Skip to main content
Erschienen in: Diabetologia 9/2012

01.09.2012 | Article

Histone deacetylases 1 and 3 but not 2 mediate cytokine-induced beta cell apoptosis in INS-1 cells and dispersed primary islets from rats and are differentially regulated in the islets of type 1 diabetic children

verfasst von: M. Lundh, D. P. Christensen, M. Damgaard Nielsen, S. J. Richardson, M. S. Dahllöf, T. Skovgaard, J. Berthelsen, C. A. Dinarello, A. Stevenazzi, P. Mascagni, L. G. Grunnet, N. G. Morgan, T. Mandrup-Poulsen

Erschienen in: Diabetologia | Ausgabe 9/2012

Einloggen, um Zugang zu erhalten

Abstract

Aims/hypothesis

Histone deacetylases (HDACs) are promising pharmacological targets in cancer and autoimmune diseases. All 11 classical HDACs (HDAC1–11) are found in the pancreatic beta cell, and HDAC inhibitors (HDACi) protect beta cells from inflammatory insults. We investigated which HDACs mediate inflammatory beta cell damage and how the islet content of these HDACs is regulated in recent-onset type 1 diabetes.

Methods

The rat beta cell line INS-1 and dispersed primary islets from rats, either wild type or HDAC1–3 deficient, were exposed to cytokines and HDACi. Molecular mechanisms were investigated using real-time PCR, chromatin immunoprecipitation and ELISA assays. Pancreases from healthy children and children with type 1 diabetes were assessed using immunohistochemistry and immunofluorescence.

Results

Screening of 19 compounds with different HDAC selectivity revealed that inhibitors of HDAC1, -2 and -3 rescued INS-1 cells from inflammatory damage. Small hairpin RNAs against HDAC1 and -3, but not HDAC2, reduced pro-inflammatory cytokine-induced beta cell apoptosis in INS-1 and primary rat islets. The protective properties of specific HDAC knock-down correlated with attenuated cytokine-induced iNos expression but not with altered expression of the pro-inflammatory mediators Il1α, Il1β, Tnfα or Cxcl2. HDAC3 knock-down reduced nuclear factor κB binding to the iNos promoter and HDAC1 knock-down restored insulin secretion. In pancreatic sections from children with type 1 diabetes of recent onset, HDAC1 was upregulated in beta cells whereas HDAC2 and -3 were downregulated in comparison with five paediatric controls.

