. Van Obberghen

Erschienen in: Diabetologia | Ausgabe 2/2004

Einloggen, um Zugang zu erhalten

Abstract

Insulin is a key hormone regulating the control of metabolism and the maintenance of normoglycaemia and normolipidaemia. Insulin acts by binding to its cell surface receptor, thus activating the receptor’s intrinsic tyrosine kinase activity, resulting in receptor autophosphorylation and phosphorylation of several substrates. Tyrosine phosphorylated residues on the receptor itself and on subsequently bound receptor substrates provide docking sites for downstream signalling molecules, including adapters, protein serine/threonine kinases, phosphoinositide kinases and exchange factors. Collectively, those molecules orchestrate the numerous insulin-mediated physiological responses.
A clear picture is emerging of the way in which insulin elicits several intracellular signalling pathways to mediate its physiologic functions. A further challenge, being pursued by several laboratories, is to understand the molecular mechanisms that underlie insulin action at the peripheral level, deregulation of which ultimately leads to hyperglycaemia and Type 2 diabetes.
We review how circulating factors such as insulin itself, TNF-α, interleukins, fatty acids and glycation products influence insulin action through insulin signalling molecules themselves or through other pathways ultimately impinging on the insulin-signalling pathway. Understanding how the mechanism by which molecular insulin action is modulated by these factors will potentially provide new targets for pharmacological agents, to enable the control of altered glucose and lipid metabolism and diabetes.
Literatur
1.
2.
Zurück zum Zitat Kido Y, Nakae J, Accili D (2001) Clinical review 125: the insulin receptor and its cellular targets. J Clin Endocrinol Metab 86:972–979PubMed Kido Y, Nakae J, Accili D (2001) Clinical review 125: the insulin receptor and its cellular targets. J Clin Endocrinol Metab 86:972–979PubMed
3.
Zurück zum Zitat Cai D, Dhe-Paganon S, Melendez PA, Lee J, Shoelson SE (2003) Two new substrates in insulin signaling, IRS5/DOK4 and IRS6/DOK5. J Biol Chem 278:25323–25330CrossRefPubMed Cai D, Dhe-Paganon S, Melendez PA, Lee J, Shoelson SE (2003) Two new substrates in insulin signaling, IRS5/DOK4 and IRS6/DOK5. J Biol Chem 278:25323–25330CrossRefPubMed
4.
5.
Zurück zum Zitat Saltiel AR, Kahn CR (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414:799–806CrossRefPubMed Saltiel AR, Kahn CR (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414:799–806CrossRefPubMed
6.
Zurück zum Zitat Bertrand F, Atfi A, Cadoret A et al. (1998) A role for nuclear factor kappaB in the antiapoptotic function of insulin. J Biol Chem 273:2931–2938CrossRefPubMed Bertrand F, Atfi A, Cadoret A et al. (1998) A role for nuclear factor kappaB in the antiapoptotic function of insulin. J Biol Chem 273:2931–2938CrossRefPubMed
7.
Zurück zum Zitat Pandey SK, He HJ, Chesley A, Juhaszova M, Crow MT, Bernier M (2002) Wortmannin-sensitive pathway is required for insulin-stimulated phosphorylation of inhibitor kappaBalpha. Endocrinology 143:375–385PubMed Pandey SK, He HJ, Chesley A, Juhaszova M, Crow MT, Bernier M (2002) Wortmannin-sensitive pathway is required for insulin-stimulated phosphorylation of inhibitor kappaBalpha. Endocrinology 143:375–385PubMed
8.
Zurück zum Zitat Vanhaesebroeck B, Alessi DR (2000) The PI3K-PDK1 connection: more than just a road to PKB. Biochem J 346:561–576PubMed Vanhaesebroeck B, Alessi DR (2000) The PI3K-PDK1 connection: more than just a road to PKB. Biochem J 346:561–576PubMed
9.
Zurück zum Zitat Brazil DP, Hemmings BA (2001) Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem Sci 26:657–664CrossRefPubMed Brazil DP, Hemmings BA (2001) Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem Sci 26:657–664CrossRefPubMed
10.
Zurück zum Zitat Khan AH, Pessin JE (2002) Insulin regulation of glucose uptake: a complex interplay of intracellular signalling pathways. Diabetologia 45:1475–1483 Khan AH, Pessin JE (2002) Insulin regulation of glucose uptake: a complex interplay of intracellular signalling pathways. Diabetologia 45:1475–1483
11.
Zurück zum Zitat Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378:785–789PubMed Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378:785–789PubMed
12.
Zurück zum Zitat Girard J, Perdereau D, Foufelle F, Prip-Buus C, Ferre P (1994) Regulation of lipogenic enzyme gene expression by nutrients and hormones. FASEB J 8:36–42PubMed Girard J, Perdereau D, Foufelle F, Prip-Buus C, Ferre P (1994) Regulation of lipogenic enzyme gene expression by nutrients and hormones. FASEB J 8:36–42PubMed
13.
Zurück zum Zitat O’Brien RM, Streeper RS, Ayala JE, Stadelmaier BT, Hornbuckle LA (2001) Insulin-regulated gene expression. Biochem Soc Trans 29:552–558PubMed O’Brien RM, Streeper RS, Ayala JE, Stadelmaier BT, Hornbuckle LA (2001) Insulin-regulated gene expression. Biochem Soc Trans 29:552–558PubMed
14.
Zurück zum Zitat Baumann CA, Ribon V, Kanzaki M et al. (2000) CAP defines a second signalling pathway required for insulin-stimulated glucose transport. Nature 407:202–207PubMed Baumann CA, Ribon V, Kanzaki M et al. (2000) CAP defines a second signalling pathway required for insulin-stimulated glucose transport. Nature 407:202–207PubMed
15.
Zurück zum Zitat Chiang SH, Baumann CA, Kanzaki M et al. (2001) Insulin-stimulated GLUT4 translocation requires the CAP-dependent activation of TC10. Nature 410:944–948PubMed Chiang SH, Baumann CA, Kanzaki M et al. (2001) Insulin-stimulated GLUT4 translocation requires the CAP-dependent activation of TC10. Nature 410:944–948PubMed
16.
Zurück zum Zitat Chiang SH, Hwang J, Legendre M, Zhang M, Kimura A, Saltiel AR (2003) TCGAP, a multidomain Rho GTPase-activating protein involved in insulin-stimulated glucose transport. EMBO J 22:2679–2691CrossRefPubMed Chiang SH, Hwang J, Legendre M, Zhang M, Kimura A, Saltiel AR (2003) TCGAP, a multidomain Rho GTPase-activating protein involved in insulin-stimulated glucose transport. EMBO J 22:2679–2691CrossRefPubMed
17.
Zurück zum Zitat Somwar R, Koterski S, Sweeney G et al. (2002) A dominant-negative p38 MAPK mutant and novel selective inhibitors of p38 MAPK reduce insulin-stimulated glucose uptake in 3T3-L1 adipocytes without affecting GLUT4 translocation. J Biol Chem 277:50386–50395CrossRefPubMed Somwar R, Koterski S, Sweeney G et al. (2002) A dominant-negative p38 MAPK mutant and novel selective inhibitors of p38 MAPK reduce insulin-stimulated glucose uptake in 3T3-L1 adipocytes without affecting GLUT4 translocation. J Biol Chem 277:50386–50395CrossRefPubMed
18.
Zurück zum Zitat Kahn SE (2003) The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of Type 2 diabetes. Diabetologia 46:3–19 Kahn SE (2003) The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of Type 2 diabetes. Diabetologia 46:3–19
19.
Zurück zum Zitat Kahn CR, Bruning JC, Michael MD, Kulkarni RN (2000) Knockout mice challenge our concepts of glucose homeostasis and the pathogenesis of diabetes mellitus. J Pediatr Endocrinol Metab 13:1377–1384PubMed Kahn CR, Bruning JC, Michael MD, Kulkarni RN (2000) Knockout mice challenge our concepts of glucose homeostasis and the pathogenesis of diabetes mellitus. J Pediatr Endocrinol Metab 13:1377–1384PubMed
20.
Zurück zum Zitat Hribal ML, Perego L, Lovari S et al. (2003) Chronic hyperglycemia impairs insulin secretion by affecting insulin receptor expression, splicing, and signaling in RIN beta cell line and human islets of Langerhans. FASEB J 17:1340–1342PubMed Hribal ML, Perego L, Lovari S et al. (2003) Chronic hyperglycemia impairs insulin secretion by affecting insulin receptor expression, splicing, and signaling in RIN beta cell line and human islets of Langerhans. FASEB J 17:1340–1342PubMed
21.
Zurück zum Zitat Sesti G (2002) Apoptosis in the beta cells: cause or consequence of insulin secretion defect in diabetes? Ann Med 34:444–450CrossRefPubMed Sesti G (2002) Apoptosis in the beta cells: cause or consequence of insulin secretion defect in diabetes? Ann Med 34:444–450CrossRefPubMed
22.
Zurück zum Zitat LeRoith D (2002) Beta-cell dysfunction and insulin resistance in type 2 diabetes: role of metabolic and genetic abnormalities. Am J Med 113:3S–11SCrossRefPubMed LeRoith D (2002) Beta-cell dysfunction and insulin resistance in type 2 diabetes: role of metabolic and genetic abnormalities. Am J Med 113:3S–11SCrossRefPubMed
23.
Zurück zum Zitat Accili D, Cama A, Barbetti F, Kadowaki H, Kadowaki T, Taylor SI (1992) Insulin resistance due to mutations of the insulin receptor gene: an overview. J Endocrinol Invest 15:857–864PubMed Accili D, Cama A, Barbetti F, Kadowaki H, Kadowaki T, Taylor SI (1992) Insulin resistance due to mutations of the insulin receptor gene: an overview. J Endocrinol Invest 15:857–864PubMed
24.
