Skip to main content
Erschienen in: Diabetologia 8/2009

01.08.2009 | Article

Somatostatin release, electrical activity, membrane currents and exocytosis in human pancreatic delta cells

verfasst von: M. Braun, R. Ramracheya, S. Amisten, M. Bengtsson, Y. Moritoh, Q. Zhang, P. R. Johnson, P. Rorsman

Erschienen in: Diabetologia | Ausgabe 8/2009

Einloggen, um Zugang zu erhalten

Abstract

Aims/hypothesis

The aim of this study was to characterise electrical activity, ion channels, exocytosis and somatostatin release in human delta cells/pancreatic islets.

Methods

Glucose-stimulated somatostatin release was measured from intact human islets. Membrane potential, currents and changes in membrane capacitance (reflecting exocytosis) were recorded from individual human delta cells identified by immunocytochemistry.

Results

Somatostatin secretion from human islets was stimulated by glucose and tolbutamide and inhibited by diazoxide. Human delta cells generated bursting or sporadic electrical activity, which was enhanced by tolbutamide but unaffected by glucose. Delta cells contained a tolbutamide-insensitive, Ba2+-sensitive inwardly rectifying K+ current and two types of voltage-gated K+ currents, sensitive to tetraethylammonium/stromatoxin (delayed rectifying, Kv2.1/2.2) and 4-aminopyridine (A current). Voltage-gated tetrodotoxin (TTX)-sensitive Na+ currents contributed to the action potential upstroke but TTX had no effect on somatostatin release. Delta cells are equipped with Ca2+ channels blocked by isradipine (L), ω-agatoxin (P/Q) and NNC 55-0396 (T). Blockade of any of these channels interferes with delta cell electrical activity and abolishes glucose-stimulated somatostatin release. Capacitance measurements revealed a slow component of depolarisation-evoked exocytosis sensitive to ω-agatoxin.

