Skip to main content
Erschienen in: Osteoporosis International 2/2008

01.02.2008 | Review

Skeletal consequences of thiazolidinedione therapy

verfasst von: A. Grey

Erschienen in: Osteoporosis International | Ausgabe 2/2008

Einloggen, um Zugang zu erhalten

Abstract

Thiazolidinediones (TZDs) are agonists of the peroxisome proliferator-activated receptor gamma (PPARγ) nuclear transcription factor. Two members of this drug class, rosiglitazone and pioglitazone, are commonly used in the management of type II diabetes mellitus, and play emerging roles in the treatment of other clinical conditions characterized by insulin resistance. Over the past decade, a consistent body of in vitro and animal studies has demonstrated that PPARγ signaling regulates the fate of pluripotent mesenchymal cells, favoring adipogenesis over osteoblastogenesis. Treatment of rodents with TZDs decreases bone formation and bone mass. Until recently, there were no bone-related data available from studies of TZDs in humans. In the past year, however, several clinical studies have reported adverse skeletal actions of TZDs in humans. Collectively, these investigations have demonstrated that the TZDs currently in clinical use decrease bone formation and accelerate bone loss in healthy and insulin-resistant individuals, and increase the risk of fractures in the appendicular skeleton in women with type II diabetes mellitus. These observations should prompt clinicians to evaluate fracture risk in patients for whom TZD therapy is being considered, and initiate skeletal protection in at-risk individuals.
Literatur
1.
Zurück zum Zitat Henney JE (2000) From the food and drug administration. JAMA 283:2228CrossRef Henney JE (2000) From the food and drug administration. JAMA 283:2228CrossRef
3.
Zurück zum Zitat Yki-Jarvinen H (2005) The PROactive study: some answers, many questions. Lancet 366:1241–1242PubMedCrossRef Yki-Jarvinen H (2005) The PROactive study: some answers, many questions. Lancet 366:1241–1242PubMedCrossRef
4.
Zurück zum Zitat Kahn SE, Haffner SM, Heise MA et al (2006) Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 355:2427–2443PubMedCrossRef Kahn SE, Haffner SM, Heise MA et al (2006) Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 355:2427–2443PubMedCrossRef
5.
Zurück zum Zitat Stout DL, Fugate SE (2005) Thiazolidinediones for treatment of polycystic ovary syndrome. Pharmacotherapy 25:244–252PubMedCrossRef Stout DL, Fugate SE (2005) Thiazolidinediones for treatment of polycystic ovary syndrome. Pharmacotherapy 25:244–252PubMedCrossRef
6.
Zurück zum Zitat Dream Trial Investigators (2006) Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomised controlled trial. Lancet 368:1096–1105CrossRef Dream Trial Investigators (2006) Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomised controlled trial. Lancet 368:1096–1105CrossRef
7.
Zurück zum Zitat Nissen SE, Wolski K (2007) Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 356:2457–2471PubMedCrossRef Nissen SE, Wolski K (2007) Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 356:2457–2471PubMedCrossRef
8.
Zurück zum Zitat Psaty BM, Furberg CD (2007) Rosiglitazone and cardiovascular risk. N Engl J Med 356:2522–2524PubMedCrossRef Psaty BM, Furberg CD (2007) Rosiglitazone and cardiovascular risk. N Engl J Med 356:2522–2524PubMedCrossRef
9.
Zurück zum Zitat [no authors listed] (2007) Rosiglitazone: seeking a balanced perspective. Lancet 369:1834 [no authors listed] (2007) Rosiglitazone: seeking a balanced perspective. Lancet 369:1834
11.
Zurück zum Zitat Home PD, Pocock SJ, Beck-Nielsen H et al (2007) Rosiglitazone evaluated for cardiovascular outcomes—an interim analysis. N Engl J Med 357:28–38PubMedCrossRef Home PD, Pocock SJ, Beck-Nielsen H et al (2007) Rosiglitazone evaluated for cardiovascular outcomes—an interim analysis. N Engl J Med 357:28–38PubMedCrossRef
12.
Zurück zum Zitat Dormandy JA, Charbonnel B, Eckland DJA et al (2005) Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 366:1279–1289PubMedCrossRef Dormandy JA, Charbonnel B, Eckland DJA et al (2005) Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 366:1279–1289PubMedCrossRef
13.
