Skip to main content
Erschienen in: Experimental Brain Research 1/2004

01.01.2004 | Research Article

The use of visual feedback and on-line target information in catching and grasping

verfasst von: Thomas Schenk, Barbara Mair, Josef Zihl

Erschienen in: Experimental Brain Research | Ausgabe 1/2004

Einloggen, um Zugang zu erhalten

Abstract

Although visual feedback (i.e. seeing our hand while we move it) improves the accuracy and efficiency of grasping movements, these positive effects of visual feedback are not consistently found for catching. It was the aim of our study to compare the efficiency of the use of visual feedback in grasping and catching and to explore possible reasons why visual feedback effects have been found less consistently in catching than in grasping. The first reason might be technical. Less sensitive measurement methods have been used in catching; this might explain why some catching studies did not find visual feedback effects. This problem was avoided in our study by using the same methods for both the catching and the grasping task. The effects of visual feedback were examined under standard conditions and under conditions where subjects wore prismatic glasses. Nevertheless, visual feedback effects were obtained for grasping but not for catching movements. This confirms that the difference in the use of visual feedback is real and not due to technical differences between grasping and catching studies. The second reason relates to the different temporal demands of grasping and catching. During a catching task, subjects have less time to respond, and therefore might not have sufficient time to use visual feedback. We tested this explanation with a task that required subjects to reach for a stationary object (i.e. grasping) as quickly as they had for the moving object in the catching task. However, even in this time-constrained grasping task, significant visual feedback effects were found, suggesting that time constraints do not explain the lack of visual feedback effects in catching. In our last explanation, we suggest that possibly the mode of motor control is different for catching and grasping, more particularly while grasping allows for on-line corrections, such corrections might not be possible for catching movements. We tested this explanation with a catching task that contained perturbation trials. During those perturbation trials, the target trajectory was shifted, after the subject had already started to move. We found that subjects responded to the target shifts with an appropriate shift of their catching response. This shows that on-line corrections are possible in the case of catching movements. We conclude that neither differences in the temporal demands nor in the capacity to make on-line modifications explain why visual feedback is used less effectively in the catching than in the grasping task.
Literatur
Zurück zum Zitat Amazeen EL, Amazeen PG, Beek PJ (2001) Eye movements and the selection of optical information for catching. Ecolog Psychol 13:71–85 Amazeen EL, Amazeen PG, Beek PJ (2001) Eye movements and the selection of optical information for catching. Ecolog Psychol 13:71–85
Zurück zum Zitat Binsted G, Chua R, Helsen W, Elliott D (2001) Eye-hand coordination in goal-directed aiming. Hum Mov Sci 20:563–585CrossRefPubMed Binsted G, Chua R, Helsen W, Elliott D (2001) Eye-hand coordination in goal-directed aiming. Hum Mov Sci 20:563–585CrossRefPubMed
Zurück zum Zitat Churchill A, Hopkins B, Roenqvist L, Vogt S (2000) Vision of the hand and environmental context in human prehension. Exp Brain Res 134:81–89PubMed Churchill A, Hopkins B, Roenqvist L, Vogt S (2000) Vision of the hand and environmental context in human prehension. Exp Brain Res 134:81–89PubMed