Zurück zum Zitat Le Marchand-Brustel Y, Gremeaux T, Ballotti R, Van Obberghen E (1985) Insulin receptor tyrosine kinase is defective in skeletal muscle of insulin-resistant obese mice. Nature 315:676–679PubMed Le Marchand-Brustel Y, Gremeaux T, Ballotti R, Van Obberghen E (1985) Insulin receptor tyrosine kinase is defective in skeletal muscle of insulin-resistant obese mice. Nature 315:676–679PubMed
25.
Zurück zum Zitat Arner P, Pollare T, Lithell H, Livingston JN (1987) Defective insulin receptor tyrosine kinase in human skeletal muscle in obesity and type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 30:437–440PubMed Arner P, Pollare T, Lithell H, Livingston JN (1987) Defective insulin receptor tyrosine kinase in human skeletal muscle in obesity and type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 30:437–440PubMed
26.
Zurück zum Zitat Harrison LC, Itin A, Kasuga M, Van Obberghen E (1982) The insulin receptor on the human lymphocyte: insulin-induced down-regulation of 126,000 and 90,000 glycosylated subunits. Diabetologia 22:233–238PubMed Harrison LC, Itin A, Kasuga M, Van Obberghen E (1982) The insulin receptor on the human lymphocyte: insulin-induced down-regulation of 126,000 and 90,000 glycosylated subunits. Diabetologia 22:233–238PubMed
27.
Zurück zum Zitat Taylor SI, Samuels B, Roth J et al. (1982) Decreased insulin binding in cultured lymphocytes from two patients with extreme insulin resistance. J Clin Endocrinol Metab 54:919–930PubMed Taylor SI, Samuels B, Roth J et al. (1982) Decreased insulin binding in cultured lymphocytes from two patients with extreme insulin resistance. J Clin Endocrinol Metab 54:919–930PubMed
28.
Zurück zum Zitat Bossenmaier B, Strack V, Stoyanov B et al. (2000) Serine residues 1177/78/82 of the insulin receptor are required for substrate phosphorylation but not autophosphorylation. Diabetes 49:889–895PubMed Bossenmaier B, Strack V, Stoyanov B et al. (2000) Serine residues 1177/78/82 of the insulin receptor are required for substrate phosphorylation but not autophosphorylation. Diabetes 49:889–895PubMed
29.
Zurück zum Zitat Federici M, Lauro D, D’Adamo M et al. (1998) Expression of insulin/IGF-I hybrid receptors is increased in skeletal muscle of patients with chronic primary hyperinsulinemia. Diabetes 47:87–92PubMed Federici M, Lauro D, D’Adamo M et al. (1998) Expression of insulin/IGF-I hybrid receptors is increased in skeletal muscle of patients with chronic primary hyperinsulinemia. Diabetes 47:87–92PubMed
30.
Zurück zum Zitat Federici M, Porzio O, Lauro D et al. (1998) Increased abundance of insulin/insulin-like growth factor-I hybrid receptors in skeletal muscle of obese subjects is correlated with in vivo insulin sensitivity. J Clin Endocrinol Metab 83:2911–2915PubMed Federici M, Porzio O, Lauro D et al. (1998) Increased abundance of insulin/insulin-like growth factor-I hybrid receptors in skeletal muscle of obese subjects is correlated with in vivo insulin sensitivity. J Clin Endocrinol Metab 83:2911–2915PubMed
31.
Zurück zum Zitat Zhang B, Salituro G, Szalkowski D et al. (1999) Discovery of a small molecule insulin mimetic with antidiabetic activity in mice. Science 284:974–977CrossRefPubMed Zhang B, Salituro G, Szalkowski D et al. (1999) Discovery of a small molecule insulin mimetic with antidiabetic activity in mice. Science 284:974–977CrossRefPubMed
32.
Zurück zum Zitat Saad MJ, Araki E, Miralpeix M, Rothenberg PL, White MF, Kahn CR (1992) Regulation of insulin receptor substrate-1 in liver and muscle of animal models of insulin resistance. J Clin Invest 90:1839–1849PubMed Saad MJ, Araki E, Miralpeix M, Rothenberg PL, White MF, Kahn CR (1992) Regulation of insulin receptor substrate-1 in liver and muscle of animal models of insulin resistance. J Clin Invest 90:1839–1849PubMed
33.
Zurück zum Zitat Jullien D, Tanti JF, Heydrick SJ et al. (1993) Differential effects of okadaic acid on insulin-stimulated glucose and amino acid uptake and phosphatidylinositol 3-kinase activity. J Biol Chem 268:15246–15251PubMed Jullien D, Tanti JF, Heydrick SJ et al. (1993) Differential effects of okadaic acid on insulin-stimulated glucose and amino acid uptake and phosphatidylinositol 3-kinase activity. J Biol Chem 268:15246–15251PubMed
34.
Zurück zum Zitat Roth RA, Liu F, Chin JE (1994) Biochemical mechanisms of insulin resistance. Horm Res 41:51–55PubMed Roth RA, Liu F, Chin JE (1994) Biochemical mechanisms of insulin resistance. Horm Res 41:51–55PubMed
35.
Zurück zum Zitat Qiao LY, Goldberg JL, Russell JC, Sun XJ (1999) Identification of enhanced serine kinase activity in insulin resistance. J Biol Chem 274:10625–10632CrossRefPubMed Qiao LY, Goldberg JL, Russell JC, Sun XJ (1999) Identification of enhanced serine kinase activity in insulin resistance. J Biol Chem 274:10625–10632CrossRefPubMed
36.
Zurück zum Zitat Sun XJ, Goldberg JL, Qiao LY, Mitchell JJ (1999) Insulin-induced insulin receptor substrate-1 degradation is mediated by the proteasome degradation pathway. Diabetes 48:1359–1364 Sun XJ, Goldberg JL, Qiao LY, Mitchell JJ (1999) Insulin-induced insulin receptor substrate-1 degradation is mediated by the proteasome degradation pathway. Diabetes 48:1359–1364
37.
Zurück zum Zitat Haruta T, Uno T, Kawahara J et al. (2000) A rapamycin-sensitive pathway down-regulates insulin signaling via phosphorylation and proteasomal degradation of insulin receptor substrate-1. Mol Endocrinol 14:783–794PubMed Haruta T, Uno T, Kawahara J et al. (2000) A rapamycin-sensitive pathway down-regulates insulin signaling via phosphorylation and proteasomal degradation of insulin receptor substrate-1. Mol Endocrinol 14:783–794PubMed
38.
Zurück zum Zitat Tzivion G, Avruch J (2002) 14-3-3 proteins: active cofactors in cellular regulation by serine/threonine phosphorylation. J Biol Chem 277:3061–3064CrossRefPubMed Tzivion G, Avruch J (2002) 14-3-3 proteins: active cofactors in cellular regulation by serine/threonine phosphorylation. J Biol Chem 277:3061–3064CrossRefPubMed
39.
Zurück zum Zitat Craparo A, Freund R, Gustafson TA (1997) 14-3-3 (epsilon) interacts with the insulin-like growth factor I receptor and insulin receptor substrate I in a phosphoserine-dependent manner. J Biol Chem 272:11663–11669CrossRefPubMed Craparo A, Freund R, Gustafson TA (1997) 14-3-3 (epsilon) interacts with the insulin-like growth factor I receptor and insulin receptor substrate I in a phosphoserine-dependent manner. J Biol Chem 272:11663–11669CrossRefPubMed
40.
Zurück zum Zitat Ogihara T, Isobe T, Ichimura T et al. (1997) 14-3-3 protein binds to insulin receptor substrate-1, one of the binding sites of which is in the phosphotyrosine binding domain. J Biol Chem 272:25267–25274CrossRefPubMed Ogihara T, Isobe T, Ichimura T et al. (1997) 14-3-3 protein binds to insulin receptor substrate-1, one of the binding sites of which is in the phosphotyrosine binding domain. J Biol Chem 272:25267–25274CrossRefPubMed
41.
Zurück zum Zitat Kosaki A, Yamada K, Suga J, Otaka A, Kuzuya H (1998) 14-3-3beta protein associates with insulin receptor substrate 1 and decreases insulin-stimulated phosphatidylinositol 3′-kinase activity in 3T3L1 adipocytes. J Biol Chem 273:940–944CrossRefPubMed Kosaki A, Yamada K, Suga J, Otaka A, Kuzuya H (1998) 14-3-3beta protein associates with insulin receptor substrate 1 and decreases insulin-stimulated phosphatidylinositol 3′-kinase activity in 3T3L1 adipocytes. J Biol Chem 273:940–944CrossRefPubMed
42.
Zurück zum Zitat Xiang X, Yuan M, Song Y, Ruderman N, Wen R, Luo Z (2002) 14-3-3 facilitates insulin-stimulated intracellular trafficking of insulin receptor substrate 1. Mol Endocrinol 16:552–562PubMed Xiang X, Yuan M, Song Y, Ruderman N, Wen R, Luo Z (2002) 14-3-3 facilitates insulin-stimulated intracellular trafficking of insulin receptor substrate 1. Mol Endocrinol 16:552–562PubMed
43.
Zurück zum Zitat Dhand R, Hiles I, Panayotou G et al. (1994) PI 3-kinase is a dual specificity enzyme: autoregulation by an intrinsic protein-serine kinase activity. EMBO J 13:522–533PubMed Dhand R, Hiles I, Panayotou G et al. (1994) PI 3-kinase is a dual specificity enzyme: autoregulation by an intrinsic protein-serine kinase activity. EMBO J 13:522–533PubMed
44.
Zurück zum Zitat Lam K, Carpenter CL, Ruderman NB, Friel JC, Kelly KL (1994) The phosphatidylinositol 3-kinase serine kinase phosphorylates IRS-1. Stimulation by insulin and inhibition by Wortmannin. J Biol Chem 269:20648–20652PubMed Lam K, Carpenter CL, Ruderman NB, Friel JC, Kelly KL (1994) The phosphatidylinositol 3-kinase serine kinase phosphorylates IRS-1. Stimulation by insulin and inhibition by Wortmannin. J Biol Chem 269:20648–20652PubMed
45.
Zurück zum Zitat Egawa K, Sharma PM, Nakashima N et al. (1999) Membrane-targeted phosphatidylinositol 3-kinase mimics insulin actions and induces a state of cellular insulin resistance. J Biol Chem 274:14306–14314CrossRefPubMed Egawa K, Sharma PM, Nakashima N et al. (1999) Membrane-targeted phosphatidylinositol 3-kinase mimics insulin actions and induces a state of cellular insulin resistance. J Biol Chem 274:14306–14314CrossRefPubMed