Zurück zum Zitat Vestergaard P (2007) Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes—a meta-analysis. Osteoporos Int 18:427–444PubMedCrossRef Vestergaard P (2007) Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes—a meta-analysis. Osteoporos Int 18:427–444PubMedCrossRef
14.
Zurück zum Zitat Strotmeyer ES, Cauley JA, Schwartz AV et al (2005) Nontraumatic fracture risk with diabetes mellitus and impaired fasting glucose in older white and black adults: the Health, Aging, and Body Composition study. Arch Intern Med 165:1612–1617PubMedCrossRef Strotmeyer ES, Cauley JA, Schwartz AV et al (2005) Nontraumatic fracture risk with diabetes mellitus and impaired fasting glucose in older white and black adults: the Health, Aging, and Body Composition study. Arch Intern Med 165:1612–1617PubMedCrossRef
15.
Zurück zum Zitat Nicodemus KK, Folsom AR (2001) Type 1 and type 2 diabetes and incident hip fractures in postmenopausal women. Diabetes Care 24:1192–1197PubMedCrossRef Nicodemus KK, Folsom AR (2001) Type 1 and type 2 diabetes and incident hip fractures in postmenopausal women. Diabetes Care 24:1192–1197PubMedCrossRef
16.
Zurück zum Zitat Schwartz AV, Sellmeyer DE, Ensrud KE et al (2001) Older women with diabetes have an increased risk of fracture: a prospective study. J Clin Endocrinol Metab 86:32–38PubMedCrossRef Schwartz AV, Sellmeyer DE, Ensrud KE et al (2001) Older women with diabetes have an increased risk of fracture: a prospective study. J Clin Endocrinol Metab 86:32–38PubMedCrossRef
17.
Zurück zum Zitat Bonds DE, Larson JC, Schwartz AV et al (2006) Risk of fracture in women with type 2 diabetes: the Women’s Health Initiative Observational Study. J Clin Endocrinol Metab 91:3404–3410PubMedCrossRef Bonds DE, Larson JC, Schwartz AV et al (2006) Risk of fracture in women with type 2 diabetes: the Women’s Health Initiative Observational Study. J Clin Endocrinol Metab 91:3404–3410PubMedCrossRef
18.
Zurück zum Zitat Vestergaard P, Rejnmark L, Mosekilde L (2005) Relative fracture risk in patients with diabetes mellitus, and the impact of insulin and oral antidiabetic medication on relative fracture risk. Diabetologia 48:1292–1299PubMedCrossRef Vestergaard P, Rejnmark L, Mosekilde L (2005) Relative fracture risk in patients with diabetes mellitus, and the impact of insulin and oral antidiabetic medication on relative fracture risk. Diabetologia 48:1292–1299PubMedCrossRef
19.
Zurück zum Zitat Ivers RQ, Cumming RG, Mitchell P et al (2001) Diabetes and risk of fracture: the Blue Mountains Eye Study. Diabetes Care 24:1198–1203PubMedCrossRef Ivers RQ, Cumming RG, Mitchell P et al (2001) Diabetes and risk of fracture: the Blue Mountains Eye Study. Diabetes Care 24:1198–1203PubMedCrossRef
20.
Zurück zum Zitat Ahmed LA, Joakimsen RM, Berntsen GK et al (2006) Diabetes mellitus and the risk of non-vertebral fractures: the Tromso study. Osteoporos Int 17:495–500PubMedCrossRef Ahmed LA, Joakimsen RM, Berntsen GK et al (2006) Diabetes mellitus and the risk of non-vertebral fractures: the Tromso study. Osteoporos Int 17:495–500PubMedCrossRef
21.
Zurück zum Zitat Miao J, Brismar K, Nyren O et al (2005) Elevated hip fracture risk in type 1 diabetic patients: a population-based cohort study in Sweden. Diabetes Care 28:2850–2855PubMedCrossRef Miao J, Brismar K, Nyren O et al (2005) Elevated hip fracture risk in type 1 diabetic patients: a population-based cohort study in Sweden. Diabetes Care 28:2850–2855PubMedCrossRef
22.
Zurück zum Zitat Whiteside GT, Boulet JM, Sellers R et al (2006) Neuropathy-induced osteopenia in rats is not due to a reduction in weight born on the affected limb. Bone 38:387–393PubMedCrossRef Whiteside GT, Boulet JM, Sellers R et al (2006) Neuropathy-induced osteopenia in rats is not due to a reduction in weight born on the affected limb. Bone 38:387–393PubMedCrossRef
23.
