Skip to main content
Erschienen in: Diabetologia 7/2011

01.07.2011 | Article

AMP-activated protein kinase is activated in adipose tissue of individuals with type 2 diabetes treated with metformin: a randomised glycaemia-controlled crossover study

verfasst von: J. G. Boyle, P. J. Logan, G. C. Jones, M. Small, N. Sattar, J. M. C. Connell, S. J. Cleland, I. P. Salt

Erschienen in: Diabetologia | Ausgabe 7/2011

Einloggen, um Zugang zu erhalten

Abstract

Aims/hypothesis

The hypoglycaemic actions of metformin have been proposed to be mediated by hepatic AMP-activated protein kinase (AMPK). As the effects of metformin and the role of AMPK in adipose tissue remain poorly characterised, we examined the effect of metformin on AMPK activity in adipose tissue of individuals with type 2 diabetes in a randomised glycaemia-controlled crossover study.

Methods

Twenty men with type 2 diabetes (aged 50–70 years) treated with diet, metformin or sulfonylurea alone were recruited from North Glasgow University National Health Service Trusts’ diabetes clinics and randomised to either metformin or gliclazide for 10 weeks. Randomisation codes, generated by computer, were put into sealed envelopes and stored by the hospital pharmacist. Medication bottles were numbered, and allocation was done in sequence. The participants and investigators were blinded to group assignment. At the end of each phase of therapy adipose biopsy, AMPK activity (primary endpoint) and levels of lipid metabolism and signalling proteins were assessed. In parallel, the effect of metformin on AMPK and insulin-signalling pathways was investigated in 3T3-L1 adipocytes.

Results

Ten participants were initially randomised to metformin and subsequently crossed over to gliclazide, while ten participants were initially randomised to gliclazide and subsequently crossed over to metformin. No participants discontinued the intervention and the adipose tissue AMPK activity was analysed in all 20 participants. There were no adverse events or side effects in the study group. Adipose AMPK activity was increased following metformin compared with gliclazide therapy (0.057 ± 0.007 vs 0.030 ± 0.005 [mean ± SEM] nmol min−1 [mg lysate]−1; p < 0.005), independent of AMPK level, glycaemia or plasma adiponectin concentrations. The increase was associated with reduced levels of acetyl-CoA carboxylase (ACC) protein and increased ACC Ser80 phosphorylation. In 3T3-L1 adipocytes, metformin reduced levels of ACC protein and stimulated phosphorylation of AMPK Thr172 and hormone-sensitive lipase Ser565.

Conclusions

These results provide the first evidence that metformin activates AMPK and reduces ACC protein levels in human adipose tissue in vivo. Future studies are required to assess the role of adipose AMPK activation in the pharmacological effects of metformin.