46.
Zurück zum Zitat Eldar-Finkelman H, Krebs EG (1997) Phosphorylation of insulin receptor substrate 1 by glycogen synthase kinase 3 impairs insulin action. Proc Natl Acad Sci USA 94:9660–9664PubMed Eldar-Finkelman H, Krebs EG (1997) Phosphorylation of insulin receptor substrate 1 by glycogen synthase kinase 3 impairs insulin action. Proc Natl Acad Sci USA 94:9660–9664PubMed
47.
Zurück zum Zitat Ozes ON, Akca H, Mayo LD et al. (2001) A phosphatidylinositol 3-kinase/Akt/mTOR pathway mediates and PTEN antagonizes tumor necrosis factor inhibition of insulin signaling through insulin receptor substrate-1. Proc Natl Acad Sci USA 98:4640–4645CrossRefPubMed Ozes ON, Akca H, Mayo LD et al. (2001) A phosphatidylinositol 3-kinase/Akt/mTOR pathway mediates and PTEN antagonizes tumor necrosis factor inhibition of insulin signaling through insulin receptor substrate-1. Proc Natl Acad Sci USA 98:4640–4645CrossRefPubMed
48.
Zurück zum Zitat Liu YF, Paz K, Herschkovitz A et al. (2001) Insulin stimulates PKCzeta -mediated phosphorylation of insulin receptor substrate-1 (IRS-1). A self-attenuated mechanism to negatively regulate the function of IRS proteins. J Biol Chem 276:14459–14465PubMed Liu YF, Paz K, Herschkovitz A et al. (2001) Insulin stimulates PKCzeta -mediated phosphorylation of insulin receptor substrate-1 (IRS-1). A self-attenuated mechanism to negatively regulate the function of IRS proteins. J Biol Chem 276:14459–14465PubMed
49.
Zurück zum Zitat Ravichandran LV, Esposito DL, Chen J, Quon MJ (2001) Protein kinase C-zeta phosphorylates insulin receptor substrate-1 and impairs its ability to activate phosphatidylinositol 3-kinase in response to insulin. J Biol Chem 276:3543–3549CrossRefPubMed Ravichandran LV, Esposito DL, Chen J, Quon MJ (2001) Protein kinase C-zeta phosphorylates insulin receptor substrate-1 and impairs its ability to activate phosphatidylinositol 3-kinase in response to insulin. J Biol Chem 276:3543–3549CrossRefPubMed
50.
Zurück zum Zitat Sykiotis GP, Papavassiliou AG (2001) Serine phosphorylation of insulin receptor substrate-1: a novel target for the reversal of insulin resistance. Mol Endocrinol 15:1864–1869PubMed Sykiotis GP, Papavassiliou AG (2001) Serine phosphorylation of insulin receptor substrate-1: a novel target for the reversal of insulin resistance. Mol Endocrinol 15:1864–1869PubMed
51.
Zurück zum Zitat Aguirre V, Uchida T, Yenush L, Davis R, White MF (2000) The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307). J Biol Chem 275:9047–9054CrossRefPubMed Aguirre V, Uchida T, Yenush L, Davis R, White MF (2000) The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307). J Biol Chem 275:9047–9054CrossRefPubMed
52.
Zurück zum Zitat Aguirre V, Werner ED, Giraud J, Lee YH, Shoelson SE, White MF (2002) Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J Biol Chem 277:1531–1537CrossRefPubMed Aguirre V, Werner ED, Giraud J, Lee YH, Shoelson SE, White MF (2002) Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J Biol Chem 277:1531–1537CrossRefPubMed
53.
Zurück zum Zitat Hirosumi J, Tuncman G, Chang L et al. (2002) A central role for JNK in obesity and insulin resistance. Nature 420:333–336CrossRefPubMed Hirosumi J, Tuncman G, Chang L et al. (2002) A central role for JNK in obesity and insulin resistance. Nature 420:333–336CrossRefPubMed
54.
Zurück zum Zitat Rui L, Aguirre V, Kim JK et al. (2001) Insulin/IGF-1 and TNF-alpha stimulate phosphorylation of IRS-1 at inhibitory Ser307 via distinct pathways. J Clin Invest 107:181–189PubMed Rui L, Aguirre V, Kim JK et al. (2001) Insulin/IGF-1 and TNF-alpha stimulate phosphorylation of IRS-1 at inhibitory Ser307 via distinct pathways. J Clin Invest 107:181–189PubMed
55.
Zurück zum Zitat Lee YH, Giraud J, Davis RJ, White MF (2003) c-Jun N-terminal kinase (JNK) mediates feedback inhibition of the insulin signaling cascade. J Biol Chem 278:2896–2902CrossRefPubMed Lee YH, Giraud J, Davis RJ, White MF (2003) c-Jun N-terminal kinase (JNK) mediates feedback inhibition of the insulin signaling cascade. J Biol Chem 278:2896–2902CrossRefPubMed
56.
Zurück zum Zitat Greene MW, Sakaue H, Wang L, Alessi DR, Roth RA (2003) Modulation of insulin-stimulated degradation of human insulin receptor substrate-1 by serine 312 phosphorylation. J Biol Chem 278:8199–8211CrossRefPubMed Greene MW, Sakaue H, Wang L, Alessi DR, Roth RA (2003) Modulation of insulin-stimulated degradation of human insulin receptor substrate-1 by serine 312 phosphorylation. J Biol Chem 278:8199–8211CrossRefPubMed
57.
Zurück zum Zitat Bouzakri K, Roques M, Gual P et al. (2003) Reduced activation of phosphatidylinositol-3 kinase and increased serine 636 phosphorylation of insulin receptor substrate-1 in primary culture of skeletal muscle cells from patients with type 2 diabetes. Diabetes 52:1319–1325PubMed Bouzakri K, Roques M, Gual P et al. (2003) Reduced activation of phosphatidylinositol-3 kinase and increased serine 636 phosphorylation of insulin receptor substrate-1 in primary culture of skeletal muscle cells from patients with type 2 diabetes. Diabetes 52:1319–1325PubMed
58.
Zurück zum Zitat De Fea K, Roth RA (1997) Modulation of insulin receptor substrate-1 tyrosine phosphorylation and function by mitogen-activated protein kinase. J Biol Chem 272:31400–31406CrossRefPubMed De Fea K, Roth RA (1997) Modulation of insulin receptor substrate-1 tyrosine phosphorylation and function by mitogen-activated protein kinase. J Biol Chem 272:31400–31406CrossRefPubMed
59.
Zurück zum Zitat Engelman JA, Berg AH, Lewis RY, Lisanti MP, Scherer PE (2000) Tumor necrosis factor alpha-mediated insulin resistance, but not dedifferentiation, is abrogated by MEK1/2 inhibitors in 3T3-L1 adipocytes. Mol Endocrinol 14:1557–1569PubMed Engelman JA, Berg AH, Lewis RY, Lisanti MP, Scherer PE (2000) Tumor necrosis factor alpha-mediated insulin resistance, but not dedifferentiation, is abrogated by MEK1/2 inhibitors in 3T3-L1 adipocytes. Mol Endocrinol 14:1557–1569PubMed
60.
Zurück zum Zitat Cusi K, Maezono K, Osman A et al. (2000) Insulin resistance differentially affects the PI 3-kinase- and MAP kinase-mediated signaling in human muscle. J Clin Invest 105:311–320PubMed Cusi K, Maezono K, Osman A et al. (2000) Insulin resistance differentially affects the PI 3-kinase- and MAP kinase-mediated signaling in human muscle. J Clin Invest 105:311–320PubMed
61.
Zurück zum Zitat Fujishiro M, Gotoh Y, Katagiri H et al. (2003) Three mitogen-activated protein kinases inhibit insulin signaling by different mechanisms in 3T3-L1 adipocytes. Mol Endocrinol 17:487–497CrossRefPubMed Fujishiro M, Gotoh Y, Katagiri H et al. (2003) Three mitogen-activated protein kinases inhibit insulin signaling by different mechanisms in 3T3-L1 adipocytes. Mol Endocrinol 17:487–497CrossRefPubMed
62.
Zurück zum Zitat Carlson CJ, Koterski S, Sciotti RJ, Poccard GB, Rondinone CM (2003) Enhanced basal activation of mitogen-activated protein kinases in adipocytes from type 2 diabetes: potential role of p38 in the downregulation of GLUT4 expression. Diabetes 52:634–641 Carlson CJ, Koterski S, Sciotti RJ, Poccard GB, Rondinone CM (2003) Enhanced basal activation of mitogen-activated protein kinases in adipocytes from type 2 diabetes: potential role of p38 in the downregulation of GLUT4 expression. Diabetes 52:634–641
63.
Zurück zum Zitat Huang C, Somwar R, Patel N, Niu W, Torok D, Klip A (2002) Sustained exposure of L6 myotubes to high glucose and insulin decreases insulin-stimulated GLUT4 translocation but upregulates GLUT4 activity. Diabetes 51:2090–2098 Huang C, Somwar R, Patel N, Niu W, Torok D, Klip A (2002) Sustained exposure of L6 myotubes to high glucose and insulin decreases insulin-stimulated GLUT4 translocation but upregulates GLUT4 activity. Diabetes 51:2090–2098
64.
Zurück zum Zitat Winder WW, Hardie DG (1999) AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am J Physiol 277:E1–E10 Winder WW, Hardie DG (1999) AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am J Physiol 277:E1–E10
65.
Zurück zum Zitat Jakobsen SN, Hardie DG, Morrice N, Tornqvist HE (2001) 5′-AMP-activated protein kinase phosphorylates IRS-1 on Ser-789 in mouse C2C12 myotubes in response to 5-aminoimidazole-4-carboxamide riboside. J Biol Chem 276:46912–46916CrossRefPubMed Jakobsen SN, Hardie DG, Morrice N, Tornqvist HE (2001) 5′-AMP-activated protein kinase phosphorylates IRS-1 on Ser-789 in mouse C2C12 myotubes in response to 5-aminoimidazole-4-carboxamide riboside. J Biol Chem 276:46912–46916CrossRefPubMed
66.