Zurück zum Zitat Cundy TF, Edmonds ME, Watkins PJ (1985) Osteopenia and metatarsal fractures in diabetic neuropathy. Diabet Med 2:461–464PubMedCrossRef Cundy TF, Edmonds ME, Watkins PJ (1985) Osteopenia and metatarsal fractures in diabetic neuropathy. Diabet Med 2:461–464PubMedCrossRef
24.
Zurück zum Zitat Zhou Z, Immel D, Xi C-X et al (2006) Regulation of osteoclast function and bone mass by RAGE. J Exp Med 203:1067–1080PubMedCrossRef Zhou Z, Immel D, Xi C-X et al (2006) Regulation of osteoclast function and bone mass by RAGE. J Exp Med 203:1067–1080PubMedCrossRef
25.
Zurück zum Zitat Katayama Y, Akatsu T, Yamamoto M et al (1996) Role of nonenzymatic glycosylation of type I collagen in diabetic osteopenia. J Bone Miner Res 11:931–937PubMedCrossRef Katayama Y, Akatsu T, Yamamoto M et al (1996) Role of nonenzymatic glycosylation of type I collagen in diabetic osteopenia. J Bone Miner Res 11:931–937PubMedCrossRef
26.
Zurück zum Zitat Miyata T, Notoya K, Yoshida K et al (1997) Advanced glycation end products enhance osteoclast-induced bone resorption in cultured mouse unfractionated bone cells and in rats implanted subcutaneously with devitalized bone particles. J Am Soc Nephrol 8:260–270PubMed Miyata T, Notoya K, Yoshida K et al (1997) Advanced glycation end products enhance osteoclast-induced bone resorption in cultured mouse unfractionated bone cells and in rats implanted subcutaneously with devitalized bone particles. J Am Soc Nephrol 8:260–270PubMed
27.
Zurück zum Zitat Gimble JM, Robinson CE, Wu X et al (1996) Peroxisome proliferator-activated receptor-gamma activation by thiazolidinediones induces adipogenesis in bone marrow stromal cells. Mol Pharmacol 50:1087–1094PubMed Gimble JM, Robinson CE, Wu X et al (1996) Peroxisome proliferator-activated receptor-gamma activation by thiazolidinediones induces adipogenesis in bone marrow stromal cells. Mol Pharmacol 50:1087–1094PubMed
28.
Zurück zum Zitat Johnson TE, Vogel R, Rutledge SJ et al (1999) Thiazolidinedione effects on glucocorticoid receptor-mediated gene transcription and differentiation in osteoblastic cells. Endocrinology 140:3245–3254PubMedCrossRef Johnson TE, Vogel R, Rutledge SJ et al (1999) Thiazolidinedione effects on glucocorticoid receptor-mediated gene transcription and differentiation in osteoblastic cells. Endocrinology 140:3245–3254PubMedCrossRef
29.
Zurück zum Zitat Jeon MJ, Kim JA, Kwon SH et al (2003) Activation of peroxisome proliferator-activated receptor-gamma inhibits the Runx2-mediated transcription of osteocalcin in osteoblasts. J Biol Chem 278:23270–23277PubMedCrossRef Jeon MJ, Kim JA, Kwon SH et al (2003) Activation of peroxisome proliferator-activated receptor-gamma inhibits the Runx2-mediated transcription of osteocalcin in osteoblasts. J Biol Chem 278:23270–23277PubMedCrossRef
30.
Zurück zum Zitat Jackson SM, Demer LL (2000) Peroxisome proliferator-activated receptor activators modulate the osteoblastic maturation of MC3T3-E1 preosteoblasts. FEBS Lett 471:119–124PubMedCrossRef Jackson SM, Demer LL (2000) Peroxisome proliferator-activated receptor activators modulate the osteoblastic maturation of MC3T3-E1 preosteoblasts. FEBS Lett 471:119–124PubMedCrossRef
31.
Zurück zum Zitat Diascro DD, Vogel RL, Johnson TE et al (1998) High fatty acid content in rabbit serum is responsible for the differentiation of osteoblasts into adipocyte-like cells. J Bone Miner Res 13:96–106PubMedCrossRef Diascro DD, Vogel RL, Johnson TE et al (1998) High fatty acid content in rabbit serum is responsible for the differentiation of osteoblasts into adipocyte-like cells. J Bone Miner Res 13:96–106PubMedCrossRef
32.