Trial registration

ISRCTN51336867

Funding

This work was supported by grants from the British Heart Foundation, TENOVUS-Scotland, the Biotechnology and Biological Sciences Research Council and Diabetes UK.
Literatur
1.
Zurück zum Zitat Zhou G, Myers R, Li Y et al (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108:1167–1174PubMed Zhou G, Myers R, Li Y et al (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108:1167–1174PubMed
2.
Zurück zum Zitat Shaw RJ, Lamia KA, Vasquez D et al (2005) The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310:1642–1646PubMedCrossRef Shaw RJ, Lamia KA, Vasquez D et al (2005) The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310:1642–1646PubMedCrossRef
3.
Zurück zum Zitat UK Prospective Diabetes Study (UKPDS) Group (1998) Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 352:854–865CrossRef UK Prospective Diabetes Study (UKPDS) Group (1998) Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 352:854–865CrossRef
4.
Zurück zum Zitat Hardie DG (2008) AMPK: a key regulator of energy balance in the single cell and the whole organism. Int J Obes 32:S7–S12CrossRef Hardie DG (2008) AMPK: a key regulator of energy balance in the single cell and the whole organism. Int J Obes 32:S7–S12CrossRef
5.
Zurück zum Zitat Zhang BB, Zhou G, Li C (2009) AMPK: an emerging drug target for diabetes and the metabolic syndrome. Cell Metab 9:407–416PubMedCrossRef Zhang BB, Zhou G, Li C (2009) AMPK: an emerging drug target for diabetes and the metabolic syndrome. Cell Metab 9:407–416PubMedCrossRef
6.
Zurück zum Zitat Sullivan JE, Brocklehurst KJ, Marley AE, Carey F, Carling D, Beri RK (1994) Inhibition of lipolysis and lipogenesis in isolated rat adipocytes with AICAR, a cell-permeable activator of AMP-activated protein kinase. FEBS Lett 353:33–36PubMedCrossRef Sullivan JE, Brocklehurst KJ, Marley AE, Carey F, Carling D, Beri RK (1994) Inhibition of lipolysis and lipogenesis in isolated rat adipocytes with AICAR, a cell-permeable activator of AMP-activated protein kinase. FEBS Lett 353:33–36PubMedCrossRef
7.
Zurück zum Zitat Garton AJ, Yeaman SJ (1990) Identification and role of the basal phosphorylation site on hormone-sensitive lipase. Eur J Biochem 191:245–250PubMedCrossRef Garton AJ, Yeaman SJ (1990) Identification and role of the basal phosphorylation site on hormone-sensitive lipase. Eur J Biochem 191:245–250PubMedCrossRef
8.
Zurück zum Zitat Corton JM, Gillespie JG, Hawley SA, Hardie DG (1995) 5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells? Eur J Biochem 229:558–565PubMedCrossRef Corton JM, Gillespie JG, Hawley SA, Hardie DG (1995) 5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells? Eur J Biochem 229:558–565PubMedCrossRef
9.
Zurück zum Zitat Daval M, Diot-Dupuy F, Bazin R et al (2005) Anti-lipolytic action of AMP-activated protein kinase in rodent adipocytes. J Biol Chem 280:25250–25257PubMedCrossRef Daval M, Diot-Dupuy F, Bazin R et al (2005) Anti-lipolytic action of AMP-activated protein kinase in rodent adipocytes. J Biol Chem 280:25250–25257PubMedCrossRef
10.
Zurück zum Zitat Koh HJ, Hirshman MF, He H et al (2007) Adrenaline is a critical mediator of acute exercise-induced AMP-activated protein kinase activation in adipocytes. Biochem J 403:473–481PubMedCrossRef Koh HJ, Hirshman MF, He H et al (2007) Adrenaline is a critical mediator of acute exercise-induced AMP-activated protein kinase activation in adipocytes. Biochem J 403:473–481PubMedCrossRef
11.