Zurück zum Zitat Horike N, Takemori H, Katoh Y et al. (2003) Adipose-specific expression, phosphorylation of Ser794 in insulin receptor substrate-1, and activation in diabetic animals of salt-inducible kinase-2. J Biol Chem 278:18440–18447CrossRefPubMed Horike N, Takemori H, Katoh Y et al. (2003) Adipose-specific expression, phosphorylation of Ser794 in insulin receptor substrate-1, and activation in diabetic animals of salt-inducible kinase-2. J Biol Chem 278:18440–18447CrossRefPubMed
67.
Zurück zum Zitat Yuan M, Konstantopoulos N, Lee J et al. (2001) Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science 293:1673–1677PubMed Yuan M, Konstantopoulos N, Lee J et al. (2001) Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science 293:1673–1677PubMed
68.
Zurück zum Zitat Kim JK, Kim YJ, Fillmore JJ et al. (2001) Prevention of fat-induced insulin resistance by salicylate. J Clin Invest 108:437–446CrossRefPubMed Kim JK, Kim YJ, Fillmore JJ et al. (2001) Prevention of fat-induced insulin resistance by salicylate. J Clin Invest 108:437–446CrossRefPubMed
69.
Zurück zum Zitat Gao Z, Hwang D, Bataille F et al. (2002) Serine phosphorylation of insulin receptor substrate 1 by inhibitor kappa B kinase complex. J Biol Chem 277:48115–48121CrossRefPubMed Gao Z, Hwang D, Bataille F et al. (2002) Serine phosphorylation of insulin receptor substrate 1 by inhibitor kappa B kinase complex. J Biol Chem 277:48115–48121CrossRefPubMed
70.
Zurück zum Zitat Gao Z, Zuberi A, Quon MJ, Dong Z, Ye J (2003) Aspirin inhibits serine phosphorylation of insulin receptor substrate 1 in tumor necrosis factor-treated cells through targeting multiple serine kinases. J Biol Chem 278:24944–24950CrossRefPubMed Gao Z, Zuberi A, Quon MJ, Dong Z, Ye J (2003) Aspirin inhibits serine phosphorylation of insulin receptor substrate 1 in tumor necrosis factor-treated cells through targeting multiple serine kinases. J Biol Chem 278:24944–24950CrossRefPubMed
71.
Zurück zum Zitat Burke JR (2003) Targeting I kappa B kinase for the treatment of inflammatory and other disorders. Curr Opin Drug Discov Devel 6:720–728PubMed Burke JR (2003) Targeting I kappa B kinase for the treatment of inflammatory and other disorders. Curr Opin Drug Discov Devel 6:720–728PubMed
72.
Zurück zum Zitat Farah S, Agazie Y, Ohan N, Ngsee JK, Liu XJ (1998) A rho-associated protein kinase, ROKalpha, binds insulin receptor substrate-1 and modulates insulin signaling. J Biol Chem 273:4740–4746CrossRefPubMed Farah S, Agazie Y, Ohan N, Ngsee JK, Liu XJ (1998) A rho-associated protein kinase, ROKalpha, binds insulin receptor substrate-1 and modulates insulin signaling. J Biol Chem 273:4740–4746CrossRefPubMed
73.
Zurück zum Zitat Begum N, Sandu OA, Ito M, Lohmann SM, Smolenski A (2002) Active Rho kinase (ROK-alpha ) associates with insulin receptor substrate-1 and inhibits insulin signaling in vascular smooth muscle cells. J Biol Chem 277:6214–6222CrossRefPubMed Begum N, Sandu OA, Ito M, Lohmann SM, Smolenski A (2002) Active Rho kinase (ROK-alpha ) associates with insulin receptor substrate-1 and inhibits insulin signaling in vascular smooth muscle cells. J Biol Chem 277:6214–6222CrossRefPubMed
74.
Zurück zum Zitat Alexander WS (2002) Suppressors of cytokine signalling (SOCS) in the immune system. Nat Rev Immunol 2:410–416PubMed Alexander WS (2002) Suppressors of cytokine signalling (SOCS) in the immune system. Nat Rev Immunol 2:410–416PubMed
75.
Zurück zum Zitat Yoshimura A, Ohkubo T, Kiguchi T et al. (1995) A novel cytokine-inducible gene CIS encodes an SH2-containing protein that binds to tyrosine-phosphorylated interleukin 3 and erythropoietin receptors. Embo J 14:2816–28126PubMed Yoshimura A, Ohkubo T, Kiguchi T et al. (1995) A novel cytokine-inducible gene CIS encodes an SH2-containing protein that binds to tyrosine-phosphorylated interleukin 3 and erythropoietin receptors. Embo J 14:2816–28126PubMed
76.
Zurück zum Zitat Starr R, Willson TA, Viney EM et al. (1997) A family of cytokine-inducible inhibitors of signalling. Nature 387:917–921CrossRefPubMed Starr R, Willson TA, Viney EM et al. (1997) A family of cytokine-inducible inhibitors of signalling. Nature 387:917–921CrossRefPubMed
77.
Zurück zum Zitat Kile BT, Schulman BA, Alexander WS, Nicola NA, Martin HM, Hilton DJ (2002) The SOCS box: a tale of destruction and degradation. Trends Biochem Sci 27:235–241CrossRefPubMed Kile BT, Schulman BA, Alexander WS, Nicola NA, Martin HM, Hilton DJ (2002) The SOCS box: a tale of destruction and degradation. Trends Biochem Sci 27:235–241CrossRefPubMed
78.
Zurück zum Zitat Emanuelli B, Peraldi P, Filloux C, Sawka-Verhelle D, Hilton D, Van Obberghen E (2000) SOCS-3 is an insulin-induced negative regulator of insulin signaling. J Biol Chem 275:15985–15991CrossRefPubMed Emanuelli B, Peraldi P, Filloux C, Sawka-Verhelle D, Hilton D, Van Obberghen E (2000) SOCS-3 is an insulin-induced negative regulator of insulin signaling. J Biol Chem 275:15985–15991CrossRefPubMed
79.
Zurück zum Zitat Emanuelli B, Peraldi P, Filloux C et al. (2001) SOCS-3 inhibits insulin signaling and is up-regulated in response to tumor necrosis factor-alpha in the adipose tissue of obese mice. J Biol Chem 276:47944–47949PubMed Emanuelli B, Peraldi P, Filloux C et al. (2001) SOCS-3 inhibits insulin signaling and is up-regulated in response to tumor necrosis factor-alpha in the adipose tissue of obese mice. J Biol Chem 276:47944–47949PubMed
80.
Zurück zum Zitat Sadowski CL, Choi TS, Le M, Wheeler TT, Wang LH, Sadowski HB (2001) Insulin Induction of SOCS-2 and SOCS-3 mRNA expression in C2C12 Skeletal Muscle Cells Is Mediated by Stat5*. J Biol Chem 276:20703–20710CrossRefPubMed Sadowski CL, Choi TS, Le M, Wheeler TT, Wang LH, Sadowski HB (2001) Insulin Induction of SOCS-2 and SOCS-3 mRNA expression in C2C12 Skeletal Muscle Cells Is Mediated by Stat5*. J Biol Chem 276:20703–20710CrossRefPubMed
81.
Zurück zum Zitat Dey BR, Furlanetto RW, Nissley P (2000) Suppressor of cytokine signaling (SOCS)-3 protein interacts with the insulin-like growth factor-I receptor. Biochem Biophys Res Commun 278:38–43CrossRefPubMed Dey BR, Furlanetto RW, Nissley P (2000) Suppressor of cytokine signaling (SOCS)-3 protein interacts with the insulin-like growth factor-I receptor. Biochem Biophys Res Commun 278:38–43CrossRefPubMed
82.
Zurück zum Zitat Dey BR, Spence SL, Nissley P, Furlanetto RW (1998) Interaction of human suppressor of cytokine signaling (SOCS)-2 with the insulin-like growth factor-I receptor. J Biol Chem 273:24095–24101CrossRefPubMed Dey BR, Spence SL, Nissley P, Furlanetto RW (1998) Interaction of human suppressor of cytokine signaling (SOCS)-2 with the insulin-like growth factor-I receptor. J Biol Chem 273:24095–24101CrossRefPubMed
83.
Zurück zum Zitat Kaburagi Y, Momomura K, Yamamoto-Honda R et al. (1993) Site-directed mutagenesis of the juxtamembrane domain of the human insulin receptor. J Biol Chem 268:16610–16622PubMed Kaburagi Y, Momomura K, Yamamoto-Honda R et al. (1993) Site-directed mutagenesis of the juxtamembrane domain of the human insulin receptor. J Biol Chem 268:16610–16622PubMed
84.
Zurück zum Zitat Mooney RA, Senn J, Cameron S et al. (2001) Suppressors of cytokine signaling-1 and -6 associate with and inhibit the insulin receptor. A potential mechanism for cytokine-mediated insulin resistance. J Biol Chem 276:25889–25893CrossRefPubMed Mooney RA, Senn J, Cameron S et al. (2001) Suppressors of cytokine signaling-1 and -6 associate with and inhibit the insulin receptor. A potential mechanism for cytokine-mediated insulin resistance. J Biol Chem 276:25889–25893CrossRefPubMed
85.
Zurück zum Zitat Kawazoe Y, Naka T, Fujimoto M et al. (2001) Signal transducer and activator of transcription (STAT)-induced STAT inhibitor 1 (SSI-1)/suppressor of cytokine signaling 1 (SOCS1) inhibits insulin signal transduction pathway through modulating insulin receptor substrate 1 (IRS-1) phosphorylation. J Exp Med 193:263–269CrossRefPubMed Kawazoe Y, Naka T, Fujimoto M et al. (2001) Signal transducer and activator of transcription (STAT)-induced STAT inhibitor 1 (SSI-1)/suppressor of cytokine signaling 1 (SOCS1) inhibits insulin signal transduction pathway through modulating insulin receptor substrate 1 (IRS-1) phosphorylation. J Exp Med 193:263–269CrossRefPubMed
86.
Zurück zum Zitat Rui L, Yuan M, Frantz D, Shoelson S, White MF (2002) SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2. J Biol Chem 277:42394–42398CrossRef Rui L, Yuan M, Frantz D, Shoelson S, White MF (2002) SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2. J Biol Chem 277:42394–42398CrossRef
87.
Zurück zum Zitat Krebs DL, Uren RT, Metcalf D et al. (2002) SOCS-6 binds to insulin receptor substrate 4, and mice lacking the SOCS-6 gene exhibit mild growth retardation. Mol Cell Biol 22:4567–4578CrossRefPubMed Krebs DL, Uren RT, Metcalf D et al. (2002) SOCS-6 binds to insulin receptor substrate 4, and mice lacking the SOCS-6 gene exhibit mild growth retardation. Mol Cell Biol 22:4567–4578CrossRefPubMed
88.