Zurück zum Zitat Nuttall ME, Patton AJ, Olivera DL et al (1998) Human trabecular bone cells are able to express both osteoblastic and adipocytic phenotype: implications for osteopenic disorders. J Bone Miner Res 13:371–382PubMedCrossRef Nuttall ME, Patton AJ, Olivera DL et al (1998) Human trabecular bone cells are able to express both osteoblastic and adipocytic phenotype: implications for osteopenic disorders. J Bone Miner Res 13:371–382PubMedCrossRef
33.
Zurück zum Zitat Mbalaviele G, Abu-Amer Y, Meng A et al (2000) Activation of peroxisome proliferator-activated receptor-gamma pathway inhibits osteoclast differentiation. J Biol Chem 275:14388–14393PubMedCrossRef Mbalaviele G, Abu-Amer Y, Meng A et al (2000) Activation of peroxisome proliferator-activated receptor-gamma pathway inhibits osteoclast differentiation. J Biol Chem 275:14388–14393PubMedCrossRef
34.
Zurück zum Zitat Chan BY, Gartland A, Wilson PJM et al (2007) PPAR agonists modulate human osteoclast formation and activity in vitro. Bone 40:149–159PubMedCrossRef Chan BY, Gartland A, Wilson PJM et al (2007) PPAR agonists modulate human osteoclast formation and activity in vitro. Bone 40:149–159PubMedCrossRef
35.
Zurück zum Zitat Lecka-Czernik B, Gubrij I, Moerman EJ et al (1999) Inhibition of Osf2/Cbfa1 expression and terminal osteoblast differentiation by PPARgamma2. J Cell Biochem 74:357–371PubMedCrossRef Lecka-Czernik B, Gubrij I, Moerman EJ et al (1999) Inhibition of Osf2/Cbfa1 expression and terminal osteoblast differentiation by PPARgamma2. J Cell Biochem 74:357–371PubMedCrossRef
36.
Zurück zum Zitat Khan E, Abu-Amer Y (2003) Activation of peroxisome proliferator-activated receptor-gamma inhibits differentiation of preosteoblasts. J Lab Clin Med 142:29–34PubMedCrossRef Khan E, Abu-Amer Y (2003) Activation of peroxisome proliferator-activated receptor-gamma inhibits differentiation of preosteoblasts. J Lab Clin Med 142:29–34PubMedCrossRef
37.
Zurück zum Zitat Kawaguchi H, Akune T, Yamaguchi M et al (2005) Distinct effects of PPARgamma insufficiency on bone marrow cells, osteoblasts, and osteoclastic cells. J Bone Miner Metab 23:275–279PubMedCrossRef Kawaguchi H, Akune T, Yamaguchi M et al (2005) Distinct effects of PPARgamma insufficiency on bone marrow cells, osteoblasts, and osteoclastic cells. J Bone Miner Metab 23:275–279PubMedCrossRef
38.
Zurück zum Zitat Lecka-Czernik B, Moerman EJ, Grant DF et al (2002) Divergent effects of selective peroxisome proliferator-activated receptor-gamma 2 ligands on adipocyte versus osteoblast differentiation. Endocrinology 143:2376–2384PubMedCrossRef Lecka-Czernik B, Moerman EJ, Grant DF et al (2002) Divergent effects of selective peroxisome proliferator-activated receptor-gamma 2 ligands on adipocyte versus osteoblast differentiation. Endocrinology 143:2376–2384PubMedCrossRef
39.
Zurück zum Zitat Kim SH, Yoo CI, Kim HT et al (2006) Activation of peroxisome proliferator-activated receptor-gamma (PPARgamma) induces cell death through MAPK-dependent mechanism in osteoblastic cells. Toxicol Appl Pharmacol 215:198–207PubMedCrossRef Kim SH, Yoo CI, Kim HT et al (2006) Activation of peroxisome proliferator-activated receptor-gamma (PPARgamma) induces cell death through MAPK-dependent mechanism in osteoblastic cells. Toxicol Appl Pharmacol 215:198–207PubMedCrossRef
40.
Zurück zum Zitat Okazaki R, Toriumi M, Fukumoto S et al (1999) Thiazolidinediones inhibit osteoclast-like cell formation and bone resorption in vitro. Endocrinology 140:5060–5065PubMedCrossRef Okazaki R, Toriumi M, Fukumoto S et al (1999) Thiazolidinediones inhibit osteoclast-like cell formation and bone resorption in vitro. Endocrinology 140:5060–5065PubMedCrossRef
41.