Zurück zum Zitat Gauthier MS, Miyoshi H, Souza SC et al (2008) AMP-activated protein kinase is activated as a consequence of lipolysis in the adipocyte: potential mechanism and physiological relevance. J Biol Chem 283:16514–16524PubMedCrossRef Gauthier MS, Miyoshi H, Souza SC et al (2008) AMP-activated protein kinase is activated as a consequence of lipolysis in the adipocyte: potential mechanism and physiological relevance. J Biol Chem 283:16514–16524PubMedCrossRef
12.
Zurück zum Zitat Villena JA, Viollet B, Andreelli F, Kahn A, Vaulont S, Sul HS (2004) Induced adiposity and adipocyte hypertrophy in mice lacking the AMP-activated protein kinase-alpha2 subunit. Diabetes 53:2242–2249PubMedCrossRef Villena JA, Viollet B, Andreelli F, Kahn A, Vaulont S, Sul HS (2004) Induced adiposity and adipocyte hypertrophy in mice lacking the AMP-activated protein kinase-alpha2 subunit. Diabetes 53:2242–2249PubMedCrossRef
13.
Zurück zum Zitat Habinowski SA, Witters LA (2001) The effects of AICAR on adipocyte differentiation of 3T3-L1 cells. Biochem Biophys Res Commun 286:852–856PubMedCrossRef Habinowski SA, Witters LA (2001) The effects of AICAR on adipocyte differentiation of 3T3-L1 cells. Biochem Biophys Res Commun 286:852–856PubMedCrossRef
14.
Zurück zum Zitat Salt IP, Connell JM, Gould GW (2000) 5-Aminoimidazole-4-carboxamide ribonucleoside (AICAR) inhibits insulin-stimulated glucose transport in 3T3-L1 adipocytes. Diabetes 49:1649–1656PubMedCrossRef Salt IP, Connell JM, Gould GW (2000) 5-Aminoimidazole-4-carboxamide ribonucleoside (AICAR) inhibits insulin-stimulated glucose transport in 3T3-L1 adipocytes. Diabetes 49:1649–1656PubMedCrossRef
15.
Zurück zum Zitat Gaidhu MP, Fediuc S, Ceddia RB (2006) 5-Aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside-induced AMP-activated protein kinase phosphorylation inhibits basal and insulin-stimulated glucose uptake, lipid synthesis, and fatty acid oxidation in isolated rat adipocytes. J Biol Chem 281:25956–25964PubMedCrossRef Gaidhu MP, Fediuc S, Ceddia RB (2006) 5-Aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside-induced AMP-activated protein kinase phosphorylation inhibits basal and insulin-stimulated glucose uptake, lipid synthesis, and fatty acid oxidation in isolated rat adipocytes. J Biol Chem 281:25956–25964PubMedCrossRef
16.
Zurück zum Zitat Gaidhu MP, Perry RL, Noor F, Ceddia RB (2010) Disruption of AMPKα1 signaling prevents AICAR-induced inhibition of AS160/TBC1D4 phosphorylation and glucose uptake in primary rat adipocytes. Mol Endocrinol 24:1434–1440PubMedCrossRef Gaidhu MP, Perry RL, Noor F, Ceddia RB (2010) Disruption of AMPKα1 signaling prevents AICAR-induced inhibition of AS160/TBC1D4 phosphorylation and glucose uptake in primary rat adipocytes. Mol Endocrinol 24:1434–1440PubMedCrossRef
17.
Zurück zum Zitat Chavez JA, Roach WG, Keller SR, Lane WS, Lienhard GE (2008) Inhibition of GLUT4 translocation by Tbc1d1, a Rab GTPase-activating protein abundant in skeletal muscle, is partially relieved by AMP-activated protein kinase activation. J Biol Chem 283:9187–9195PubMedCrossRef Chavez JA, Roach WG, Keller SR, Lane WS, Lienhard GE (2008) Inhibition of GLUT4 translocation by Tbc1d1, a Rab GTPase-activating protein abundant in skeletal muscle, is partially relieved by AMP-activated protein kinase activation. J Biol Chem 283:9187–9195PubMedCrossRef
18.