Zurück zum Zitat Connolly J, Goodale M (1999) The role of visual feedback of hand position in the control of manual prehension. Exp Brain Res 125:281–6PubMed Connolly J, Goodale M (1999) The role of visual feedback of hand position in the control of manual prehension. Exp Brain Res 125:281–6PubMed
Zurück zum Zitat Davids K, Stratford R (1989) Peripheral vision and simple catching: the screen paradigm revisited. J Sport Sci 7:139–152 Davids K, Stratford R (1989) Peripheral vision and simple catching: the screen paradigm revisited. J Sport Sci 7:139–152
Zurück zum Zitat Diggles VA, Grabiner MD, Garhammer J (1987) Skill level and efficacy of effector visual feedback in ball catching. Percept Mot Skills 64:987–993 Diggles VA, Grabiner MD, Garhammer J (1987) Skill level and efficacy of effector visual feedback in ball catching. Percept Mot Skills 64:987–993
Zurück zum Zitat Fayt C, Minet M, Schepens N (1993) Childrens and adults learning of a visuomanual coordination—role of ongoing visual feedback and of spatial errors as a function of age. Percept Mot Skills 77:659–669PubMed Fayt C, Minet M, Schepens N (1993) Childrens and adults learning of a visuomanual coordination—role of ongoing visual feedback and of spatial errors as a function of age. Percept Mot Skills 77:659–669PubMed
Zurück zum Zitat Fischman MG, Schneider T (1985) Skill level, vision and proprioception in simple one-handed catching. J Mot Behav 17:219–229 Fischman MG, Schneider T (1985) Skill level, vision and proprioception in simple one-handed catching. J Mot Behav 17:219–229
Zurück zum Zitat Flash T, Henis E (1991) Arm trajectory modifications during reaching towards visual targets. J Cogn Neurosci 3:220–230 Flash T, Henis E (1991) Arm trajectory modifications during reaching towards visual targets. J Cogn Neurosci 3:220–230
Zurück zum Zitat Fleury M, Bard C, Gagnon M, Teasdale N (1992) Coincidence-anticipation timing: the perceptual-motor interface. In: Proteau L, Elliott D (eds) Vision and motor control. Elsevier, Amsterdam, pp 315–334 Fleury M, Bard C, Gagnon M, Teasdale N (1992) Coincidence-anticipation timing: the perceptual-motor interface. In: Proteau L, Elliott D (eds) Vision and motor control. Elsevier, Amsterdam, pp 315–334
Zurück zum Zitat Hauck A, Sorg M, Schenk T, Färber G (1998) A biologically motivated model for the control of visually guided reach-to-grasp movements. Proc Int Conf Intell Syst 1:295–300 Hauck A, Sorg M, Schenk T, Färber G (1998) A biologically motivated model for the control of visually guided reach-to-grasp movements. Proc Int Conf Intell Syst 1:295–300
Zurück zum Zitat Helsen WF, Elliott D, Starkes JL, Ricker KL (1998) Temporal and spatial coupling of point of gaze and hand movements in aiming. J Mot Behav 30:249–259 Helsen WF, Elliott D, Starkes JL, Ricker KL (1998) Temporal and spatial coupling of point of gaze and hand movements in aiming. J Mot Behav 30:249–259
Zurück zum Zitat Hillstrom AP, Yantis S (1994) Visual motion and attentional capture. Percept Psychophys 43:399–411 Hillstrom AP, Yantis S (1994) Visual motion and attentional capture. Percept Psychophys 43:399–411
Zurück zum Zitat Ingram HA, van Donkelaar P, Cole J, Vercher JL, Gauthier GM, Miall RC (2000) The role of proprioception and attention in a visuomotor adaptation task. Exp Brain Res 132:114–126PubMed Ingram HA, van Donkelaar P, Cole J, Vercher JL, Gauthier GM, Miall RC (2000) The role of proprioception and attention in a visuomotor adaptation task. Exp Brain Res 132:114–126PubMed