Conclusions/interpretation

These data demonstrate non-redundant functions of islet class I HDACs and suggest that targeting HDAC1 and HDAC3 would provide optimal protection of beta cell mass and function in clinical islet transplantation and recent-onset type 1 diabetic patients.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat The Canadian-European Randomized Control Trial Group (1988) Cyclosporin-induced remission of IDDM after early intervention. Association of 1 yr of cyclosporin treatment with enhanced insulin secretion. Diabetes 37:1574–1582CrossRef The Canadian-European Randomized Control Trial Group (1988) Cyclosporin-induced remission of IDDM after early intervention. Association of 1 yr of cyclosporin treatment with enhanced insulin secretion. Diabetes 37:1574–1582CrossRef
2.
Zurück zum Zitat Keymeulen B, Vandemeulebroucke E, Ziegler AG et al (2005) Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes. N Engl J Med 352:2598–2608PubMedCrossRef Keymeulen B, Vandemeulebroucke E, Ziegler AG et al (2005) Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes. N Engl J Med 352:2598–2608PubMedCrossRef
3.
Zurück zum Zitat Pescovitz MD, Greenbaum CJ, Krause-Steinrauf H et al (2009) Rituximab, B-lymphocyte depletion, and preservation of beta-cell function. N Engl J Med 361:2143–2152PubMedCrossRef Pescovitz MD, Greenbaum CJ, Krause-Steinrauf H et al (2009) Rituximab, B-lymphocyte depletion, and preservation of beta-cell function. N Engl J Med 361:2143–2152PubMedCrossRef
4.
Zurück zum Zitat Berger JR, Houff SA, Major EO (2009) Monoclonal antibodies and progressive multifocal leukoencephalopathy. MAbs 1:583–589PubMedCrossRef Berger JR, Houff SA, Major EO (2009) Monoclonal antibodies and progressive multifocal leukoencephalopathy. MAbs 1:583–589PubMedCrossRef
5.
Zurück zum Zitat Choudhary C, Kumar C, Gnad F et al (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325:834–840PubMedCrossRef Choudhary C, Kumar C, Gnad F et al (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325:834–840PubMedCrossRef
6.
Zurück zum Zitat Lf C, Fischle W, Verdin E, Greene WC (2001) Duration of nuclear NF-kappa B action regulated by reversible acetylation. Science 293:1653–1657CrossRef Lf C, Fischle W, Verdin E, Greene WC (2001) Duration of nuclear NF-kappa B action regulated by reversible acetylation. Science 293:1653–1657CrossRef
7.
Zurück zum Zitat Federico M, Bagella L (2011) Histone deacetylase inhibitors in the treatment of hematological malignancies and solid tumors. J Biomed Biotechnol 2011:475641PubMedCrossRef Federico M, Bagella L (2011) Histone deacetylase inhibitors in the treatment of hematological malignancies and solid tumors. J Biomed Biotechnol 2011:475641PubMedCrossRef
8.
Zurück zum Zitat Vojinovic J, Damjanov N, D’Urzo C et al (2011) Safety and efficacy of an oral histone deacetylase inhibitor in systemic-onset juvenile idiopathic arthritis. Arthritis Rheum 63:1452–1458PubMedCrossRef Vojinovic J, Damjanov N, D’Urzo C et al (2011) Safety and efficacy of an oral histone deacetylase inhibitor in systemic-onset juvenile idiopathic arthritis. Arthritis Rheum 63:1452–1458PubMedCrossRef
9.
Zurück zum Zitat de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370:737–749PubMedCrossRef de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370:737–749PubMedCrossRef
10.
Zurück zum Zitat Kim JY, Shen S, Dietz K et al (2010) HDAC1 nuclear export induced by pathological conditions is essential for the onset of axonal damage. Nat Neurosci 13:180–189PubMedCrossRef Kim JY, Shen S, Dietz K et al (2010) HDAC1 nuclear export induced by pathological conditions is essential for the onset of axonal damage. Nat Neurosci 13:180–189PubMedCrossRef
11.
Zurück zum Zitat Bakin RE, Jung MO (2008) HDAC2 cytoplasmic sequestration potentiates keratinocyte terminal differentiaiton. Open Cell Dev J 1:1–9CrossRef Bakin RE, Jung MO (2008) HDAC2 cytoplasmic sequestration potentiates keratinocyte terminal differentiaiton. Open Cell Dev J 1:1–9CrossRef
12.
Zurück zum Zitat Lundh M, Christensen DP, Rasmussen DN et al (2010) Lysine deacetylases are produced in pancreatic beta cells and are differentially regulated by proinflammatory cytokines. Diabetologia 53:2569–2578PubMedCrossRef Lundh M, Christensen DP, Rasmussen DN et al (2010) Lysine deacetylases are produced in pancreatic beta cells and are differentially regulated by proinflammatory cytokines. Diabetologia 53:2569–2578PubMedCrossRef