Conclusions/interpretation

Action potential firing in delta cells is modulated by ATP-sensitive K+-channel activity. The membrane potential is stabilised by Ba2+-sensitive inwardly rectifying K+ channels. Voltage-gated L- and T-type Ca2+ channels are required for electrical activity, whereas Na+ currents and P/Q-type Ca2+ channels contribute to (but are not necessary for) the upstroke of the action potential. Action potential repolarisation is mediated by A-type and Kv2.1/2.2 K+ channels. Exocytosis is tightly linked to Ca2+-influx via P/Q-type Ca2+ channels. Glucose stimulation of somatostatin secretion involves both KATP channel-dependent and -independent processes.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Brissova M, Fowler MJ, Nicholson WE et al (2005) Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy. J Histochem Cytochem 53:1087–1097PubMedCrossRef Brissova M, Fowler MJ, Nicholson WE et al (2005) Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy. J Histochem Cytochem 53:1087–1097PubMedCrossRef
2.
Zurück zum Zitat Brunicardi FC, Kleinman R, Moldovan S et al (2001) Immunoneutralization of somatostatin, insulin, and glucagon causes alterations in islet cell secretion in the isolated perfused human pancreas. Pancreas 23:302–308PubMedCrossRef Brunicardi FC, Kleinman R, Moldovan S et al (2001) Immunoneutralization of somatostatin, insulin, and glucagon causes alterations in islet cell secretion in the isolated perfused human pancreas. Pancreas 23:302–308PubMedCrossRef
3.
Zurück zum Zitat Hauge-Evans AC, King AJ, Carmignac D et al (2009) Somatostatin secreted by islet delta-cells fulfils multiple roles as a paracrine regulator of islet function. Diabetes 58:299–301 Hauge-Evans AC, King AJ, Carmignac D et al (2009) Somatostatin secreted by islet delta-cells fulfils multiple roles as a paracrine regulator of islet function. Diabetes 58:299–301
4.
Zurück zum Zitat Cabrera O, Berman DM, Kenyon NS, Ricordi C, Berggren PO, Caicedo A (2006) The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc Natl Acad Sci U S A 103:2334–2339PubMedCrossRef Cabrera O, Berman DM, Kenyon NS, Ricordi C, Berggren PO, Caicedo A (2006) The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc Natl Acad Sci U S A 103:2334–2339PubMedCrossRef
5.
Zurück zum Zitat Grill V, Gutniak M, Roovete A, Efendic S (1984) A stimulating effect of glucose on somatostatin release is impaired in noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab 59:293–297PubMedCrossRef Grill V, Gutniak M, Roovete A, Efendic S (1984) A stimulating effect of glucose on somatostatin release is impaired in noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab 59:293–297PubMedCrossRef
6.
Zurück zum Zitat Segers O, de Vroede M, Michotte Y, Somers G (1989) Basal and tolbutamide-induced plasma somatostatin in healthy subjects and in patients with diabetes and impaired glucose tolerance. Diabet Med 6:232–238PubMed Segers O, de Vroede M, Michotte Y, Somers G (1989) Basal and tolbutamide-induced plasma somatostatin in healthy subjects and in patients with diabetes and impaired glucose tolerance. Diabet Med 6:232–238PubMed
7.
Zurück zum Zitat Strowski MZ, Blake AD (2008) Function and expression of somatostatin receptors of the endocrine pancreas. Mol Cell Endocrinol 286:169–179PubMedCrossRef Strowski MZ, Blake AD (2008) Function and expression of somatostatin receptors of the endocrine pancreas. Mol Cell Endocrinol 286:169–179PubMedCrossRef
8.
Zurück zum Zitat Efendic S, Enzmann F, Nylen A, Uvnas-Wallensten K, Luft R (1979) Effect of glucose/sulfonylurea interaction on release of insulin, glucagon, and somatostatin from isolated perfused rat pancreas. Proc Natl Acad Sci U S A 76:5901–5904PubMedCrossRef Efendic S, Enzmann F, Nylen A, Uvnas-Wallensten K, Luft R (1979) Effect of glucose/sulfonylurea interaction on release of insulin, glucagon, and somatostatin from isolated perfused rat pancreas. Proc Natl Acad Sci U S A 76:5901–5904PubMedCrossRef
9.
Zurück zum Zitat Göpel SO, Kanno T, Barg S, Rorsman P (2000) Patch-clamp characterisation of somatostatin-secreting delta-cells in intact mouse pancreatic islets. J Physiol 528:497–507PubMedCrossRef Göpel SO, Kanno T, Barg S, Rorsman P (2000) Patch-clamp characterisation of somatostatin-secreting delta-cells in intact mouse pancreatic islets. J Physiol 528:497–507PubMedCrossRef
10.
Zurück zum Zitat Zhang Q, Bengtsson M, Partridge C et al (2007) R-type Ca(2+)-channel-evoked CICR regulates glucose-induced somatostatin secretion. Nat Cell Biol 9:453–460PubMedCrossRef Zhang Q, Bengtsson M, Partridge C et al (2007) R-type Ca(2+)-channel-evoked CICR regulates glucose-induced somatostatin secretion. Nat Cell Biol 9:453–460PubMedCrossRef
