Skip to main content
Erschienen in: Diabetologia 9/2017

12.06.2017 | Article

The GLP-1 analogue lixisenatide decreases atherosclerosis in insulin-resistant mice by modulating macrophage phenotype

verfasst von: Ángela Vinué, Jorge Navarro, Andrea Herrero-Cervera, Marta García-Cubas, Irene Andrés-Blasco, Sergio Martínez-Hervás, José T. Real, Juan F. Ascaso, Herminia González-Navarro

Erschienen in: Diabetologia | Ausgabe 9/2017

Einloggen, um Zugang zu erhalten

Abstract

Aims/hypothesis

Recent clinical studies indicate that glucagon-like peptide-1 (GLP-1) analogues prevent acute cardiovascular events in type 2 diabetes mellitus but their mechanisms remain unknown. In the present study, the impact of GLP-1 analogues and their potential underlying molecular mechanisms in insulin resistance and atherosclerosis are investigated.

Methods

Atherosclerosis development was evaluated in Apoe −/− Irs2 +/− mice, a mouse model of insulin resistance, the metabolic syndrome and atherosclerosis, treated with the GLP-1 analogues lixisenatide or liraglutide. In addition, studies in Apoe −/− Irs2 +/− mice and mouse-derived macrophages treated with lixisenatide were performed to investigate the potential inflammatory intracellular pathways.

Results

Treatment of Apoe −/− Irs2 +/− mice with either lixisenatide or liraglutide improved glucose metabolism and blood pressure but this was independent of body weight loss. Both drugs significantly decreased atheroma plaque size. Compared with vehicle-treated control mice, lixisenatide treatment generated more stable atheromas, with fewer inflammatory infiltrates, reduced necrotic cores and thicker fibrous caps. Lixisenatide-treated mice also displayed diminished IL-6 levels, proinflammatory Ly6Chigh monocytes and activated T cells. In vitro analysis showed that, in macrophages from Apoe −/− Irs2 +/− mice, lixisenatide reduced the secretion of the proinflammatory cytokine IL-6 accompanied by enhanced activation of signal transducer and activator of transcription (STAT) 3, which is a determinant for M2 macrophage differentiation. STAT1 activation, which is essential for M1 phenotype, was also diminished. Furthermore, atheromas from lixisenatide-treated mice showed higher arginase I content and decreased expression of inducible nitric oxide synthase, indicating the prevalence of the M2 phenotype within plaques.