Zurück zum Zitat Reid IR, Cornish J, Baldock PA (2006) Nutrition-related peptides and bone homeostasis. J Bone Miner Res 21:495–500PubMedCrossRef Reid IR, Cornish J, Baldock PA (2006) Nutrition-related peptides and bone homeostasis. J Bone Miner Res 21:495–500PubMedCrossRef
42.
Zurück zum Zitat Fain JN, Cowan GS Jr, Buffington C et al (2000) Regulation of leptin release by troglitazone in human adipose tissue. Metabolism 49:1485–1490PubMedCrossRef Fain JN, Cowan GS Jr, Buffington C et al (2000) Regulation of leptin release by troglitazone in human adipose tissue. Metabolism 49:1485–1490PubMedCrossRef
43.
Zurück zum Zitat Williams LB, Fawcett RL, Waechter AS et al (2000) Leptin production in adipocytes from morbidly obese subjects: stimulation by dexamethasone, inhibition with troglitazone, and influence of gender. J Clin Endocrinol Metab 85:2678–2684PubMedCrossRef Williams LB, Fawcett RL, Waechter AS et al (2000) Leptin production in adipocytes from morbidly obese subjects: stimulation by dexamethasone, inhibition with troglitazone, and influence of gender. J Clin Endocrinol Metab 85:2678–2684PubMedCrossRef
44.
Zurück zum Zitat Cornish J, Callon KE, Bava U et al (2002) Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo. J Endocrinol 175:405–415PubMedCrossRef Cornish J, Callon KE, Bava U et al (2002) Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo. J Endocrinol 175:405–415PubMedCrossRef
45.
Zurück zum Zitat Ducy P, Amling M, Takeda S et al (2000) Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100:197–207PubMedCrossRef Ducy P, Amling M, Takeda S et al (2000) Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100:197–207PubMedCrossRef
46.
Zurück zum Zitat Maeda N, Takahashi M, Funahashi T et al (2001) PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes 50:2094PubMedCrossRef Maeda N, Takahashi M, Funahashi T et al (2001) PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes 50:2094PubMedCrossRef
47.
Zurück zum Zitat Oshima K, Nampei A, Matsuda M et al (2005) Adiponectin increases bone mass by suppressing osteoclast and activating osteoblast. Biochem Biophys Res Commun 331:520–526PubMedCrossRef Oshima K, Nampei A, Matsuda M et al (2005) Adiponectin increases bone mass by suppressing osteoclast and activating osteoblast. Biochem Biophys Res Commun 331:520–526PubMedCrossRef
48.
Zurück zum Zitat Williams GA, Callon KE, Watson M et al (2006) Adiponectin knock-out mice have increased trabecular number and bone volume at 14 weeks of age. Australia New Zealand Bone and Mineral Society, Port Douglas, QA, O28 Williams GA, Callon KE, Watson M et al (2006) Adiponectin knock-out mice have increased trabecular number and bone volume at 14 weeks of age. Australia New Zealand Bone and Mineral Society, Port Douglas, QA, O28
49.
Zurück zum Zitat Cornish J, Callon KE, Reid IR (1996) Insulin increases histomorphometric indices of bone formation in vivo. Calcif Tissue Int 59:492–495PubMed Cornish J, Callon KE, Reid IR (1996) Insulin increases histomorphometric indices of bone formation in vivo. Calcif Tissue Int 59:492–495PubMed
50.
Zurück zum Zitat Cornish J, Callon KE, King AR et al (1998) Systemic administration of amylin increases bone mass, linear growth, and adiposity in adult male mice. Am J Physiol 38:E694–E699 Cornish J, Callon KE, King AR et al (1998) Systemic administration of amylin increases bone mass, linear growth, and adiposity in adult male mice. Am J Physiol 38:E694–E699
51.
Zurück zum Zitat Cornish J, Callon KE, Bava U et al (2007) Preptin, another peptide product of the pancreatic beta-cell, is osteogenic in vitro and in vivo. Am J Physiol Endocrinol Metab 292:E117–E122PubMedCrossRef Cornish J, Callon KE, Bava U et al (2007) Preptin, another peptide product of the pancreatic beta-cell, is osteogenic in vitro and in vivo. Am J Physiol Endocrinol Metab 292:E117–E122PubMedCrossRef
52.