13.
Zurück zum Zitat Eizirik DL, Mandrup-Poulsen T (2001) A choice of death—the signal-transduction of immune-mediated beta-cell apoptosis. Diabetologia 44:2115–2133PubMedCrossRef Eizirik DL, Mandrup-Poulsen T (2001) A choice of death—the signal-transduction of immune-mediated beta-cell apoptosis. Diabetologia 44:2115–2133PubMedCrossRef
14.
Zurück zum Zitat Larsen L, Tonnesen M, Ronn S et al (2007) Inhibition of histone deacetylases prevents cytokine-induced toxicity in beta cells. Diabetologia 50:779–789PubMedCrossRef Larsen L, Tonnesen M, Ronn S et al (2007) Inhibition of histone deacetylases prevents cytokine-induced toxicity in beta cells. Diabetologia 50:779–789PubMedCrossRef
15.
Zurück zum Zitat Patel T, Patel V, Singh R, Jayaraman S (2011) Chromatin remodeling resets the immune system to protect against autoimmune diabetes in mice. Immunol Cell Biol 89:640–649PubMedCrossRef Patel T, Patel V, Singh R, Jayaraman S (2011) Chromatin remodeling resets the immune system to protect against autoimmune diabetes in mice. Immunol Cell Biol 89:640–649PubMedCrossRef
16.
Zurück zum Zitat Asfari M, Janjic D, Meda P, Li G, Halban PA, Wollheim CB (1992) Establishment of 2-mercaptoethanol-dependent differentiated insulin-secreting cell lines. Endocrinology 130:167–178PubMedCrossRef Asfari M, Janjic D, Meda P, Li G, Halban PA, Wollheim CB (1992) Establishment of 2-mercaptoethanol-dependent differentiated insulin-secreting cell lines. Endocrinology 130:167–178PubMedCrossRef
17.
Zurück zum Zitat Brunstedt J (1980) Rapid isolation of functionally intact pancreatic islets from mice and rats by percollTM gradient centrifucation. Diabetes Metab 6:87–89 Brunstedt J (1980) Rapid isolation of functionally intact pancreatic islets from mice and rats by percollTM gradient centrifucation. Diabetes Metab 6:87–89
18.
Zurück zum Zitat Nielsen R, Grontved L, Stunnenberg HG, Mandrup S (2006) Peroxisome proliferator-activated receptor subtype- and cell-type-specific activation of genomic target genes upon adenoviral transgene delivery. Mol Cell Biol 26:5698–5714PubMedCrossRef Nielsen R, Grontved L, Stunnenberg HG, Mandrup S (2006) Peroxisome proliferator-activated receptor subtype- and cell-type-specific activation of genomic target genes upon adenoviral transgene delivery. Mol Cell Biol 26:5698–5714PubMedCrossRef
19.
Zurück zum Zitat Willcox A, Richardson SJ, Bone AJ, Foulis AK, Morgan NG (2009) Analysis of islet inflammation in human type 1 diabetes. Clin Exp Immunol 155:173–181PubMedCrossRef Willcox A, Richardson SJ, Bone AJ, Foulis AK, Morgan NG (2009) Analysis of islet inflammation in human type 1 diabetes. Clin Exp Immunol 155:173–181PubMedCrossRef
20.
Zurück zum Zitat Lagger G, O’Carroll D, Rembold M et al (2002) Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression. EMBO J 21:2672–2681PubMedCrossRef Lagger G, O’Carroll D, Rembold M et al (2002) Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression. EMBO J 21:2672–2681PubMedCrossRef
21.
Zurück zum Zitat Lei WW, Zhang KH, Pan XC et al (2010) Histone deacetylase 1 and 2 differentially regulate apoptosis by opposing effects on extracellular signal-regulated kinase 1/2. Cell Death Dis 1:e44PubMedCrossRef Lei WW, Zhang KH, Pan XC et al (2010) Histone deacetylase 1 and 2 differentially regulate apoptosis by opposing effects on extracellular signal-regulated kinase 1/2. Cell Death Dis 1:e44PubMedCrossRef
22.
Zurück zum Zitat Lewis EC, Blaabjerg L, Storling J et al (2010) The oral histone deacetylase inhibitor ITF2357 reduces cytokines and protects islet beta-cells in vivo and in vitro. Mol Med 17:369–377PubMed Lewis EC, Blaabjerg L, Storling J et al (2010) The oral histone deacetylase inhibitor ITF2357 reduces cytokines and protects islet beta-cells in vivo and in vitro. Mol Med 17:369–377PubMed
23.