Zurück zum Zitat Jansen-Osmann P, Beirle S, Richter S, Konczak J, Kalveram KT (2002) Inverse motor models in children and adults: the role of visual feedback. Z Entwicklungspsychol Padago 34:167–173CrossRef Jansen-Osmann P, Beirle S, Richter S, Konczak J, Kalveram KT (2002) Inverse motor models in children and adults: the role of visual feedback. Z Entwicklungspsychol Padago 34:167–173CrossRef
Zurück zum Zitat Kuhtz-Buschbeck JP, Stolze H, Jöhnk K, Boczek-Funcke A, Illert M (1998) Development of prehension movements in children: a kinematic study. Exp Brain Res 22:424–32CrossRef Kuhtz-Buschbeck JP, Stolze H, Jöhnk K, Boczek-Funcke A, Illert M (1998) Development of prehension movements in children: a kinematic study. Exp Brain Res 22:424–32CrossRef
Zurück zum Zitat Marquardt C, Mai N (1994) Computational procedures for movement analysis in handwriting. J Neurosci Methods 52:39–45PubMed Marquardt C, Mai N (1994) Computational procedures for movement analysis in handwriting. J Neurosci Methods 52:39–45PubMed
Zurück zum Zitat Montagne G, Laurent M, Durey A, Bootsma R (1999) Movement reversals in ball catching. Exp Brain Res 129:87–92CrossRefPubMed Montagne G, Laurent M, Durey A, Bootsma R (1999) Movement reversals in ball catching. Exp Brain Res 129:87–92CrossRefPubMed
Zurück zum Zitat Neggers SFW, Bekkering H (2001) Gaze anchoring to a pointing target is present during the entire pointing movement and is driven by a non-visual signal. J Neurophysiol 86:961–970PubMed Neggers SFW, Bekkering H (2001) Gaze anchoring to a pointing target is present during the entire pointing movement and is driven by a non-visual signal. J Neurophysiol 86:961–970PubMed
Zurück zum Zitat Paillard J (1996) Fast and slow feedback loops for the visual correction of spatial errors in a pointing task: a reappraisal. Can J Physiol Pharmacol 74:401–17PubMed Paillard J (1996) Fast and slow feedback loops for the visual correction of spatial errors in a pointing task: a reappraisal. Can J Physiol Pharmacol 74:401–17PubMed
Zurück zum Zitat Paillard J, Jordan P, Brouchon M (1981) Visual motion cues in prismatic adaptation: evidence of two separate and additive processes. Acta Psychol 48:253–70CrossRef Paillard J, Jordan P, Brouchon M (1981) Visual motion cues in prismatic adaptation: evidence of two separate and additive processes. Acta Psychol 48:253–70CrossRef
Zurück zum Zitat Paulignan Y, Marteniuk R, McKenzie C, Jeannerod M (1991a) Selective pertubation of visual input during prehension movements. II. The effects of changing object size. Exp Brain Res 87:407–420PubMed Paulignan Y, Marteniuk R, McKenzie C, Jeannerod M (1991a) Selective pertubation of visual input during prehension movements. II. The effects of changing object size. Exp Brain Res 87:407–420PubMed
Zurück zum Zitat Paulignan Y, McKenzie C, Marteniuk R, Jeannerod M (1991b) Selective pertubation of visual input during prehension movements. I. The effects of changing object position. Exp Brain Res 83:502–512PubMed Paulignan Y, McKenzie C, Marteniuk R, Jeannerod M (1991b) Selective pertubation of visual input during prehension movements. I. The effects of changing object position. Exp Brain Res 83:502–512PubMed
Zurück zum Zitat Redding GM, Rader SD, Lucas DR (1992) Cognitive load and prism adaptation. J Mot Behav 24:238–246PubMed Redding GM, Rader SD, Lucas DR (1992) Cognitive load and prism adaptation. J Mot Behav 24:238–246PubMed
Zurück zum Zitat Rosengren K, Pick HL, von Hofsten C (1988) Role of visual information in ball catching. J Mot Behav 20:150–164 Rosengren K, Pick HL, von Hofsten C (1988) Role of visual information in ball catching. J Mot Behav 20:150–164
Zurück zum Zitat Rossetti Y, Stelmach G, Desmurget M, Prablanc C, Jeannerod M (1994) The effect of viewing the static hand prior to movement onset on pointing kinematics and variability. Exp Brain Res 101:323–330PubMed Rossetti Y, Stelmach G, Desmurget M, Prablanc C, Jeannerod M (1994) The effect of viewing the static hand prior to movement onset on pointing kinematics and variability. Exp Brain Res 101:323–330PubMed