11.
Zurück zum Zitat Berts A, Liu YJ, Gylfe E, Hellman B (1997) Oscillatory Ca2+ signaling in somatostatin-producing cells from the human pancreas. Metabolism 46:366–369PubMedCrossRef Berts A, Liu YJ, Gylfe E, Hellman B (1997) Oscillatory Ca2+ signaling in somatostatin-producing cells from the human pancreas. Metabolism 46:366–369PubMedCrossRef
12.
Zurück zum Zitat Quesada I, Todorova MG, Alonso-Magdalena P et al (2006) Glucose induces opposite intracellular Ca2+ concentration oscillatory patterns in identified alpha- and beta-cells within intact human islets of Langerhans. Diabetes 55:2463–2469PubMedCrossRef Quesada I, Todorova MG, Alonso-Magdalena P et al (2006) Glucose induces opposite intracellular Ca2+ concentration oscillatory patterns in identified alpha- and beta-cells within intact human islets of Langerhans. Diabetes 55:2463–2469PubMedCrossRef
13.
Zurück zum Zitat Braun M, Ramracheya R, Bengtsson M et al (2008) Voltage-gated ion channels in human pancreatic beta-cells: Electrophysiological characterization and role in insulin secretion. Diabetes 57:1618–1628PubMedCrossRef Braun M, Ramracheya R, Bengtsson M et al (2008) Voltage-gated ion channels in human pancreatic beta-cells: Electrophysiological characterization and role in insulin secretion. Diabetes 57:1618–1628PubMedCrossRef
14.
Zurück zum Zitat Clark A, Wells CA, Buley ID et al (1988) Islet amyloid, increased A-cells, reduced B cells and exocrine fibrosis: quantitative changes in the pancreas in type 2 diabetes. Diabetes Res 9:151–159PubMed Clark A, Wells CA, Buley ID et al (1988) Islet amyloid, increased A-cells, reduced B cells and exocrine fibrosis: quantitative changes in the pancreas in type 2 diabetes. Diabetes Res 9:151–159PubMed
15.
Zurück zum Zitat Barg S, Galvanovskis J, Göpel SO, Rorsman P, Eliasson L (2000) Tight coupling between electrical activity and exocytosis in mouse glucagon-secreting alpha-cells. Diabetes 49:1500–1510PubMedCrossRef Barg S, Galvanovskis J, Göpel SO, Rorsman P, Eliasson L (2000) Tight coupling between electrical activity and exocytosis in mouse glucagon-secreting alpha-cells. Diabetes 49:1500–1510PubMedCrossRef
16.
Zurück zum Zitat Hille B (2001) Ion channels of excitable membranes. Sinauer, Sunderland, MA Hille B (2001) Ion channels of excitable membranes. Sinauer, Sunderland, MA
17.
Zurück zum Zitat Yan L, Figueroa DJ, Austin CP et al (2004) Expression of voltage-gated potassium channels in human and rhesus pancreatic islets. Diabetes 53:597–607PubMedCrossRef Yan L, Figueroa DJ, Austin CP et al (2004) Expression of voltage-gated potassium channels in human and rhesus pancreatic islets. Diabetes 53:597–607PubMedCrossRef
18.
Zurück zum Zitat Bokvist K, Rorsman P, Smith PA (1990) Block of ATP-regulated and Ca2(+)-activated K + channels in mouse pancreatic beta-cells by external tetraethylammonium and quinine. J Physiol 423:327–342PubMed Bokvist K, Rorsman P, Smith PA (1990) Block of ATP-regulated and Ca2(+)-activated K + channels in mouse pancreatic beta-cells by external tetraethylammonium and quinine. J Physiol 423:327–342PubMed
19.
Zurück zum Zitat Pipeleers DG, Pipeleers-Marichal MA (1981) A method for the purification of single A, B and D cells and for the isolation of coupled cells from isolated rat islets. Diabetologia 20:654–663PubMedCrossRef Pipeleers DG, Pipeleers-Marichal MA (1981) A method for the purification of single A, B and D cells and for the isolation of coupled cells from isolated rat islets. Diabetologia 20:654–663PubMedCrossRef
20.
Zurück zum Zitat Meissner HP, Schmelz H (1974) Membrane potential of beta-cells in pancreatic islets. Pflugers Arch 351:195–206PubMedCrossRef Meissner HP, Schmelz H (1974) Membrane potential of beta-cells in pancreatic islets. Pflugers Arch 351:195–206PubMedCrossRef
21.
Zurück zum Zitat Berts A, Ball A, Dryselius G, Gylfe E, Hellman B (1996) Glucose stimulation of somatostatin-producing islet cells involves oscillatory Ca2+ signaling. Endocrinology 137:693–697PubMedCrossRef Berts A, Ball A, Dryselius G, Gylfe E, Hellman B (1996) Glucose stimulation of somatostatin-producing islet cells involves oscillatory Ca2+ signaling. Endocrinology 137:693–697PubMedCrossRef
22.