Zurück zum Zitat Lecka-Czernik B, Ackert-Bicknell C, Adamo ML et al (2007) Activation of peroxisome proliferator-activated receptor gamma (PPARgamma) by rosiglitazone suppresses components of the insulin-like growth factor regulatory system in vitro and in vivo. Endocrinology 148:903–911PubMedCrossRef Lecka-Czernik B, Ackert-Bicknell C, Adamo ML et al (2007) Activation of peroxisome proliferator-activated receptor gamma (PPARgamma) by rosiglitazone suppresses components of the insulin-like growth factor regulatory system in vitro and in vivo. Endocrinology 148:903–911PubMedCrossRef
53.
Zurück zum Zitat Jennermann C, Triantafillou J, Cowan D et al (1995) Effects of thiazolidinediones on bone turnover in the rat. J Bone Miner Res 10 [Suppl 1]:S241 Jennermann C, Triantafillou J, Cowan D et al (1995) Effects of thiazolidinediones on bone turnover in the rat. J Bone Miner Res 10 [Suppl 1]:S241
54.
Zurück zum Zitat Rzonca SO, Suva LJ, Gaddy D et al (2004) Bone is a target for the antidiabetic compound rosiglitazone. Endocrinology 145:401–406PubMedCrossRef Rzonca SO, Suva LJ, Gaddy D et al (2004) Bone is a target for the antidiabetic compound rosiglitazone. Endocrinology 145:401–406PubMedCrossRef
55.
Zurück zum Zitat Ali AA, Weinstein RS, Stewart SA et al (2005) Rosiglitazone causes bone loss in mice by suppressing osteoblast differentiation and bone formation. Endocrinology 146:1226–1235PubMedCrossRef Ali AA, Weinstein RS, Stewart SA et al (2005) Rosiglitazone causes bone loss in mice by suppressing osteoblast differentiation and bone formation. Endocrinology 146:1226–1235PubMedCrossRef
56.
Zurück zum Zitat Soroceanu MA, Miao D, Bai X-Y et al (2004) Rosiglitazone impacts negatively on bone by promoting osteoblast/osteocyte apoptosis. J Endocrinol 183:203–216PubMedCrossRef Soroceanu MA, Miao D, Bai X-Y et al (2004) Rosiglitazone impacts negatively on bone by promoting osteoblast/osteocyte apoptosis. J Endocrinol 183:203–216PubMedCrossRef
57.
Zurück zum Zitat Li M, Pan LC, Simmons HA et al (2006) Surface-specific effects of a PPAR-gamma agonist, darglitazone, on bone in mice. Bone 39:796–806PubMedCrossRef Li M, Pan LC, Simmons HA et al (2006) Surface-specific effects of a PPAR-gamma agonist, darglitazone, on bone in mice. Bone 39:796–806PubMedCrossRef
58.
Zurück zum Zitat Lazarenko OP, Rzonca SO, Suva LJ et al (2006) Netoglitazone is a PPAR-gamma ligand with selective effects on bone and fat. Bone 38:74–84PubMedCrossRef Lazarenko OP, Rzonca SO, Suva LJ et al (2006) Netoglitazone is a PPAR-gamma ligand with selective effects on bone and fat. Bone 38:74–84PubMedCrossRef
59.
Zurück zum Zitat Tornvig L, Mosekilde LI, Justesen J et al (2001) Troglitazone treatment increases bone marrow adipose tissue volume but does not affect trabecular bone volume in mice. Calcif Tissue Int 69:46–50PubMedCrossRef Tornvig L, Mosekilde LI, Justesen J et al (2001) Troglitazone treatment increases bone marrow adipose tissue volume but does not affect trabecular bone volume in mice. Calcif Tissue Int 69:46–50PubMedCrossRef
60.
Zurück zum Zitat Sottile V, Seuwen K, Kneissel M (2004) Enhanced marrow adipogenesis and bone resorption in estrogen-deprived rats treated with the PPARgamma agonist BRL49653 (rosiglitazone). Calcif Tissue Int 75:329–337PubMedCrossRef Sottile V, Seuwen K, Kneissel M (2004) Enhanced marrow adipogenesis and bone resorption in estrogen-deprived rats treated with the PPARgamma agonist BRL49653 (rosiglitazone). Calcif Tissue Int 75:329–337PubMedCrossRef
61.