Zurück zum Zitat Krebs DL, Hilton DJ (2003) A new role for SOCS in insulin action. Suppressor of cytokine signaling. Sci STKE 2003(169):PE6PubMed Krebs DL, Hilton DJ (2003) A new role for SOCS in insulin action. Suppressor of cytokine signaling. Sci STKE 2003(169):PE6PubMed
89.
Zurück zum Zitat Andreelli F, Laville M, Ducluzeau PH et al. (1999) Defective regulation of phosphatidylinositol-3-kinase gene expression in skeletal muscle and adipose tissue of non-insulin-dependent diabetes mellitus patients. Diabetologia 42:358–364PubMed Andreelli F, Laville M, Ducluzeau PH et al. (1999) Defective regulation of phosphatidylinositol-3-kinase gene expression in skeletal muscle and adipose tissue of non-insulin-dependent diabetes mellitus patients. Diabetologia 42:358–364PubMed
90.
Zurück zum Zitat Tremblay F, Lavigne C, Jacques H, Marette A (2001) Defective insulin-induced GLUT4 translocation in skeletal muscle of high fat-fed rats is associated with alterations in both Akt/protein kinase B and atypical protein kinase C (zeta/lambda) activities. Diabetes 50:1901–1910PubMed Tremblay F, Lavigne C, Jacques H, Marette A (2001) Defective insulin-induced GLUT4 translocation in skeletal muscle of high fat-fed rats is associated with alterations in both Akt/protein kinase B and atypical protein kinase C (zeta/lambda) activities. Diabetes 50:1901–1910PubMed
91.
Zurück zum Zitat Mauvais-Jarvis F, Ueki K, Fruman DA et al. (2002) Reduced expression of the murine p85alpha subunit of phosphoinositide 3-kinase improves insulin signaling and ameliorates diabetes. J Clin Invest 109:141–149PubMed Mauvais-Jarvis F, Ueki K, Fruman DA et al. (2002) Reduced expression of the murine p85alpha subunit of phosphoinositide 3-kinase improves insulin signaling and ameliorates diabetes. J Clin Invest 109:141–149PubMed
92.
Zurück zum Zitat Terauchi Y, Tsuji Y, Satoh S et al. (1999) Increased insulin sensitivity and hypoglycaemia in mice lacking the p85 alpha subunit of phosphoinositide 3-kinase. Nat Genet 21:230–235PubMed Terauchi Y, Tsuji Y, Satoh S et al. (1999) Increased insulin sensitivity and hypoglycaemia in mice lacking the p85 alpha subunit of phosphoinositide 3-kinase. Nat Genet 21:230–235PubMed
93.
Zurück zum Zitat Carvalho E, Jansson PA, Nagaev I, Wenthzel AM, Smith U (2001) Insulin resistance with low cellular IRS-1 expression is also associated with low GLUT4 expression and impaired insulin-stimulated glucose transport. FASEB J 15:1101–1103PubMed Carvalho E, Jansson PA, Nagaev I, Wenthzel AM, Smith U (2001) Insulin resistance with low cellular IRS-1 expression is also associated with low GLUT4 expression and impaired insulin-stimulated glucose transport. FASEB J 15:1101–1103PubMed
94.
Zurück zum Zitat Miele C, Formisano P, Condorelli G et al. (1997) Abnormal glucose transport and GLUT1 cell-surface content in fibroblasts and skeletal muscle from NIDDM and obese subjects. Diabetologia 40:421–429 Miele C, Formisano P, Condorelli G et al. (1997) Abnormal glucose transport and GLUT1 cell-surface content in fibroblasts and skeletal muscle from NIDDM and obese subjects. Diabetologia 40:421–429
95.
Zurück zum Zitat Zhande R, Mitchell JJ, Wu J, Sun XJ (2002) Molecular mechanism of insulin-induced degradation of insulin receptor substrate 1. Mol Cell Biol 22:1016–1026CrossRefPubMed Zhande R, Mitchell JJ, Wu J, Sun XJ (2002) Molecular mechanism of insulin-induced degradation of insulin receptor substrate 1. Mol Cell Biol 22:1016–1026CrossRefPubMed
96.
Zurück zum Zitat Rui L, Fisher TL, Thomas J, White MF (2001) Regulation of insulin/insulin-like growth factor-1 signaling by proteasome-mediated degradation of insulin receptor substrate-2. J Biol Chem 276:40362–40367PubMed Rui L, Fisher TL, Thomas J, White MF (2001) Regulation of insulin/insulin-like growth factor-1 signaling by proteasome-mediated degradation of insulin receptor substrate-2. J Biol Chem 276:40362–40367PubMed
97.
Zurück zum Zitat Buren J, Liu HX, Lauritz J, Eriksson JW (2003) High glucose and insulin in combination cause insulin receptor substrate-1 and -2 depletion and protein kinase B desensitisation in primary cultured rat adipocytes: possible implications for insulin resistance in type 2 diabetes. Eur J Endocrinol 148:157–167PubMed Buren J, Liu HX, Lauritz J, Eriksson JW (2003) High glucose and insulin in combination cause insulin receptor substrate-1 and -2 depletion and protein kinase B desensitisation in primary cultured rat adipocytes: possible implications for insulin resistance in type 2 diabetes. Eur J Endocrinol 148:157–167PubMed
98.
Zurück zum Zitat Pirola L, Bonnafous S, Johnston AM, Chaussade C, Portis F, Van Obberghen E (2003) Phosphoinositide 3-kinase-mediated reduction of insulin receptor substrate-1/2 protein expression via different mechanisms contributes to the insulin-induced desensitization of its signaling pathways in L6 muscle cells. J Biol Chem 278:15641–15651CrossRefPubMed Pirola L, Bonnafous S, Johnston AM, Chaussade C, Portis F, Van Obberghen E (2003) Phosphoinositide 3-kinase-mediated reduction of insulin receptor substrate-1/2 protein expression via different mechanisms contributes to the insulin-induced desensitization of its signaling pathways in L6 muscle cells. J Biol Chem 278:15641–15651CrossRefPubMed
99.
Zurück zum Zitat Paz K, Liu YF, Shorer H et al. (1999) Phosphorylation of insulin receptor substrate-1 (IRS-1) by protein kinase B positively regulates IRS-1 function. J Biol Chem 274:28816–28822CrossRefPubMed Paz K, Liu YF, Shorer H et al. (1999) Phosphorylation of insulin receptor substrate-1 (IRS-1) by protein kinase B positively regulates IRS-1 function. J Biol Chem 274:28816–28822CrossRefPubMed
100.
Zurück zum Zitat Esposito DL, Li Y, Vanni C et al. (2003) A novel T608R missense mutation in insulin receptor substrate-1 identified in a subject with type 2 diabetes impairs metabolic insulin signaling. J Clin Endocrinol Metab 88:1468–1475CrossRefPubMed Esposito DL, Li Y, Vanni C et al. (2003) A novel T608R missense mutation in insulin receptor substrate-1 identified in a subject with type 2 diabetes impairs metabolic insulin signaling. J Clin Endocrinol Metab 88:1468–1475CrossRefPubMed
101.
Zurück zum Zitat Withers DJ, Gutierrez JS, Towery H et al. (1998) Disruption of IRS-2 causes type 2 diabetes in mice. Nature 391:900–904PubMed Withers DJ, Gutierrez JS, Towery H et al. (1998) Disruption of IRS-2 causes type 2 diabetes in mice. Nature 391:900–904PubMed
102.
Zurück zum Zitat Nolan JJ, Freidenberg G, Henry R, Reichart D, Olefsky JM (1994) Role of human skeletal muscle insulin receptor kinase in the in vivo insulin resistance of noninsulin-dependent diabetes mellitus and obesity. J Clin Endocrinol Metab 78:471–477PubMed Nolan JJ, Freidenberg G, Henry R, Reichart D, Olefsky JM (1994) Role of human skeletal muscle insulin receptor kinase in the in vivo insulin resistance of noninsulin-dependent diabetes mellitus and obesity. J Clin Endocrinol Metab 78:471–477PubMed
103.
Zurück zum Zitat Maegawa H, Shigeta Y, Egawa K, Kobayashi M (1991) Impaired autophosphorylation of insulin receptors from abdominal skeletal muscles in nonobese subjects with NIDDM. Diabetes 40:815–819PubMed Maegawa H, Shigeta Y, Egawa K, Kobayashi M (1991) Impaired autophosphorylation of insulin receptors from abdominal skeletal muscles in nonobese subjects with NIDDM. Diabetes 40:815–819PubMed
104.
Zurück zum Zitat Krook A, Bjornholm M, Galuska D et al. (2000) Characterization of signal transduction and glucose transport in skeletal muscle from type 2 diabetic patients. Diabetes 49:284–292PubMed Krook A, Bjornholm M, Galuska D et al. (2000) Characterization of signal transduction and glucose transport in skeletal muscle from type 2 diabetic patients. Diabetes 49:284–292PubMed
105.
Zurück zum Zitat Caro JF, Sinha MK, Raju SM et al. (1987) Insulin receptor kinase in human skeletal muscle from obese subjects with and without noninsulin dependent diabetes. J Clin Invest 79:1330–1337PubMed Caro JF, Sinha MK, Raju SM et al. (1987) Insulin receptor kinase in human skeletal muscle from obese subjects with and without noninsulin dependent diabetes. J Clin Invest 79:1330–1337PubMed
106.
Zurück zum Zitat Klein HH, Vestergaard H, Kotzke G, Pedersen O (1995) Elevation of serum insulin concentration during euglycemic hyperinsulinemic clamp studies leads to similar activation of insulin receptor kinase in skeletal muscle of subjects with and without NIDDM. Diabetes 44:1310–1317PubMed Klein HH, Vestergaard H, Kotzke G, Pedersen O (1995) Elevation of serum insulin concentration during euglycemic hyperinsulinemic clamp studies leads to similar activation of insulin receptor kinase in skeletal muscle of subjects with and without NIDDM. Diabetes 44:1310–1317PubMed
107.
Zurück zum Zitat Rice KM, Turnbow MA, Garner CW (1993) Insulin stimulates the degradation of IRS-1 in 3T3-L1 adipocytes. Biochem Biophys Res Commun 190:961–967CrossRefPubMed Rice KM, Turnbow MA, Garner CW (1993) Insulin stimulates the degradation of IRS-1 in 3T3-L1 adipocytes. Biochem Biophys Res Commun 190:961–967CrossRefPubMed