Zurück zum Zitat Park H, Kaushik VK, Constant S et al (2002) Coordinate regulation of malonyl-CoA decarboxylase, sn-glycerol-3-phosphate acyltransferase, and acetyl-CoA carboxylase by AMP-activated protein kinase in rat tissues in response to exercise. J Biol Chem 277:32571–32577PubMedCrossRef Park H, Kaushik VK, Constant S et al (2002) Coordinate regulation of malonyl-CoA decarboxylase, sn-glycerol-3-phosphate acyltransferase, and acetyl-CoA carboxylase by AMP-activated protein kinase in rat tissues in response to exercise. J Biol Chem 277:32571–32577PubMedCrossRef
19.
Zurück zum Zitat Sponarova J, Mustard KJ, Horakova O et al (2005) Involvement of AMP-activated protein kinase in fat depot-specific metabolic changes during starvation. FEBS Lett 579:6105–6110PubMedCrossRef Sponarova J, Mustard KJ, Horakova O et al (2005) Involvement of AMP-activated protein kinase in fat depot-specific metabolic changes during starvation. FEBS Lett 579:6105–6110PubMedCrossRef
20.
Zurück zum Zitat LeBrasseur NK, Kelly M, Tsao TS et al (2006) Thiazolidinediones can rapidly activate AMP-activated protein kinase in mammalian tissues. Am J Physiol Endocrinol Metab 291:E175–E181PubMedCrossRef LeBrasseur NK, Kelly M, Tsao TS et al (2006) Thiazolidinediones can rapidly activate AMP-activated protein kinase in mammalian tissues. Am J Physiol Endocrinol Metab 291:E175–E181PubMedCrossRef
21.
Zurück zum Zitat Kola B, Hubina E, Tucci SA et al (2005) Cannabinoids and ghrelin have both central and peripheral metabolic and cardiac effects via AMP-activated protein kinase. J Biol Chem 280:25196–25201PubMedCrossRef Kola B, Hubina E, Tucci SA et al (2005) Cannabinoids and ghrelin have both central and peripheral metabolic and cardiac effects via AMP-activated protein kinase. J Biol Chem 280:25196–25201PubMedCrossRef
22.
Zurück zum Zitat Christ-Crain M, Kola B, Lolli F et al (2008) AMP-activated protein kinase mediates glucocorticoid-induced metabolic changes: a novel mechanism in Cushing's syndrome. FASEB J 22:1672–1683PubMedCrossRef Christ-Crain M, Kola B, Lolli F et al (2008) AMP-activated protein kinase mediates glucocorticoid-induced metabolic changes: a novel mechanism in Cushing's syndrome. FASEB J 22:1672–1683PubMedCrossRef
23.
Zurück zum Zitat Gaidhu MP, Anthony NM, Patel P, Hawke TJ, Ceddia RB (2010) Dysregulation of lipolysis and lipid metabolism in visceral and subcutaneous adipocytes by high-fat diet: role of ATGL, HSL, and AMPK. Am J Physiol Cell Physiol 298:C961–C971PubMedCrossRef Gaidhu MP, Anthony NM, Patel P, Hawke TJ, Ceddia RB (2010) Dysregulation of lipolysis and lipid metabolism in visceral and subcutaneous adipocytes by high-fat diet: role of ATGL, HSL, and AMPK. Am J Physiol Cell Physiol 298:C961–C971PubMedCrossRef
24.
Zurück zum Zitat Kola B, Christ-Crain M, Lolli F et al (2008) Changes in adenosine 5′-monophosphate-activated protein kinase as a mechanism of visceral obesity in Cushing's syndrome. J Clin Endocrinol Metab 93:4969–4973PubMedCrossRef Kola B, Christ-Crain M, Lolli F et al (2008) Changes in adenosine 5′-monophosphate-activated protein kinase as a mechanism of visceral obesity in Cushing's syndrome. J Clin Endocrinol Metab 93:4969–4973PubMedCrossRef
25.
Zurück zum Zitat Ota S, Horigome K, Ishii T et al (2009) Metformin suppresses glucose-6-phosphatase expression by a complex I inhibition and AMPK activation-independent mechanism. Biochem Biophys Res Commun 388:311–316PubMedCrossRef Ota S, Horigome K, Ishii T et al (2009) Metformin suppresses glucose-6-phosphatase expression by a complex I inhibition and AMPK activation-independent mechanism. Biochem Biophys Res Commun 388:311–316PubMedCrossRef