Zurück zum Zitat Christensen DP, Gysemans C, Dahllof M et al (2011) Inhibition of lysine deacetylase activity protects β-cells from inflammatory attack in vitro and in vivo by targeting NF-ΚB transcriptional activity. Diabetes 60:A132 (Abstract)CrossRef Christensen DP, Gysemans C, Dahllof M et al (2011) Inhibition of lysine deacetylase activity protects β-cells from inflammatory attack in vitro and in vivo by targeting NF-ΚB transcriptional activity. Diabetes 60:A132 (Abstract)CrossRef
24.
Zurück zum Zitat Chou DH, Bodycombe NE, Carrinski HA et al (2010) Small-molecule suppressors of cytokine-induced beta-cell apoptosis. ACS Chem Biol 5:729–734PubMedCrossRef Chou DH, Bodycombe NE, Carrinski HA et al (2010) Small-molecule suppressors of cytokine-induced beta-cell apoptosis. ACS Chem Biol 5:729–734PubMedCrossRef
25.
Zurück zum Zitat Storling J, Laman-Pillet N, Karlsen AE, Billestrup N, Bonny C, Mandrup-Poulsen T (2005) Antitumorigenic effect of proteasome inhibitors on insulinoma cells. Endocrinology 146:1718–1726PubMedCrossRef Storling J, Laman-Pillet N, Karlsen AE, Billestrup N, Bonny C, Mandrup-Poulsen T (2005) Antitumorigenic effect of proteasome inhibitors on insulinoma cells. Endocrinology 146:1718–1726PubMedCrossRef
26.
Zurück zum Zitat Mastrandrea LD, Sessanna SM, Laychock SG (2005) Sphingosine kinase activity and sphingosine-1 phosphate production in rat pancreatic islets and INS-1 cells: response to cytokines. Diabetes 54:1429–1436PubMedCrossRef Mastrandrea LD, Sessanna SM, Laychock SG (2005) Sphingosine kinase activity and sphingosine-1 phosphate production in rat pancreatic islets and INS-1 cells: response to cytokines. Diabetes 54:1429–1436PubMedCrossRef
27.
Zurück zum Zitat Mosley AL, Ozcan S (2003) Glucose regulates insulin gene transcription by hyperacetylation of histone h4. J Biol Chem 278:19660–19666PubMedCrossRef Mosley AL, Ozcan S (2003) Glucose regulates insulin gene transcription by hyperacetylation of histone h4. J Biol Chem 278:19660–19666PubMedCrossRef
28.
Zurück zum Zitat Mosley AL, Ozcan S (2004) The pancreatic duodenal homeobox-1 protein (Pdx-1) interacts with histone deacetylases Hdac-1 and Hdac-2 on low levels of glucose. J Biol Chem 279:54241–54247PubMedCrossRef Mosley AL, Ozcan S (2004) The pancreatic duodenal homeobox-1 protein (Pdx-1) interacts with histone deacetylases Hdac-1 and Hdac-2 on low levels of glucose. J Biol Chem 279:54241–54247PubMedCrossRef
29.
Zurück zum Zitat Pautz A, Art J, Hahn S, Nowag S, Voss C, Kleinert H (2010) Regulation of the expression of inducible nitric oxide synthase. Nitric Oxide 23:75–93PubMedCrossRef Pautz A, Art J, Hahn S, Nowag S, Voss C, Kleinert H (2010) Regulation of the expression of inducible nitric oxide synthase. Nitric Oxide 23:75–93PubMedCrossRef
30.
Zurück zum Zitat Ashburner BP, Westerheide SD, Baldwin AS Jr (2001) The p65 (RelA) subunit of NF-kappaB interacts with the histone deacetylase (HDAC) corepressors HDAC1 and HDAC2 to negatively regulate gene expression. Mol Cell Biol 21:7065–7077PubMedCrossRef Ashburner BP, Westerheide SD, Baldwin AS Jr (2001) The p65 (RelA) subunit of NF-kappaB interacts with the histone deacetylase (HDAC) corepressors HDAC1 and HDAC2 to negatively regulate gene expression. Mol Cell Biol 21:7065–7077PubMedCrossRef
31.
Zurück zum Zitat Kiernan R, Bres V, Ng RWM et al (2003) Post-activation TURN-OFf of NF-kappa B-dependent transcription is regulated by acetylation of p65. J Biol Chem 278:2758–2766PubMedCrossRef Kiernan R, Bres V, Ng RWM et al (2003) Post-activation TURN-OFf of NF-kappa B-dependent transcription is regulated by acetylation of p65. J Biol Chem 278:2758–2766PubMedCrossRef
32.
Zurück zum Zitat Dovey OM, Foster CT, Cowley SM (2010) Histone deacetylase 1 (HDAC1), but not HDAC2, controls embryonic stem cell differentiation. Proc Natl Acad Sci USA 107:8242–8247PubMedCrossRef Dovey OM, Foster CT, Cowley SM (2010) Histone deacetylase 1 (HDAC1), but not HDAC2, controls embryonic stem cell differentiation. Proc Natl Acad Sci USA 107:8242–8247PubMedCrossRef
33.
Zurück zum Zitat Noh H, Oh EY, Seo JY et al (2009) Histone deacetylase-2 is a key regulator of diabetes- and transforming growth factor-beta1-induced renal injury. Am J Physiol Renal Physiol 297:F729–F739PubMedCrossRef Noh H, Oh EY, Seo JY et al (2009) Histone deacetylase-2 is a key regulator of diabetes- and transforming growth factor-beta1-induced renal injury. Am J Physiol Renal Physiol 297:F729–F739PubMedCrossRef
34.