Zurück zum Zitat Nadal A, Quesada I, Soria B (1999) Homologous and heterologous asynchronicity between identified alpha-, beta- and delta-cells within intact islets of Langerhans in the mouse. J Physiol 517:85–93PubMedCrossRef Nadal A, Quesada I, Soria B (1999) Homologous and heterologous asynchronicity between identified alpha-, beta- and delta-cells within intact islets of Langerhans in the mouse. J Physiol 517:85–93PubMedCrossRef
23.
Zurück zum Zitat Rorsman P, Trube G (1986) Calcium and delayed potassium currents in mouse pancreatic beta-cells under voltage-clamp conditions. J Physiol 374:531–550PubMed Rorsman P, Trube G (1986) Calcium and delayed potassium currents in mouse pancreatic beta-cells under voltage-clamp conditions. J Physiol 374:531–550PubMed
24.
Zurück zum Zitat Sherman A, Rinzel J, Keizer J (1988) Emergence of organized bursting in clusters of pancreatic beta-cells by channel sharing. Biophys J 54:411–425PubMedCrossRef Sherman A, Rinzel J, Keizer J (1988) Emergence of organized bursting in clusters of pancreatic beta-cells by channel sharing. Biophys J 54:411–425PubMedCrossRef
25.
Zurück zum Zitat Göpel SO, Kanno T, Barg S et al (1999) Activation of Ca(2+)-dependent K(+) channels contributes to rhythmic firing of action potentials in mouse pancreatic beta cells. J Gen Physiol 114:759–770PubMedCrossRef Göpel SO, Kanno T, Barg S et al (1999) Activation of Ca(2+)-dependent K(+) channels contributes to rhythmic firing of action potentials in mouse pancreatic beta cells. J Gen Physiol 114:759–770PubMedCrossRef
26.
Zurück zum Zitat Tamarina NA, Wang Y, Mariotto L et al (2003) Small-conductance calcium-activated K+ channels are expressed in pancreatic islets and regulate glucose responses. Diabetes 52:2000–2006PubMedCrossRef Tamarina NA, Wang Y, Mariotto L et al (2003) Small-conductance calcium-activated K+ channels are expressed in pancreatic islets and regulate glucose responses. Diabetes 52:2000–2006PubMedCrossRef
27.
Zurück zum Zitat Zhang M, Houamed K, Kupferschmidt S, Roden D, Satin LS (2005) Pharmacological properties and functional role of Kslow current in mouse pancreatic beta-cells: SK channels contribute to Kslow tail current and modulate insulin secretion. J Gen Physiol 126:353–363PubMedCrossRef Zhang M, Houamed K, Kupferschmidt S, Roden D, Satin LS (2005) Pharmacological properties and functional role of Kslow current in mouse pancreatic beta-cells: SK channels contribute to Kslow tail current and modulate insulin secretion. J Gen Physiol 126:353–363PubMedCrossRef
28.
Zurück zum Zitat Quesada I, Nadal A, Soria B (1999) Different effects of tolbutamide and diazoxide in alpha, beta-, and delta-cells within intact islets of Langerhans. Diabetes 48:2390–2397PubMedCrossRef Quesada I, Nadal A, Soria B (1999) Different effects of tolbutamide and diazoxide in alpha, beta-, and delta-cells within intact islets of Langerhans. Diabetes 48:2390–2397PubMedCrossRef
29.
Zurück zum Zitat Isomoto S, Kondo C, Kurachi Y (1997) Inwardly rectifying potassium channels: their molecular heterogeneity and function. Jpn J Physiol 47:11–39PubMedCrossRef Isomoto S, Kondo C, Kurachi Y (1997) Inwardly rectifying potassium channels: their molecular heterogeneity and function. Jpn J Physiol 47:11–39PubMedCrossRef
30.
Zurück zum Zitat Stanfield PR, Nakajima S, Nakajima Y (2002) Constitutively active and G-protein coupled inward rectifier K+ channels: Kir2.0 and Kir3.0. Rev Physiol Biochem Pharmacol 145:47–179PubMedCrossRef Stanfield PR, Nakajima S, Nakajima Y (2002) Constitutively active and G-protein coupled inward rectifier K+ channels: Kir2.0 and Kir3.0. Rev Physiol Biochem Pharmacol 145:47–179PubMedCrossRef
31.
Zurück zum Zitat Koschak A, Reimer D, Huber I et al (2001) Alpha 1D (Cav1.3) subunits can form L-type Ca2+ channels activating at negative voltages. J Biol Chem 276:22100–22106PubMedCrossRef Koschak A, Reimer D, Huber I et al (2001) Alpha 1D (Cav1.3) subunits can form L-type Ca2+ channels activating at negative voltages. J Biol Chem 276:22100–22106PubMedCrossRef
32.
Zurück zum Zitat Henquin JC (2000) Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes 49:1751–1760PubMedCrossRef Henquin JC (2000) Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes 49:1751–1760PubMedCrossRef
Metadaten
Titel
Somatostatin release, electrical activity, membrane currents and exocytosis in human pancreatic delta cells
verfasst von
M. Braun
R. Ramracheya
S. Amisten
M. Bengtsson
Y. Moritoh
Q. Zhang
P. R. Johnson
P. Rorsman
Publikationsdatum
01.08.2009
Verlag
Springer-Verlag
Erschienen in
Diabetologia / Ausgabe 8/2009
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-009-1382-z

Weitere Artikel der Ausgabe 8/2009

Diabetologia 8/2009 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.