26.
Zurück zum Zitat Foretz M, Hébrard S, Leclerc J et al (2010) Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J Clin Invest 120:2355–2369PubMedCrossRef Foretz M, Hébrard S, Leclerc J et al (2010) Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J Clin Invest 120:2355–2369PubMedCrossRef
27.
Zurück zum Zitat Musi N, Hirshman MF, Nygren J et al (2002) Metformin increases AMP-activated protein kinase activity in skeletal muscle of subjects with type 2 diabetes. Diabetes 51:2074–2081PubMedCrossRef Musi N, Hirshman MF, Nygren J et al (2002) Metformin increases AMP-activated protein kinase activity in skeletal muscle of subjects with type 2 diabetes. Diabetes 51:2074–2081PubMedCrossRef
28.
Zurück zum Zitat Boyle JG, Logan PJ, Ewart MA et al (2008) Rosiglitazone stimulates nitric oxide synthesis in human aortic endothelial cells via AMP-activated protein kinase. J Biol Chem 283:11210–11217PubMedCrossRef Boyle JG, Logan PJ, Ewart MA et al (2008) Rosiglitazone stimulates nitric oxide synthesis in human aortic endothelial cells via AMP-activated protein kinase. J Biol Chem 283:11210–11217PubMedCrossRef
29.
Zurück zum Zitat Nelson SM, Freeman DJ, Sattar N, Lindsay RS (2008) Role of adiponectin in matching of fetal and placental weight in mothers with type 1 diabetes. Diabetes Care 31:1123–1125PubMedCrossRef Nelson SM, Freeman DJ, Sattar N, Lindsay RS (2008) Role of adiponectin in matching of fetal and placental weight in mothers with type 1 diabetes. Diabetes Care 31:1123–1125PubMedCrossRef
30.
Zurück zum Zitat Huang YC, Chang WL, Huang SF, Lin CY, Lin HC, Chang TC (2010) Pachymic acid stimulates glucose uptake through enhanced GLUT4 expression and translocation. Eur J Pharmacol 648:39–49PubMedCrossRef Huang YC, Chang WL, Huang SF, Lin CY, Lin HC, Chang TC (2010) Pachymic acid stimulates glucose uptake through enhanced GLUT4 expression and translocation. Eur J Pharmacol 648:39–49PubMedCrossRef
31.
Zurück zum Zitat Wu X, Motoshima H, Mahadev K, Stalker TJ, Scalia R, Goldstein BJ (2003) Involvement of AMP-activated protein kinase in glucose uptake stimulated by the globular domain of adiponectin in primary rat adipocytes. Diabetes 52:1355–1363PubMedCrossRef Wu X, Motoshima H, Mahadev K, Stalker TJ, Scalia R, Goldstein BJ (2003) Involvement of AMP-activated protein kinase in glucose uptake stimulated by the globular domain of adiponectin in primary rat adipocytes. Diabetes 52:1355–1363PubMedCrossRef
32.
Zurück zum Zitat Phillips SA, Ciaraldi TP, Kong APS et al (2003) Modulation of circulating and adipose tissue adiponectin levels by antidiabetic therapy. Diabetes 52:667–674PubMedCrossRef Phillips SA, Ciaraldi TP, Kong APS et al (2003) Modulation of circulating and adipose tissue adiponectin levels by antidiabetic therapy. Diabetes 52:667–674PubMedCrossRef
33.
Zurück zum Zitat Drzewoski J, Zurawska-Klis M (2006) Effect of gliclazide modified release of adiponectin, interleukin-6, and tumor necrosis factor-alpha plasma levels in individuals with type 2 diabetes mellitus. Curr Med Res Opin 22:1921–1926PubMedCrossRef Drzewoski J, Zurawska-Klis M (2006) Effect of gliclazide modified release of adiponectin, interleukin-6, and tumor necrosis factor-alpha plasma levels in individuals with type 2 diabetes mellitus. Curr Med Res Opin 22:1921–1926PubMedCrossRef
34.