Zurück zum Zitat Savelsbergh GJP, Whiting HTA (1996) Catching: a motor learning and developmental perspective. In: Heuer H, Keele SW (eds) Motor skills. Academic Press, London, pp 461–502 Savelsbergh GJP, Whiting HTA (1996) Catching: a motor learning and developmental perspective. In: Heuer H, Keele SW (eds) Motor skills. Academic Press, London, pp 461–502
Zurück zum Zitat Schenk T, Mai N (1999) Time constraints improve reaching movements in an ataxic patient. Exp. Brain Res 120:214–218 Schenk T, Mai N (1999) Time constraints improve reaching movements in an ataxic patient. Exp. Brain Res 120:214–218
Zurück zum Zitat Schenk T, Mai N, Ditterich J, Zihl J (2000a) Can a motion-blind patient reach for moving objects? Eur J Neurosci 12:3351–3360CrossRefPubMed Schenk T, Mai N, Ditterich J, Zihl J (2000a) Can a motion-blind patient reach for moving objects? Eur J Neurosci 12:3351–3360CrossRefPubMed
Zurück zum Zitat Schenk T, Philipp J, Häußler A, Hermsdörfer J, Hauck A, Mai N (2000b) A system for the study of hand-eye coordination in catching. J Neurosci Methods 100:3–12CrossRefPubMed Schenk T, Philipp J, Häußler A, Hermsdörfer J, Hauck A, Mai N (2000b) A system for the study of hand-eye coordination in catching. J Neurosci Methods 100:3–12CrossRefPubMed
Zurück zum Zitat Sidaway B, Yook D, Fairweather M (2001) Visual and verbal guidance in the learning of a novel motor skill. J Hum Mov Stud 40:43–63 Sidaway B, Yook D, Fairweather M (2001) Visual and verbal guidance in the learning of a novel motor skill. J Hum Mov Stud 40:43–63
Zurück zum Zitat Smyth MM, Marriott AM (1982) Vision and proprioception in simple catching. J Mot Behav 14:143–152 Smyth MM, Marriott AM (1982) Vision and proprioception in simple catching. J Mot Behav 14:143–152
Zurück zum Zitat Spijkers W (1995) Visuelle Verarbeitungszeit und die Kontrolle manueller Zielbewegungen. Psychol Beitr 37:312–348 Spijkers W (1995) Visuelle Verarbeitungszeit und die Kontrolle manueller Zielbewegungen. Psychol Beitr 37:312–348
Zurück zum Zitat Swinnen SP, Lee TD, Verschueren S, Serrien DJ, Bogaerds H (1997) Interlimb coordination: learning and transfer under different feedback conditions. Hum Mov Sci 16:749–785CrossRef Swinnen SP, Lee TD, Verschueren S, Serrien DJ, Bogaerds H (1997) Interlimb coordination: learning and transfer under different feedback conditions. Hum Mov Sci 16:749–785CrossRef
Zurück zum Zitat Tresilian J (1999) Analysis of recent empirical challenges to an account of interceptive timing. Percept Psychophys 61:515–28 Tresilian J (1999) Analysis of recent empirical challenges to an account of interceptive timing. Percept Psychophys 61:515–28
Zurück zum Zitat Vercher JL, Gauthier GM (1992) Oculomanual coordination control—ocular and manual tracking of visual targets with delayed visual feedback of the hand motion. Exp Brain Res 90:599–609PubMed Vercher JL, Gauthier GM (1992) Oculomanual coordination control—ocular and manual tracking of visual targets with delayed visual feedback of the hand motion. Exp Brain Res 90:599–609PubMed
Metadaten
Titel
The use of visual feedback and on-line target information in catching and grasping
verfasst von
Thomas Schenk
Barbara Mair
Josef Zihl
Publikationsdatum
01.01.2004
Erschienen in
Experimental Brain Research / Ausgabe 1/2004
Print ISSN: 0014-4819
Elektronische ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-003-1642-y

Weitere Artikel der Ausgabe 1/2004

Experimental Brain Research 1/2004 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.