108.
Zurück zum Zitat Carvalho E, Jansson PA, Axelsen M et al. (1999) Low cellular IRS 1 gene and protein expression predict insulin resistance and NIDDM. FASEB J 13:2173–2178PubMed Carvalho E, Jansson PA, Axelsen M et al. (1999) Low cellular IRS 1 gene and protein expression predict insulin resistance and NIDDM. FASEB J 13:2173–2178PubMed
109.
Zurück zum Zitat Rondinone CM, Wang LM, Lonnroth P, Wesslau C, Pierce JH, Smith U (1997) Insulin receptor substrate (IRS) 1 is reduced and IRS-2 is the main docking protein for phosphatidylinositol 3-kinase in adipocytes from subjects with non-insulin-dependent diabetes mellitus. Proc Natl Acad Sci USA 94:4171–4175PubMed Rondinone CM, Wang LM, Lonnroth P, Wesslau C, Pierce JH, Smith U (1997) Insulin receptor substrate (IRS) 1 is reduced and IRS-2 is the main docking protein for phosphatidylinositol 3-kinase in adipocytes from subjects with non-insulin-dependent diabetes mellitus. Proc Natl Acad Sci USA 94:4171–4175PubMed
110.
Zurück zum Zitat Shao J, Yamashita H, Qiao L, Friedman JE (2000) Decreased Akt kinase activity and insulin resistance in C57BL/KsJ-Leprdb/db mice. J Endocrinol 167:107–115PubMed Shao J, Yamashita H, Qiao L, Friedman JE (2000) Decreased Akt kinase activity and insulin resistance in C57BL/KsJ-Leprdb/db mice. J Endocrinol 167:107–115PubMed
111.
Zurück zum Zitat Nawano M, Ueta K, Oku A et al. (1999) Hyperglycemia impairs the insulin signaling step between PI 3-kinase and Akt/PKB activations in ZDF rat liver. Biochem Biophys Res Commun 266:252–256CrossRefPubMed Nawano M, Ueta K, Oku A et al. (1999) Hyperglycemia impairs the insulin signaling step between PI 3-kinase and Akt/PKB activations in ZDF rat liver. Biochem Biophys Res Commun 266:252–256CrossRefPubMed
112.
Zurück zum Zitat Oku A, Nawano M, Ueta K et al. (2001) Inhibitory effect of hyperglycemia on insulin-induced Akt/protein kinase B activation in skeletal muscle. Am J Physiol Endocrinol Metab 280:E816–E824PubMed Oku A, Nawano M, Ueta K et al. (2001) Inhibitory effect of hyperglycemia on insulin-induced Akt/protein kinase B activation in skeletal muscle. Am J Physiol Endocrinol Metab 280:E816–E824PubMed
113.
Zurück zum Zitat Yu C, Chen Y, Cline GW et al. (2002) Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem 277:50230–50236CrossRefPubMed Yu C, Chen Y, Cline GW et al. (2002) Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem 277:50230–50236CrossRefPubMed
114.
Zurück zum Zitat Kim YB, Shulman GI, Kahn BB (2002) Fatty acid infusion selectively impairs insulin action on Akt1 and protein kinase C lambda/zeta but not on glycogen synthase kinase-3. J Biol Chem 277:32915–32922CrossRefPubMed Kim YB, Shulman GI, Kahn BB (2002) Fatty acid infusion selectively impairs insulin action on Akt1 and protein kinase C lambda/zeta but not on glycogen synthase kinase-3. J Biol Chem 277:32915–32922CrossRefPubMed
115.
Zurück zum Zitat Dresner A, Laurent D, Marcucci M et al. (1999) Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J Clin Invest 103:253–259PubMed Dresner A, Laurent D, Marcucci M et al. (1999) Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J Clin Invest 103:253–259PubMed
116.
Zurück zum Zitat Schlaepfer IR, Pulawa LK, Ferreira LD, James DE, Capell WH, Eckel RH (2003) Increased expression of the SNARE accessory protein Munc18c in lipid-mediated insulin resistance. J Lipid Res 44:1174–1181 Schlaepfer IR, Pulawa LK, Ferreira LD, James DE, Capell WH, Eckel RH (2003) Increased expression of the SNARE accessory protein Munc18c in lipid-mediated insulin resistance. J Lipid Res 44:1174–1181
117.
Zurück zum Zitat Wrede CE, Dickson LM, Lingohr MK, Briaud I, Rhodes CJ (2003) Fatty acid and phorbol ester-mediated interference of mitogenic signaling via novel protein kinase C isoforms in pancreatic beta-cells (INS-1). J Mol Endocrinol 30:271–286PubMed Wrede CE, Dickson LM, Lingohr MK, Briaud I, Rhodes CJ (2003) Fatty acid and phorbol ester-mediated interference of mitogenic signaling via novel protein kinase C isoforms in pancreatic beta-cells (INS-1). J Mol Endocrinol 30:271–286PubMed
118.
Zurück zum Zitat Sacks FM (2002) Dietary fat, the Mediterranean diet, and health: reports from scientific exchanges, 1998 and 2000. Introduction. Am J Med 113:1S–4SCrossRef Sacks FM (2002) Dietary fat, the Mediterranean diet, and health: reports from scientific exchanges, 1998 and 2000. Introduction. Am J Med 113:1S–4SCrossRef
119.
Zurück zum Zitat Taouis M, Dagou C, Ster C, Durand G, Pinault M, Delarue J (2002) N-3 polyunsaturated fatty acids prevent the defect of insulin receptor signaling in muscle. Am J Physiol Endocrinol Metab 282:E664–E671PubMed Taouis M, Dagou C, Ster C, Durand G, Pinault M, Delarue J (2002) N-3 polyunsaturated fatty acids prevent the defect of insulin receptor signaling in muscle. Am J Physiol Endocrinol Metab 282:E664–E671PubMed
120.
Zurück zum Zitat Grimble RF (2002) Inflammatory status and insulin resistance. Curr Opin Clin Nutr Metab Care 5:551–559CrossRefPubMed Grimble RF (2002) Inflammatory status and insulin resistance. Curr Opin Clin Nutr Metab Care 5:551–559CrossRefPubMed
121.
Zurück zum Zitat Spranger J, Kroke A, Mohlig M et al. (2003) Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes 52:812–817 Spranger J, Kroke A, Mohlig M et al. (2003) Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes 52:812–817
122.
Zurück zum Zitat Hotamisligil GS, Spiegelman BM (1994) Tumor necrosis factor alpha: a key component of the obesity-diabetes link. Diabetes 43:1271–1278PubMed Hotamisligil GS, Spiegelman BM (1994) Tumor necrosis factor alpha: a key component of the obesity-diabetes link. Diabetes 43:1271–1278PubMed
123.
Zurück zum Zitat Hemi R, Paz K, Wertheim N, Karasik A, Zick Y, Kanety H (2002) Transactivation of ErbB2 and ErbB3 by tumor necrosis factor-alpha and anisomycin leads to impaired insulin signaling through serine/threonine phosphorylation of IRS proteins. J Biol Chem 277:8961–8969CrossRefPubMed Hemi R, Paz K, Wertheim N, Karasik A, Zick Y, Kanety H (2002) Transactivation of ErbB2 and ErbB3 by tumor necrosis factor-alpha and anisomycin leads to impaired insulin signaling through serine/threonine phosphorylation of IRS proteins. J Biol Chem 277:8961–8969CrossRefPubMed
124.
Zurück zum Zitat Senn JJ, Klover PJ, Nowak IA, Mooney RA (2002) Interleukin-6 induces cellular insulin resistance in hepatocytes. Diabetes 51:3391–3399 Senn JJ, Klover PJ, Nowak IA, Mooney RA (2002) Interleukin-6 induces cellular insulin resistance in hepatocytes. Diabetes 51:3391–3399
125.
Zurück zum Zitat Senn JJ, Klover PJ, Nowak IA et al. (2003) Suppressor of cytokine signaling-3 (SOCS-3), a potential mediator of interleukin-6-dependent insulin resistance in hepatocytes. J Biol Chem 278:13740–13746CrossRefPubMed Senn JJ, Klover PJ, Nowak IA et al. (2003) Suppressor of cytokine signaling-3 (SOCS-3), a potential mediator of interleukin-6-dependent insulin resistance in hepatocytes. J Biol Chem 278:13740–13746CrossRefPubMed
126.
Zurück zum Zitat Shanmugam N, Reddy MA, Guha M, Natarajan R (2003) High glucose-induced expression of proinflammatory cytokine and chemokine genes in monocytic cells. Diabetes 52:1256–1264PubMed Shanmugam N, Reddy MA, Guha M, Natarajan R (2003) High glucose-induced expression of proinflammatory cytokine and chemokine genes in monocytic cells. Diabetes 52:1256–1264PubMed
127.
Zurück zum Zitat Exel E van, Gussekloo J, Craen AJ de et al. (2002) Low production capacity of interleukin-10 associates with the metabolic syndrome and type 2 diabetes: the Leiden 85-Plus Study. Diabetes 51:1088–1092PubMed Exel E van, Gussekloo J, Craen AJ de et al. (2002) Low production capacity of interleukin-10 associates with the metabolic syndrome and type 2 diabetes: the Leiden 85-Plus Study. Diabetes 51:1088–1092PubMed
128.
Zurück zum Zitat Singh R, Barden A, Mori T, Beilin L (2001) Advanced glycation end-products: a review. Diabetologia 44:129–146PubMed Singh R, Barden A, Mori T, Beilin L (2001) Advanced glycation end-products: a review. Diabetologia 44:129–146PubMed
129.
Zurück zum Zitat Abdel-Wahab YH, O’Harte FP, Ratcliff H, McClenaghan NH, Barnett CR, Flatt PR (1996) Glycation of insulin in the islets of Langerhans of normal and diabetic animals. Diabetes 45:1489–1496 Abdel-Wahab YH, O’Harte FP, Ratcliff H, McClenaghan NH, Barnett CR, Flatt PR (1996) Glycation of insulin in the islets of Langerhans of normal and diabetic animals. Diabetes 45:1489–1496
130.
Zurück zum Zitat Lindsay JR, McKillop AM, Mooney MH, O’Harte FP, Bell PM, Flatt PR (2003) Demonstration of increased concentrations of circulating glycated insulin in human Type 2 diabetes using a novel and specific radioimmunoassay. Diabetologia 46:475–478PubMed Lindsay JR, McKillop AM, Mooney MH, O’Harte FP, Bell PM, Flatt PR (2003) Demonstration of increased concentrations of circulating glycated insulin in human Type 2 diabetes using a novel and specific radioimmunoassay. Diabetologia 46:475–478PubMed