Zurück zum Zitat Huypens P, Quartier E, Pipeleers D, van de Casteele M (2005) Metformin reduces adiponectin protein expression and release in 3T3-L1 adipocytes involving activation of AMP activated protein kinase. Eur J Pharmacol 518:90–95PubMedCrossRef Huypens P, Quartier E, Pipeleers D, van de Casteele M (2005) Metformin reduces adiponectin protein expression and release in 3T3-L1 adipocytes involving activation of AMP activated protein kinase. Eur J Pharmacol 518:90–95PubMedCrossRef
35.
Zurück zum Zitat Bourron O, Daval M, Hainault I et al (2010) Biguanides and thiazolidinediones inhibit stimulated lipolysis in human adipocytes through activation of AMP-activated protein kinase. Diabetologia 53:768–778PubMedCrossRef Bourron O, Daval M, Hainault I et al (2010) Biguanides and thiazolidinediones inhibit stimulated lipolysis in human adipocytes through activation of AMP-activated protein kinase. Diabetologia 53:768–778PubMedCrossRef
36.
Zurück zum Zitat Hong Y, Rohatagi S, Habtemariam B, Walker JR, Schwartz SL, Mager DE (2008) Population exposure-response modeling of metformin in patients with type 2 diabetes mellitus. J Clin Pharmacol 48:696–707PubMedCrossRef Hong Y, Rohatagi S, Habtemariam B, Walker JR, Schwartz SL, Mager DE (2008) Population exposure-response modeling of metformin in patients with type 2 diabetes mellitus. J Clin Pharmacol 48:696–707PubMedCrossRef
37.
Zurück zum Zitat Ranganathan G, Unal R, Pokrovskaya I et al (2006) The lipogenic enzymes DGAT1, FAS, and LPL in adipose tissue: effects of obesity, insulin resistance, and TZD treatment. J Lipid Res 47:2444–2450PubMedCrossRef Ranganathan G, Unal R, Pokrovskaya I et al (2006) The lipogenic enzymes DGAT1, FAS, and LPL in adipose tissue: effects of obesity, insulin resistance, and TZD treatment. J Lipid Res 47:2444–2450PubMedCrossRef
38.
Zurück zum Zitat Ciaraldi TP, Kong APS, Chu NV (2002) Regulation of glucose transport and insulin signaling by troglitazone or metformin in adipose tissue of type 2 diabetic subjects. Diabetes 51:30–36PubMedCrossRef Ciaraldi TP, Kong APS, Chu NV (2002) Regulation of glucose transport and insulin signaling by troglitazone or metformin in adipose tissue of type 2 diabetic subjects. Diabetes 51:30–36PubMedCrossRef
39.
Zurück zum Zitat Abbasi F, Carantoni M, Chen YI, Reaven GM (1998) Further evidence for a central role of adipose tissue in the antihyperglycemic effect of metformin. Diabetes Care 21:1301–1305PubMedCrossRef Abbasi F, Carantoni M, Chen YI, Reaven GM (1998) Further evidence for a central role of adipose tissue in the antihyperglycemic effect of metformin. Diabetes Care 21:1301–1305PubMedCrossRef
40.
Zurück zum Zitat James AP, Watts GF, Mamo JC (2005) The effect of metformin and rosiglitazone on postprandial lipid metabolism in obese insulin-resistant subjects. Diab Obes Metab 7:381–389CrossRef James AP, Watts GF, Mamo JC (2005) The effect of metformin and rosiglitazone on postprandial lipid metabolism in obese insulin-resistant subjects. Diab Obes Metab 7:381–389CrossRef
41.
Zurück zum Zitat Mooney MH, Fogarty S, Stevenson C et al (2008) Mechanisms underlying the metabolic actions of galegine that contribute to weight loss in mice. Br J Pharmacol 153:1669–1677PubMedCrossRef Mooney MH, Fogarty S, Stevenson C et al (2008) Mechanisms underlying the metabolic actions of galegine that contribute to weight loss in mice. Br J Pharmacol 153:1669–1677PubMedCrossRef
42.
Zurück zum Zitat Fischer M, Timper K, Radimerski T et al (2010) Metformin induces glucose uptake in human preadipocyte-derived adipocytes from various fat depots. Diab Obes Metab 12:356–359CrossRef Fischer M, Timper K, Radimerski T et al (2010) Metformin induces glucose uptake in human preadipocyte-derived adipocytes from various fat depots. Diab Obes Metab 12:356–359CrossRef