Conclusions/interpretation

Lixisenatide decreases atheroma plaque size and instability in Apoe −/− Irs2 +/− mice by reprogramming macrophages towards an M2 phenotype, which leads to reduced inflammation. This study identifies a critical role for this drug in macrophage polarisation inside plaques and provides experimental evidence supporting a novel mechanism of action for GLP-1 analogues in the reduction of cardiovascular risk associated with insulin resistance.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
2.
Zurück zum Zitat Libby P, Pasterkamp G (2016) Requiem for the ʻvulnerable plaque. Eur Heart J 36:2984–2987 Libby P, Pasterkamp G (2016) Requiem for the ʻvulnerable plaque. Eur Heart J 36:2984–2987
3.
Zurück zum Zitat Baumgartl J, Baudler S, Scherner M et al (2006) Myeloid lineage cell-restricted insulin resistance protects apolipoproteinE-deficient mice against atherosclerosis. Cell Metab 3:247–256CrossRefPubMedPubMedCentral Baumgartl J, Baudler S, Scherner M et al (2006) Myeloid lineage cell-restricted insulin resistance protects apolipoproteinE-deficient mice against atherosclerosis. Cell Metab 3:247–256CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Gonzalez-Navarro H, Vila-Caballer M, Pastor MF et al (2007) Plasma insulin levels predict the development of atherosclerosis when IRS2 deficiency is combined with severe hypercholesterolemia in apolipoprotein E-null mice. Front Biosci 12:2291–2298CrossRefPubMed Gonzalez-Navarro H, Vila-Caballer M, Pastor MF et al (2007) Plasma insulin levels predict the development of atherosclerosis when IRS2 deficiency is combined with severe hypercholesterolemia in apolipoprotein E-null mice. Front Biosci 12:2291–2298CrossRefPubMed
5.
Zurück zum Zitat Han S, Liang CP, DeVries-Seimon T et al (2006) Macrophage insulin receptor deficiency increases ER stress-induced apoptosis and necrotic core formation in advanced atherosclerotic lesions. Cell Metab 3:257–266CrossRefPubMed Han S, Liang CP, DeVries-Seimon T et al (2006) Macrophage insulin receptor deficiency increases ER stress-induced apoptosis and necrotic core formation in advanced atherosclerotic lesions. Cell Metab 3:257–266CrossRefPubMed
6.
Zurück zum Zitat Martinez-Hervas S, Vinue A, Nunez L et al (2014) Insulin resistance aggravates atherosclerosis by reducing vascular smooth muscle cell survival and increasing CX3CL1/CX3CR1 axis. Cardiovasc Res 103:324–336CrossRefPubMed Martinez-Hervas S, Vinue A, Nunez L et al (2014) Insulin resistance aggravates atherosclerosis by reducing vascular smooth muscle cell survival and increasing CX3CL1/CX3CR1 axis. Cardiovasc Res 103:324–336CrossRefPubMed
7.
Zurück zum Zitat van Dijk RA, Duinisveld AJ, Schaapherder AF et al (2015) A change in inflammatory footprint precedes plaque instability: a systematic evaluation of cellular aspects of the adaptive immune response in human atherosclerosis. J Am Heart Assoc 4:e001403CrossRefPubMedPubMedCentral van Dijk RA, Duinisveld AJ, Schaapherder AF et al (2015) A change in inflammatory footprint precedes plaque instability: a systematic evaluation of cellular aspects of the adaptive immune response in human atherosclerosis. J Am Heart Assoc 4:e001403CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Maurovich-Horvat P, Ferencik M, Voros S, Merkely B, Hoffmann U (2014) Comprehensive plaque assessment by coronary CT angiography. Nat Rev Cardiol 11:390–402CrossRefPubMed Maurovich-Horvat P, Ferencik M, Voros S, Merkely B, Hoffmann U (2014) Comprehensive plaque assessment by coronary CT angiography. Nat Rev Cardiol 11:390–402CrossRefPubMed
10.
Zurück zum Zitat Campbell JE, Drucker DJ (2013) Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab 17:819–837CrossRefPubMed Campbell JE, Drucker DJ (2013) Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab 17:819–837CrossRefPubMed
11.