131.
Zurück zum Zitat Ruggiero-Lopez D, Rellier N, Lecomte M, Lagarde M, Wiernsperger N (1997) Growth modulation of retinal microvascular cells by early and advanced glycation products. Diabetes Res Clin Pract 34:135–142PubMed Ruggiero-Lopez D, Rellier N, Lecomte M, Lagarde M, Wiernsperger N (1997) Growth modulation of retinal microvascular cells by early and advanced glycation products. Diabetes Res Clin Pract 34:135–142PubMed
132.
Zurück zum Zitat Inagaki Y, Yamagishi S, Okamoto T, Takeuchi M, Amano S (2003) Pigment epithelium-derived factor prevents advanced glycation end products-induced monocyte chemoattractant protein-1 production in microvascular endothelial cells by suppressing intracellular reactive oxygen species generation. Diabetologia 46:284–287PubMed Inagaki Y, Yamagishi S, Okamoto T, Takeuchi M, Amano S (2003) Pigment epithelium-derived factor prevents advanced glycation end products-induced monocyte chemoattractant protein-1 production in microvascular endothelial cells by suppressing intracellular reactive oxygen species generation. Diabetologia 46:284–287PubMed
133.
Zurück zum Zitat Treins C, Giorgetti-Peraldi S, Murdaca J, Van Obberghen E (2001) Regulation of vascular endothelial growth factor expression by advanced glycation end products. J Biol Chem 276:43836–43841PubMed Treins C, Giorgetti-Peraldi S, Murdaca J, Van Obberghen E (2001) Regulation of vascular endothelial growth factor expression by advanced glycation end products. J Biol Chem 276:43836–43841PubMed
134.
Zurück zum Zitat Makita Z, Yanagisawa K, Kuwajima S et al. (1995) Advanced glycation endproducts and diabetic nephropathy. J Diabetes Complications 9:265–268CrossRefPubMed Makita Z, Yanagisawa K, Kuwajima S et al. (1995) Advanced glycation endproducts and diabetic nephropathy. J Diabetes Complications 9:265–268CrossRefPubMed
135.
Zurück zum Zitat Miele C, Riboulet A, Maitan MA et al. (2003) Human glycated albumin affects glucose metabolism in L6 skeletal muscle cells by impairing insulin-induced insulin receptor substrate (IRS) signaling through a protein kinase C{alpha}-mediated mechanism. J Biol Chem 278:47376–47387CrossRefPubMed Miele C, Riboulet A, Maitan MA et al. (2003) Human glycated albumin affects glucose metabolism in L6 skeletal muscle cells by impairing insulin-induced insulin receptor substrate (IRS) signaling through a protein kinase C{alpha}-mediated mechanism. J Biol Chem 278:47376–47387CrossRefPubMed
136.
Zurück zum Zitat Rossetti L (2000) Perspective: hexosamines and nutrient sensing. Endocrinology 141:1922–1925PubMed Rossetti L (2000) Perspective: hexosamines and nutrient sensing. Endocrinology 141:1922–1925PubMed
137.
Zurück zum Zitat Marshall S, Bacote V, Traxinger RR (1991) Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance. J Biol Chem 266:4706–4712PubMed Marshall S, Bacote V, Traxinger RR (1991) Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance. J Biol Chem 266:4706–4712PubMed
138.
Zurück zum Zitat Ciaraldi TP, Carter L, Nikoulina S, Mudaliar S, McClain DA, Henry RR (1999) Glucosamine regulation of glucose metabolism in cultured human skeletal muscle cells: divergent effects on glucose transport/phosphorylation and glycogen synthase in non-diabetic and type 2 diabetic subjects. Endocrinology 140:3971–3980PubMed Ciaraldi TP, Carter L, Nikoulina S, Mudaliar S, McClain DA, Henry RR (1999) Glucosamine regulation of glucose metabolism in cultured human skeletal muscle cells: divergent effects on glucose transport/phosphorylation and glycogen synthase in non-diabetic and type 2 diabetic subjects. Endocrinology 140:3971–3980PubMed
139.
Zurück zum Zitat Chen H, Ing BL, Robinson KA, Feagin AC, Buse MG, Quon MJ (1997) Effects of overexpression of glutamine:fructose-6-phosphate amidotransferase (GFAT) and glucosamine treatment on translocation of GLUT4 in rat adipose cells. Mol Cell Endocrinol 135:67–77CrossRefPubMed Chen H, Ing BL, Robinson KA, Feagin AC, Buse MG, Quon MJ (1997) Effects of overexpression of glutamine:fructose-6-phosphate amidotransferase (GFAT) and glucosamine treatment on translocation of GLUT4 in rat adipose cells. Mol Cell Endocrinol 135:67–77CrossRefPubMed
140.
Zurück zum Zitat Vosseller K, Wells L, Lane MD, Hart GW (2002) Elevated nucleocytoplasmic glycosylation by O-GlcNAc results in insulin resistance associated with defects in Akt activation in 3T3-L1 adipocytes. Proc Natl Acad Sci USA 99:5313–5318CrossRefPubMed Vosseller K, Wells L, Lane MD, Hart GW (2002) Elevated nucleocytoplasmic glycosylation by O-GlcNAc results in insulin resistance associated with defects in Akt activation in 3T3-L1 adipocytes. Proc Natl Acad Sci USA 99:5313–5318CrossRefPubMed
141.
Zurück zum Zitat Chen G, Liu P, Thurmond DC, Elmendorf JS (2003) Glucosamine-induced insulin resistance is coupled to O-linked glycosylation of Munc18c. FEBS Lett 534:54–60CrossRefPubMed Chen G, Liu P, Thurmond DC, Elmendorf JS (2003) Glucosamine-induced insulin resistance is coupled to O-linked glycosylation of Munc18c. FEBS Lett 534:54–60CrossRefPubMed
142.
Zurück zum Zitat Parker GJ, Lund KC, Taylor RP, McClain DA (2003) Insulin resistance of glycogen synthase mediated by o-linked N-acetylglucosamine. J Biol Chem 278:10022–10027CrossRefPubMed Parker GJ, Lund KC, Taylor RP, McClain DA (2003) Insulin resistance of glycogen synthase mediated by o-linked N-acetylglucosamine. J Biol Chem 278:10022–10027CrossRefPubMed
143.
Zurück zum Zitat Veerababu G, Tang J, Hoffman RT et al. (2000) Overexpression of glutamine:fructose-6-phosphate amidotransferase in the liver of transgenic mice results in enhanced glycogen storage, hyperlipidemia, obesity, and impaired glucose tolerance. Diabetes 49:2070–2078PubMed Veerababu G, Tang J, Hoffman RT et al. (2000) Overexpression of glutamine:fructose-6-phosphate amidotransferase in the liver of transgenic mice results in enhanced glycogen storage, hyperlipidemia, obesity, and impaired glucose tolerance. Diabetes 49:2070–2078PubMed
144.
Zurück zum Zitat Cooksey RC, Hebert LF Jr, Zhu JH, Wofford P, Garvey WT, McClain DA (1999) Mechanism of hexosamine-induced insulin resistance in transgenic mice overexpressing glutamine:fructose-6-phosphate amidotransferase: decreased glucose transporter GLUT4 translocation and reversal by treatment with thiazolidinedione. Endocrinology 140:1151–1157PubMed Cooksey RC, Hebert LF Jr, Zhu JH, Wofford P, Garvey WT, McClain DA (1999) Mechanism of hexosamine-induced insulin resistance in transgenic mice overexpressing glutamine:fructose-6-phosphate amidotransferase: decreased glucose transporter GLUT4 translocation and reversal by treatment with thiazolidinedione. Endocrinology 140:1151–1157PubMed
145.
Zurück zum Zitat Pouwels MJ, Jacobs JR, Span PN, Lutterman JA, Smits P, Tack CJ (2001) Short-term glucosamine infusion does not affect insulin sensitivity in humans. J Clin Endocrinol Metab 86:2099–2103PubMed Pouwels MJ, Jacobs JR, Span PN, Lutterman JA, Smits P, Tack CJ (2001) Short-term glucosamine infusion does not affect insulin sensitivity in humans. J Clin Endocrinol Metab 86:2099–2103PubMed
146.
Zurück zum Zitat Monauni T, Zenti MG, Cretti A et al. (2000) Effects of glucosamine infusion on insulin secretion and insulin action in humans. Diabetes 49:926–935PubMed Monauni T, Zenti MG, Cretti A et al. (2000) Effects of glucosamine infusion on insulin secretion and insulin action in humans. Diabetes 49:926–935PubMed
147.
Zurück zum Zitat Kaneto H, Xu G, Song KH et al. (2001) Activation of the hexosamine pathway leads to deterioration of pancreatic beta-cell function through the induction of oxidative stress. J Biol Chem 276:31099–31104CrossRefPubMed Kaneto H, Xu G, Song KH et al. (2001) Activation of the hexosamine pathway leads to deterioration of pancreatic beta-cell function through the induction of oxidative stress. J Biol Chem 276:31099–31104CrossRefPubMed
148.
Zurück zum Zitat Ramachandran C, Kennedy BP (2003) Protein tyrosine phosphatase 1B: a novel target for type 2 diabetes and obesity. Curr Top Med Chem 3:749–757PubMed Ramachandran C, Kennedy BP (2003) Protein tyrosine phosphatase 1B: a novel target for type 2 diabetes and obesity. Curr Top Med Chem 3:749–757PubMed
149.
Zurück zum Zitat Asante-Appiah E, Kennedy BP (2003) Protein tyrosine phosphatases: the quest for negative regulators of insulin action. Am J Physiol Endocrinol Metab 284:E663–E670PubMed Asante-Appiah E, Kennedy BP (2003) Protein tyrosine phosphatases: the quest for negative regulators of insulin action. Am J Physiol Endocrinol Metab 284:E663–E670PubMed
Metadaten
Titel
Modulation of insulin action
verfasst von
L. Pirola
A. M. Johnston
Prof. Dr. E. Van Obberghen
Publikationsdatum
01.02.2004
Verlag
Springer-Verlag
Erschienen in
Diabetologia / Ausgabe 2/2004
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-003-1313-3