Zurück zum Zitat Lazarenko OP, Rzonca SO, Hogue WR et al (2007) Rosiglitazone induces decreases in bone mass and strength that are reminiscent of aged bone. Endocrinology 148:2669–2680PubMedCrossRef Lazarenko OP, Rzonca SO, Hogue WR et al (2007) Rosiglitazone induces decreases in bone mass and strength that are reminiscent of aged bone. Endocrinology 148:2669–2680PubMedCrossRef
62.
Zurück zum Zitat Akune T, Ohba S, Kamekura S et al (2004) PPAR-gamma insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. J Clin Invest 113:846–855PubMedCrossRef Akune T, Ohba S, Kamekura S et al (2004) PPAR-gamma insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. J Clin Invest 113:846–855PubMedCrossRef
63.
Zurück zum Zitat Klein RF, Allard J, Avnur Z et al (2004) Regulation of bone mass in mice by the lipoxygenase gene Alox15. Science 303:229–232PubMedCrossRef Klein RF, Allard J, Avnur Z et al (2004) Regulation of bone mass in mice by the lipoxygenase gene Alox15. Science 303:229–232PubMedCrossRef
64.
Zurück zum Zitat Okazaki R, Miura M, Toriumi M et al (1999) Short-term treatment with troglitazone decreases bone turnover in patients with type 2 diabetes mellitus. Endocr J 46:795–801PubMed Okazaki R, Miura M, Toriumi M et al (1999) Short-term treatment with troglitazone decreases bone turnover in patients with type 2 diabetes mellitus. Endocr J 46:795–801PubMed
65.
Zurück zum Zitat Watanabe S, Takeuchi Y, Fukumoto S et al (2003) Decrease in serum leptin by troglitazone is associated with preventing bone loss in type 2 diabetic patients. J Bone Miner Metab 21:166–171PubMedCrossRef Watanabe S, Takeuchi Y, Fukumoto S et al (2003) Decrease in serum leptin by troglitazone is associated with preventing bone loss in type 2 diabetic patients. J Bone Miner Metab 21:166–171PubMedCrossRef
66.
Zurück zum Zitat Schwartz AV, Sellmeyer DE, Vittinghoff E et al (2006) Thiazolidinedione use and bone loss in older diabetic adults. J Clin Endocrinol Metab 91:3349–3354PubMedCrossRef Schwartz AV, Sellmeyer DE, Vittinghoff E et al (2006) Thiazolidinedione use and bone loss in older diabetic adults. J Clin Endocrinol Metab 91:3349–3354PubMedCrossRef
67.
Zurück zum Zitat Yaturu S, Bryant B, Jain SK (2007) Thiazolidinediones treatment decreases bone mineral density in type 2 diabetic men. Diabetes Care 30:1574–1576PubMedCrossRef Yaturu S, Bryant B, Jain SK (2007) Thiazolidinediones treatment decreases bone mineral density in type 2 diabetic men. Diabetes Care 30:1574–1576PubMedCrossRef
68.
Zurück zum Zitat Grey A, Bolland M, Gamble G et al (2007) The peroxisome proliferator-activated receptor-gamma agonist rosiglitazone decreases bone formation and bone mineral density in healthy postmenopausal women: a randomized, controlled trial. J Clin Endocrinol Metab 92:1305–1310PubMedCrossRef Grey A, Bolland M, Gamble G et al (2007) The peroxisome proliferator-activated receptor-gamma agonist rosiglitazone decreases bone formation and bone mineral density in healthy postmenopausal women: a randomized, controlled trial. J Clin Endocrinol Metab 92:1305–1310PubMedCrossRef
69.
Zurück zum Zitat Berberoglu Z, Gursoy A, Bayraktar N et al (2007) Rosiglitazone decreases serum bone-specific alkaline phosphatase activity in postmenopausal diabetic women. J Clin Endocrinol Metab 92:3523–3530PubMedCrossRef Berberoglu Z, Gursoy A, Bayraktar N et al (2007) Rosiglitazone decreases serum bone-specific alkaline phosphatase activity in postmenopausal diabetic women. J Clin Endocrinol Metab 92:3523–3530PubMedCrossRef
70.
Zurück zum Zitat Ton FN, Gunawardene SC, Lee H et al (2005) Effects of low-dose prednisone on bone metabolism. J Bone Miner Res 20:464–470PubMedCrossRef Ton FN, Gunawardene SC, Lee H et al (2005) Effects of low-dose prednisone on bone metabolism. J Bone Miner Res 20:464–470PubMedCrossRef
71.