43.
Zurück zum Zitat Jensterle M, Janez A, Mlinar B, Marc J, Prezelj J, Pfeifer M (2008) Impact of metformin and rosiglitazone treatment on glucose transporter 4 mRNA expression in women with polycystic ovary syndrome. Eur J Endocrinol 158:793–801PubMedCrossRef Jensterle M, Janez A, Mlinar B, Marc J, Prezelj J, Pfeifer M (2008) Impact of metformin and rosiglitazone treatment on glucose transporter 4 mRNA expression in women with polycystic ovary syndrome. Eur J Endocrinol 158:793–801PubMedCrossRef
44.
Zurück zum Zitat Kukidome D, Nishikawa T, Sonoda K et al (2006) Activation of AMP-activated protein kinase reduces hyperglycemia-induced mitochondrial reactive oxygen species production and promotes mitochondrial biogenesis in human umbilical vein endothelial cells. Diabetes 55:120–127PubMedCrossRef Kukidome D, Nishikawa T, Sonoda K et al (2006) Activation of AMP-activated protein kinase reduces hyperglycemia-induced mitochondrial reactive oxygen species production and promotes mitochondrial biogenesis in human umbilical vein endothelial cells. Diabetes 55:120–127PubMedCrossRef
45.
Zurück zum Zitat Nath N, Khan M, Paintlia MK, Singh I, Hoda MN, Giri S (2009) Metformin attenuated the autoimmune disease of the central nervous system in animal models of multiple sclerosis. J Immunol 182:8005–8014PubMedCrossRef Nath N, Khan M, Paintlia MK, Singh I, Hoda MN, Giri S (2009) Metformin attenuated the autoimmune disease of the central nervous system in animal models of multiple sclerosis. J Immunol 182:8005–8014PubMedCrossRef
46.
Zurück zum Zitat Dagon Y, Avraham Y, Berry EM (2006) AMPK activation regulates apoptosis, adipogenesis, and lipolysis by eIF2α in adipocytes. Biochem Biophys Res Commun 340:43–47PubMedCrossRef Dagon Y, Avraham Y, Berry EM (2006) AMPK activation regulates apoptosis, adipogenesis, and lipolysis by eIF2α in adipocytes. Biochem Biophys Res Commun 340:43–47PubMedCrossRef
47.
Zurück zum Zitat Ewart MA, Kohlhaas CF, Salt IP (2008) Inhibition of TNFα-stimulated monocyte adhesion to human aortic endothelial cells by AMP-activated protein kinase. Arterioscler Thromb Vasc Biol 28:2255–2257PubMedCrossRef Ewart MA, Kohlhaas CF, Salt IP (2008) Inhibition of TNFα-stimulated monocyte adhesion to human aortic endothelial cells by AMP-activated protein kinase. Arterioscler Thromb Vasc Biol 28:2255–2257PubMedCrossRef
48.
Zurück zum Zitat Yang Z, Kahn BB, Shi H, Xue BZ (2010) Macrophage α1 AMP-activated protein kinase (α1AMPK) antagonizes fatty acid-induced inflammation through SIRT1. J Biol Chem 285:19051–19059PubMedCrossRef Yang Z, Kahn BB, Shi H, Xue BZ (2010) Macrophage α1 AMP-activated protein kinase (α1AMPK) antagonizes fatty acid-induced inflammation through SIRT1. J Biol Chem 285:19051–19059PubMedCrossRef
Metadaten
Titel
AMP-activated protein kinase is activated in adipose tissue of individuals with type 2 diabetes treated with metformin: a randomised glycaemia-controlled crossover study
verfasst von
J. G. Boyle
P. J. Logan
G. C. Jones
M. Small
N. Sattar
J. M. C. Connell
S. J. Cleland
I. P. Salt
Publikationsdatum
01.07.2011
Verlag
Springer-Verlag
Erschienen in
Diabetologia / Ausgabe 7/2011
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-011-2126-4

Weitere Artikel der Ausgabe 7/2011

Diabetologia 7/2011 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.