Zurück zum Zitat Haumaitre C, Lenoir O, Scharfmann R (2008) Histone deacetylase inhibitors modify pancreatic cell fate determination and amplify endocrine progenitors. Mol Cell Biol 28:6373–6383PubMedCrossRef Haumaitre C, Lenoir O, Scharfmann R (2008) Histone deacetylase inhibitors modify pancreatic cell fate determination and amplify endocrine progenitors. Mol Cell Biol 28:6373–6383PubMedCrossRef
35.
Zurück zum Zitat Lenoir O, Flosseau K, Ma FX et al (2011) Specific control of pancreatic endocrine β- and δ-cell mass by class IIa histone deacetylases HDAC4, HDAC5, and HDAC9. Diabetes 60:2861–2871PubMedCrossRef Lenoir O, Flosseau K, Ma FX et al (2011) Specific control of pancreatic endocrine β- and δ-cell mass by class IIa histone deacetylases HDAC4, HDAC5, and HDAC9. Diabetes 60:2861–2871PubMedCrossRef
36.
Zurück zum Zitat Christensen DP, Dahllof M, Lundh M et al (2011) Histone deacetylase (HDAC) inhibition as a novel treatment for diabetes mellitus. Mol Med 17:378–390PubMedCrossRef Christensen DP, Dahllof M, Lundh M et al (2011) Histone deacetylase (HDAC) inhibition as a novel treatment for diabetes mellitus. Mol Med 17:378–390PubMedCrossRef
37.
Zurück zum Zitat Dinarello CA, Fossati G, Mascagni P (2011) Histone deacetylase inhibitors for treating a spectrum of diseases not related to cancer. Mol Med 17:333–352PubMedCrossRef Dinarello CA, Fossati G, Mascagni P (2011) Histone deacetylase inhibitors for treating a spectrum of diseases not related to cancer. Mol Med 17:333–352PubMedCrossRef
38.
Zurück zum Zitat Leoni F, Zaliano A, Bertolini G et al (2001) The antitumor histone deacetylase inhibitor suberoylanilide hydroxamic acid exhibits anti-inflammatory properties via suppression of cytokines. Proc Natl Acad Sci 99:2995–3000CrossRef Leoni F, Zaliano A, Bertolini G et al (2001) The antitumor histone deacetylase inhibitor suberoylanilide hydroxamic acid exhibits anti-inflammatory properties via suppression of cytokines. Proc Natl Acad Sci 99:2995–3000CrossRef
39.
Zurück zum Zitat Lin HS, Hu CY, Chan HY et al (2007) Anti-rheumatic activities of histone deacetylase (HDAC) inhibitors in vivo in collagen-induced arthritis in rodents. Br J Pharmacol 150:862–872PubMedCrossRef Lin HS, Hu CY, Chan HY et al (2007) Anti-rheumatic activities of histone deacetylase (HDAC) inhibitors in vivo in collagen-induced arthritis in rodents. Br J Pharmacol 150:862–872PubMedCrossRef
40.
Zurück zum Zitat Xiao C, Giacca A, Lewis GF (2011) Sodium phenylbutyrate, a drug with known capacity to reduce endoplasmic reticulum stress, partially alleviates lipid-induced insulin resistance and beta-cell dysfunction in humans. Diabetes 60:918–924PubMedCrossRef Xiao C, Giacca A, Lewis GF (2011) Sodium phenylbutyrate, a drug with known capacity to reduce endoplasmic reticulum stress, partially alleviates lipid-induced insulin resistance and beta-cell dysfunction in humans. Diabetes 60:918–924PubMedCrossRef
41.
Zurück zum Zitat Ozcan U, Yilmaz E, Ozcan L et al (2006) Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313:1137–1140PubMedCrossRef Ozcan U, Yilmaz E, Ozcan L et al (2006) Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313:1137–1140PubMedCrossRef
42.
Zurück zum Zitat Eguchi K, Manabe I, Oishi-Tanaka Y et al (2012) Saturated fatty acid and TLR signaling link beta cell dysfunction and islet inflammation. Cell Metab 15:518–533PubMedCrossRef Eguchi K, Manabe I, Oishi-Tanaka Y et al (2012) Saturated fatty acid and TLR signaling link beta cell dysfunction and islet inflammation. Cell Metab 15:518–533PubMedCrossRef
Metadaten
Titel
Histone deacetylases 1 and 3 but not 2 mediate cytokine-induced beta cell apoptosis in INS-1 cells and dispersed primary islets from rats and are differentially regulated in the islets of type 1 diabetic children
verfasst von
M. Lundh
D. P. Christensen
M. Damgaard Nielsen
S. J. Richardson
M. S. Dahllöf
T. Skovgaard
J. Berthelsen
C. A. Dinarello
A. Stevenazzi
P. Mascagni
L. G. Grunnet
N. G. Morgan
T. Mandrup-Poulsen
Publikationsdatum
01.09.2012
Verlag
Springer-Verlag
Erschienen in
Diabetologia / Ausgabe 9/2012
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-012-2615-0

Weitere Artikel der Ausgabe 9/2012

Diabetologia 9/2012 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.