Zurück zum Zitat Wohlfart P, Linz W, Hubschle T et al (2013) Cardioprotective effects of lixisenatide in rat myocardial ischemia-reperfusion injury studies. J Transl Med 11:84CrossRefPubMedPubMedCentral Wohlfart P, Linz W, Hubschle T et al (2013) Cardioprotective effects of lixisenatide in rat myocardial ischemia-reperfusion injury studies. J Transl Med 11:84CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Tashiro Y, Sato K, Watanabe T et al (2014) A glucagon-like peptide-1 analog liraglutide suppresses macrophage foam cell formation and atherosclerosis. Peptides 54:19–26CrossRefPubMed Tashiro Y, Sato K, Watanabe T et al (2014) A glucagon-like peptide-1 analog liraglutide suppresses macrophage foam cell formation and atherosclerosis. Peptides 54:19–26CrossRefPubMed
13.
14.
Zurück zum Zitat Pfeffer MA, Claggett B, Diaz R et al (2015) Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med 373:2247–2257CrossRefPubMed Pfeffer MA, Claggett B, Diaz R et al (2015) Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med 373:2247–2257CrossRefPubMed
15.
Zurück zum Zitat Thorkildsen C, Neve S, Larsen BD, Meier E, Petersen JS (2003) Glucagon-like peptide 1 receptor agonist ZP10A increases insulin mRNA expression and prevents diabetic progression in db/db mice. J Pharmacol Exp Ther 307:490–496CrossRefPubMed Thorkildsen C, Neve S, Larsen BD, Meier E, Petersen JS (2003) Glucagon-like peptide 1 receptor agonist ZP10A increases insulin mRNA expression and prevents diabetic progression in db/db mice. J Pharmacol Exp Ther 307:490–496CrossRefPubMed
16.
Zurück zum Zitat Werner U, Haschke G, Herling AW, Kramer W (2010) Pharmacological profile of lixisenatide: a new GLP-1 receptor agonist for the treatment of type 2 diabetes. Regul Pept 164:58–64CrossRefPubMed Werner U, Haschke G, Herling AW, Kramer W (2010) Pharmacological profile of lixisenatide: a new GLP-1 receptor agonist for the treatment of type 2 diabetes. Regul Pept 164:58–64CrossRefPubMed
17.
Zurück zum Zitat Larsen PJ, Fledelius C, Knudsen LB, Tang-Christensen M (2001) Systemic administration of the long-acting GLP-1 derivative NN2211 induces lasting and reversible weight loss in both normal and obese rats. Diabetes 50:2530–2539CrossRefPubMed Larsen PJ, Fledelius C, Knudsen LB, Tang-Christensen M (2001) Systemic administration of the long-acting GLP-1 derivative NN2211 induces lasting and reversible weight loss in both normal and obese rats. Diabetes 50:2530–2539CrossRefPubMed
18.
Zurück zum Zitat Noyan-Ashraf MH, Momen MA, Ban K et al (2009) GLP-1R agonist liraglutide activates cytoprotective pathways and improves outcomes after experimental myocardial infarction in mice. Diabetes 58:975–983CrossRefPubMedPubMedCentral Noyan-Ashraf MH, Momen MA, Ban K et al (2009) GLP-1R agonist liraglutide activates cytoprotective pathways and improves outcomes after experimental myocardial infarction in mice. Diabetes 58:975–983CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Noyan-Ashraf MH, Shikatani EA, Schuiki I et al (2013) A glucagon-like peptide-1 analog reverses the molecular pathology and cardiac dysfunction of a mouse model of obesity. Circulation 127:74–85CrossRefPubMed Noyan-Ashraf MH, Shikatani EA, Schuiki I et al (2013) A glucagon-like peptide-1 analog reverses the molecular pathology and cardiac dysfunction of a mouse model of obesity. Circulation 127:74–85CrossRefPubMed
20.
Zurück zum Zitat Martorell S, Hueso L, Gonzalez-Navarro H, Collado A, Sanz MJ, Piqueras L (2016) Vitamin D receptor activation reduces angiotensin-ii-induced dissecting abdominal aortic aneurysm in apolipoprotein E-knockout mice. Arterioscler Thromb Vasc Biol 36:1587–1597CrossRefPubMed Martorell S, Hueso L, Gonzalez-Navarro H, Collado A, Sanz MJ, Piqueras L (2016) Vitamin D receptor activation reduces angiotensin-ii-induced dissecting abdominal aortic aneurysm in apolipoprotein E-knockout mice. Arterioscler Thromb Vasc Biol 36:1587–1597CrossRefPubMed
21.
Zurück zum Zitat Gonzalez-Navarro H, Nong Z, Amar MJ et al (2004) The ligand-binding function of hepatic lipase modulates the development of atherosclerosis in transgenic mice. J Biol Chem 279:45312–45321CrossRefPubMed Gonzalez-Navarro H, Nong Z, Amar MJ et al (2004) The ligand-binding function of hepatic lipase modulates the development of atherosclerosis in transgenic mice. J Biol Chem 279:45312–45321CrossRefPubMed
22.