Zurück zum Zitat Sanders KM, Seeman E, Ugoni AM et al (1999) Age- and gender-specific rate of fractures in Australia: a population-based study. Osteoporos Int 10:240–247PubMedCrossRef Sanders KM, Seeman E, Ugoni AM et al (1999) Age- and gender-specific rate of fractures in Australia: a population-based study. Osteoporos Int 10:240–247PubMedCrossRef
72.
Zurück zum Zitat Garraway WM, Stauffer RN, Kurland LT et al (1979) Limb fractures in a defined population. I. Frequency and distribution. Mayo Clin Proc 54:701–707PubMed Garraway WM, Stauffer RN, Kurland LT et al (1979) Limb fractures in a defined population. I. Frequency and distribution. Mayo Clin Proc 54:701–707PubMed
75.
Zurück zum Zitat Saag KG, Emkey R, Schnitzer TJ et al (1998) Alendronate for the prevention and treatment of glucocorticoid-induced osteoporosis. Glucocorticoid-Induced Osteoporosis Intervention Study Group. N Engl J Med 339:292–299PubMedCrossRef Saag KG, Emkey R, Schnitzer TJ et al (1998) Alendronate for the prevention and treatment of glucocorticoid-induced osteoporosis. Glucocorticoid-Induced Osteoporosis Intervention Study Group. N Engl J Med 339:292–299PubMedCrossRef
76.
Zurück zum Zitat Adachi JD, Saag KG, Delmas PD et al (2001) Two-year effects of alendronate on bone mineral density and vertebral fracture in patients receiving glucocorticoids: a randomized, double-blind, placebo-controlled extension trial. Arthritis Rheum 44:202–211PubMedCrossRef Adachi JD, Saag KG, Delmas PD et al (2001) Two-year effects of alendronate on bone mineral density and vertebral fracture in patients receiving glucocorticoids: a randomized, double-blind, placebo-controlled extension trial. Arthritis Rheum 44:202–211PubMedCrossRef
77.
Zurück zum Zitat Grey AB, Cundy TF, Reid IR (1994) Continuous combined oestrogen/progestin therapy is well tolerated and increases bone density at the hip and spine in post-menopausal osteoporosis. Clin Endocrinol (Oxf) 40:671–677 Grey AB, Cundy TF, Reid IR (1994) Continuous combined oestrogen/progestin therapy is well tolerated and increases bone density at the hip and spine in post-menopausal osteoporosis. Clin Endocrinol (Oxf) 40:671–677
78.
Zurück zum Zitat National Osteoporosis Foundation (2003) Physician’s guide to prevention and treatment of osteoporosis. In. National Osteoporosis Foundation, Washington, DC National Osteoporosis Foundation (2003) Physician’s guide to prevention and treatment of osteoporosis. In. National Osteoporosis Foundation, Washington, DC
79.
Zurück zum Zitat American Association of Clinical Endocrinologists (2003) Medical guidelines for clinical practice for the prevention and treatment of postmenopausal osteoporosis. Endocr Pract 9:544–564 American Association of Clinical Endocrinologists (2003) Medical guidelines for clinical practice for the prevention and treatment of postmenopausal osteoporosis. Endocr Pract 9:544–564
Metadaten
Titel
Skeletal consequences of thiazolidinedione therapy
verfasst von
A. Grey
Publikationsdatum
01.02.2008
Verlag
Springer-Verlag
Erschienen in
Osteoporosis International / Ausgabe 2/2008
Print ISSN: 0937-941X
Elektronische ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-007-0477-y

Weitere Artikel der Ausgabe 2/2008

Osteoporosis International 2/2008 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Arthroskopie kann Knieprothese nicht hinauszögern

25.04.2024 Gonarthrose Nachrichten

Ein arthroskopischer Eingriff bei Kniearthrose macht im Hinblick darauf, ob und wann ein Gelenkersatz fällig wird, offenbar keinen Unterschied.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Ärztliche Empathie hilft gegen Rückenschmerzen

23.04.2024 Leitsymptom Rückenschmerzen Nachrichten

Personen mit chronischen Rückenschmerzen, die von einfühlsamen Ärzten und Ärztinnen betreut werden, berichten über weniger Beschwerden und eine bessere Lebensqualität.

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.