Weitere Artikel der Ausgabe 2/2004

Diabetologia 2/2004 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Echinokokkose medikamentös behandeln oder operieren?

06.05.2024 DCK 2024 Kongressbericht

Die Therapie von Echinokokkosen sollte immer in spezialisierten Zentren erfolgen. Eine symptomlose Echinokokkose kann – egal ob von Hunde- oder Fuchsbandwurm ausgelöst – konservativ erfolgen. Wenn eine Op. nötig ist, kann es sinnvoll sein, vorher Zysten zu leeren und zu desinfizieren. 

Aquatherapie bei Fibromyalgie wirksamer als Trockenübungen

03.05.2024 Fibromyalgiesyndrom Nachrichten

Bewegungs-, Dehnungs- und Entspannungsübungen im Wasser lindern die Beschwerden von Patientinnen mit Fibromyalgie besser als das Üben auf trockenem Land. Das geht aus einer spanisch-brasilianischen Vergleichsstudie hervor.

Wo hapert es noch bei der Umsetzung der POMGAT-Leitlinie?

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

Das Risiko für Vorhofflimmern in der Bevölkerung steigt

02.05.2024 Vorhofflimmern Nachrichten

Das Risiko, im Lauf des Lebens an Vorhofflimmern zu erkranken, ist in den vergangenen 20 Jahren gestiegen: Laut dänischen Zahlen wird es drei von zehn Personen treffen. Das hat Folgen weit über die Schlaganfallgefährdung hinaus.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.