Zurück zum Zitat Gonzalez-Navarro H, Vinue A, Sanz MJ et al (2013) Increased dosage of Ink4/Arf protects against glucose intolerance and insulin resistance associated with aging. Aging Cell 12:102–111CrossRefPubMed Gonzalez-Navarro H, Vinue A, Sanz MJ et al (2013) Increased dosage of Ink4/Arf protects against glucose intolerance and insulin resistance associated with aging. Aging Cell 12:102–111CrossRefPubMed
23.
Zurück zum Zitat Vinue A, Andres-Blasco I, Herrero-Cervera A et al (2015) Ink4/Arf locus restores glucose tolerance and insulin sensitivity by reducing hepatic steatosis and inflammation in mice with impaired IRS2-dependent signalling. Biochim Biophys Acta 1852:1729–1742CrossRefPubMed Vinue A, Andres-Blasco I, Herrero-Cervera A et al (2015) Ink4/Arf locus restores glucose tolerance and insulin sensitivity by reducing hepatic steatosis and inflammation in mice with impaired IRS2-dependent signalling. Biochim Biophys Acta 1852:1729–1742CrossRefPubMed
24.
Zurück zum Zitat Gonzalez-Navarro H, Abu Nabah YN, Vinue A et al (2010) p19(ARF) deficiency reduces macrophage and vascular smooth muscle cell apoptosis and aggravates atherosclerosis. J Am Coll Cardiol 55:2258–2268CrossRefPubMed Gonzalez-Navarro H, Abu Nabah YN, Vinue A et al (2010) p19(ARF) deficiency reduces macrophage and vascular smooth muscle cell apoptosis and aggravates atherosclerosis. J Am Coll Cardiol 55:2258–2268CrossRefPubMed
25.
Zurück zum Zitat Andres-Blasco I, Vinue A, Herrero-Cervera A et al (2016) Hepatic lipase inactivation decreases atherosclerosis in insulin resistance by reducing LIGHT/lymphotoxin β-receptor pathway. Thromb Haemost 116:379–393CrossRefPubMed Andres-Blasco I, Vinue A, Herrero-Cervera A et al (2016) Hepatic lipase inactivation decreases atherosclerosis in insulin resistance by reducing LIGHT/lymphotoxin β-receptor pathway. Thromb Haemost 116:379–393CrossRefPubMed
26.
Zurück zum Zitat Jin Y, Liu Y, Nelin LD (2015) Extracellular signal-regulated kinase mediates expression of arginase II but not inducible nitric-oxide synthase in lipopolysaccharide-stimulated macrophages. J Biol Chem 290:2099–2111CrossRefPubMed Jin Y, Liu Y, Nelin LD (2015) Extracellular signal-regulated kinase mediates expression of arginase II but not inducible nitric-oxide synthase in lipopolysaccharide-stimulated macrophages. J Biol Chem 290:2099–2111CrossRefPubMed
28.
Zurück zum Zitat Arakawa M, Mita T, Azuma K et al (2010) Inhibition of monocyte adhesion to endothelial cells and attenuation of atherosclerotic lesion by a glucagon-like peptide-1 receptor agonist, exendin-4. Diabetes 59:1030–1037CrossRefPubMedPubMedCentral Arakawa M, Mita T, Azuma K et al (2010) Inhibition of monocyte adhesion to endothelial cells and attenuation of atherosclerotic lesion by a glucagon-like peptide-1 receptor agonist, exendin-4. Diabetes 59:1030–1037CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Gaspari T, Welungoda I, Widdop RE, Simpson RW, Dear AE (2013) The GLP-1 receptor agonist liraglutide inhibits progression of vascular disease via effects on atherogenesis, plaque stability and endothelial function in an ApoE˗/˗ mouse model. Diab Vasc Dis Res 10:353–360CrossRefPubMed Gaspari T, Welungoda I, Widdop RE, Simpson RW, Dear AE (2013) The GLP-1 receptor agonist liraglutide inhibits progression of vascular disease via effects on atherogenesis, plaque stability and endothelial function in an ApoE˗/˗ mouse model. Diab Vasc Dis Res 10:353–360CrossRefPubMed
30.
Zurück zum Zitat Bisgaard LS, Bosteen MH, Fink LN et al (2016) Liraglutide reduces both atherosclerosis and kidney inflammation in moderately uremic LDLr−/− mice. PLoS One 11:e0168396CrossRefPubMedPubMedCentral Bisgaard LS, Bosteen MH, Fink LN et al (2016) Liraglutide reduces both atherosclerosis and kidney inflammation in moderately uremic LDLr−/− mice. PLoS One 11:e0168396CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Shiraki A, Oyama J, Komoda H et al (2012) The glucagon-like peptide 1 analog liraglutide reduces TNF-α-induced oxidative stress and inflammation in endothelial cells. Atherosclerosis 221:375–382CrossRefPubMed Shiraki A, Oyama J, Komoda H et al (2012) The glucagon-like peptide 1 analog liraglutide reduces TNF-α-induced oxidative stress and inflammation in endothelial cells. Atherosclerosis 221:375–382CrossRefPubMed
32.
Zurück zum Zitat Dai Y, Mehta JL, Chen M (2013) Glucagon-like peptide-1 receptor agonist liraglutide inhibits endothelin-1 in endothelial cell by repressing nuclear factor-kappa B activation. Cardiovasc Drugs Ther 27:371–380CrossRefPubMed Dai Y, Mehta JL, Chen M (2013) Glucagon-like peptide-1 receptor agonist liraglutide inhibits endothelin-1 in endothelial cell by repressing nuclear factor-kappa B activation. Cardiovasc Drugs Ther 27:371–380CrossRefPubMed
33.
Zurück zum Zitat Krasner NM, Ido Y, Ruderman NB, Cacicedo JM (2014) Glucagon-like peptide-1 (GLP-1) analog liraglutide inhibits endothelial cell inflammation through a calcium and AMPK dependent mechanism. PLoS One 9:e97554CrossRefPubMedPubMedCentral Krasner NM, Ido Y, Ruderman NB, Cacicedo JM (2014) Glucagon-like peptide-1 (GLP-1) analog liraglutide inhibits endothelial cell inflammation through a calcium and AMPK dependent mechanism. PLoS One 9:e97554CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Ussher JR, Drucker DJ (2014) Cardiovascular actions of incretin-based therapies. Circ Res 114:1788–1803CrossRefPubMed Ussher JR, Drucker DJ (2014) Cardiovascular actions of incretin-based therapies. Circ Res 114:1788–1803CrossRefPubMed
36.
Zurück zum Zitat Stoger JL, Gijbels MJ, van der Velden S et al (2012) Distribution of macrophage polarization markers in human atherosclerosis. Atherosclerosis 225:461–468CrossRefPubMed Stoger JL, Gijbels MJ, van der Velden S et al (2012) Distribution of macrophage polarization markers in human atherosclerosis. Atherosclerosis 225:461–468CrossRefPubMed
37.
Zurück zum Zitat Kim HS, Tavakoli S, Piefer LA, Nguyen HN, Asmis R (2016) Monocytic MKP-1 is a sensor of the metabolic environment and regulates function and phenotypic fate of monocyte-derived macrophages in atherosclerosis. Sci Rep 6:34223CrossRefPubMedPubMedCentral Kim HS, Tavakoli S, Piefer LA, Nguyen HN, Asmis R (2016) Monocytic MKP-1 is a sensor of the metabolic environment and regulates function and phenotypic fate of monocyte-derived macrophages in atherosclerosis. Sci Rep 6:34223CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Shiraishi D, Fujiwara Y, Komohara Y, Mizuta H, Takeya M (2012) Glucagon-like peptide-1 (GLP-1) induces M2 polarization of human macrophages via STAT3 activation. Biochem Biophys Res Commun 425:304–308CrossRefPubMed Shiraishi D, Fujiwara Y, Komohara Y, Mizuta H, Takeya M (2012) Glucagon-like peptide-1 (GLP-1) induces M2 polarization of human macrophages via STAT3 activation. Biochem Biophys Res Commun 425:304–308CrossRefPubMed
39.
Zurück zum Zitat Zhuge F, Ni Y, Nagashimada M et al (2016) DPP-4 inhibition by linagliptin attenuates obesity-related inflammation and insulin resistance by regulating M1/M2 macrophage polarization. Diabetes 65:2966–2979CrossRefPubMed Zhuge F, Ni Y, Nagashimada M et al (2016) DPP-4 inhibition by linagliptin attenuates obesity-related inflammation and insulin resistance by regulating M1/M2 macrophage polarization. Diabetes 65:2966–2979CrossRefPubMed
40.
Zurück zum Zitat Wang XP, Zhang W, Liu XQ et al (2014) Arginase I enhances atherosclerotic plaque stabilization by inhibiting inflammation and promoting smooth muscle cell proliferation. Eur Heart J 35:911–919CrossRefPubMed Wang XP, Zhang W, Liu XQ et al (2014) Arginase I enhances atherosclerotic plaque stabilization by inhibiting inflammation and promoting smooth muscle cell proliferation. Eur Heart J 35:911–919CrossRefPubMed
Metadaten
Titel
The GLP-1 analogue lixisenatide decreases atherosclerosis in insulin-resistant mice by modulating macrophage phenotype
verfasst von
Ángela Vinué
Jorge Navarro
Andrea Herrero-Cervera
Marta García-Cubas
Irene Andrés-Blasco
Sergio Martínez-Hervás
José T. Real
Juan F. Ascaso
Herminia González-Navarro
Publikationsdatum
12.06.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Diabetologia / Ausgabe 9/2017
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-017-4330-3

Weitere Artikel der Ausgabe 9/2017

Diabetologia 9/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.