Skip to main content
Erschienen in: Experimental Brain Research 1/2005

01.05.2005 | Research Article

Silent period to transcranial magnetic stimulation: construction and properties of stimulus–response curves in healthy volunteers

verfasst von: V. K. Kimiskidis, S. Papagiannopoulos, K. Sotirakoglou, D. A. Kazis, A. Kazis, K. R. Mills

Erschienen in: Experimental Brain Research | Ausgabe 1/2005

Einloggen, um Zugang zu erhalten

Abstract

Silent period (SP) is widely used in transcranial magnetic stimulation studies. Methodologically, SP is usually elicited at stimulus intensities corresponding to a certain percentage of corticomotor threshold. Because this approach might lead to factitious SP changes, the present study was designed to develop, in a stepwise manner, a method for investigating SP independently of corticomotor threshold. First, stimulus–response (S–R) curves of SP against stimulus intensity (SI) were constructed and quantitatively described in healthy volunteers. Second, various methodological issues such as the optimum model for describing the relationship between SP duration and SI and the importance of the type of stimulating coil were addressed. Finally, the proposed method and a commonly used method (eliciting SPs at 130% MT SI) were directly compared for a group of epileptic patients for whom administration of oxcarbazepine resulted in significant corticomotor threshold elevation. Twenty-one subjects (eleven females, median age, 38 years) were studied. SPs were obtained with a figure-of-eight coil using a standardized procedure (recording, FDI). Pilot experiments indicated that at least four trials were required, at each intensity level, to estimate the mean SP duration within 10% of the true mean. Therefore, SPs were determined from the average of four trials with 5% increments from 5 to 100% maximum SI. In a second set of experiments, SPs were obtained for fifteen subjects using a circular coil. In a third set of experiments, eight epileptic patients were studied before and after administration of oxcarbazepine (mean dose 1553 mg, range 900–1800 mg). The S–R curves were fitted to a Boltzman function and to first-order to fourth-order polynomial and sigmoid functions. The Boltzman function described the data accurately (R2=0.947–0.990). In addition, direct comparison of the six models with an F-test proved the superiority of the first. The best-fit parameters of the reference curve, i.e. the maximum and minimum values, the slope, and V50 (the SI at which SP duration is halfway between Min and Max) were 230.8±3.31 ms (x±SEM), −11.51±3.31 ms, 11.56±0.65%, and 49.82±0.65%, respectively. When the curves obtained with the circular coil were compared with those obtained with the figure-of-eight coil, there were differences between V50 (51.69±0.72 vs 47.95±0.82, P<0.001) and SP threshold (31.15 vs 24.77, P<0.01) whereas the other best-fit values did not differ significantly. Oxcarbazepine increased corticomotor threshold from 45.3±5.8% at baseline to 59.4±10.4% (P<0.001). According to the commonly used method, the drug significantly prolonged SP (from 117.6±42.4 ms to 143.5±46.5 ms, P<0.001) and, consequently, enhanced brain inhibition. In contrast, study of the SP curves led to the conclusion that oxcarbazepine does not affect the Max value and slope but significantly increases V50 and SP threshold (from 54.5±4.9% to 59.9±7.2% and from 29.1±6.4% to 34.6±6.8%, respectively, P<0.01). These findings imply that oxcarbazepine does not enhance brain inhibitory mechanisms. Thus, in situations characterized by significant changes in corticomotor threshold the proposed method provides results clearly different from a commonly used approach. It is concluded that S–R curves obtained with a figure-of-eight coil in 5% increments and fitted to a Boltzman function provide an accurate, comprehensive, and clinically applicable method for exploring SP.
Literatur
Zurück zum Zitat Ahonen JP, Jehkonen M, Dastidar P, Molnar G, Hakkinen V (1998) Cortical silent period evoked by transcranial magnetic stimulation in ischemic stroke. Electoencephalogr Clin Neurophysiol 109:224–229 Ahonen JP, Jehkonen M, Dastidar P, Molnar G, Hakkinen V (1998) Cortical silent period evoked by transcranial magnetic stimulation in ischemic stroke. Electoencephalogr Clin Neurophysiol 109:224–229
Zurück zum Zitat Boroojerdi B (2002) Pharmacologic influences on TMS effects. J Clin Neurophysiol 19:255–271 Boroojerdi B (2002) Pharmacologic influences on TMS effects. J Clin Neurophysiol 19:255–271
Zurück zum Zitat Cantello R, Gianelli M, Civardi C, Mutani R (1992) Magnetic brain stimulation: the silent period after the motor evoked potential. Neurology 42:1951–1959PubMed Cantello R, Gianelli M, Civardi C, Mutani R (1992) Magnetic brain stimulation: the silent period after the motor evoked potential. Neurology 42:1951–1959PubMed
Zurück zum Zitat Carroll TJ, Riek S, Carson RG (2001) Reliability of the input-output properties of the cortico-spinal pathway obtained from transcranial magnetic and electrical stimulation. J Neurosci Methods 112:193–202CrossRefPubMed Carroll TJ, Riek S, Carson RG (2001) Reliability of the input-output properties of the cortico-spinal pathway obtained from transcranial magnetic and electrical stimulation. J Neurosci Methods 112:193–202CrossRefPubMed
Zurück zum Zitat Chen R, Samii A, Canos M, Wassermann EM, Hallett M (1997) Effects of phenytoin on cortical excitability in humans. Neurology 49:881–883 Chen R, Samii A, Canos M, Wassermann EM, Hallett M (1997) Effects of phenytoin on cortical excitability in humans. Neurology 49:881–883
Zurück zum Zitat Christopoulos A (1998) Assessing the distribution of parameters in models of ligand-receptor interaction: to log or not to log. Trends Pharm Sci 19:351–357 Christopoulos A (1998) Assessing the distribution of parameters in models of ligand-receptor interaction: to log or not to log. Trends Pharm Sci 19:351–357
Zurück zum Zitat Cincotta M, Borgheresi A, Lori S, Fabbri M, Zaccara G (1998) Interictal inhibitory mechanisms in patients with cryptogenic motor cortex epilepsy: a study of the silent period following transcranial magnetic stimulation. Electoencephalogr Clin Neurophysiol 107:1–7 Cincotta M, Borgheresi A, Lori S, Fabbri M, Zaccara G (1998) Interictal inhibitory mechanisms in patients with cryptogenic motor cortex epilepsy: a study of the silent period following transcranial magnetic stimulation. Electoencephalogr Clin Neurophysiol 107:1–7
Zurück zum Zitat Daniel WW (1987) Biostatistics: a foundation for analysis in the health sciences, 4th edn. Wiley, New York, pp 152–154 Daniel WW (1987) Biostatistics: a foundation for analysis in the health sciences, 4th edn. Wiley, New York, pp 152–154
Zurück zum Zitat Davey NJ, Romaiguere P, Maskill DW, Ellaway PH (1994) Suppression of voluntary motor activity revealed using transcranial magnetic stimulation of the motor cortex in man. J Physiol 477:223–235PubMed Davey NJ, Romaiguere P, Maskill DW, Ellaway PH (1994) Suppression of voluntary motor activity revealed using transcranial magnetic stimulation of the motor cortex in man. J Physiol 477:223–235PubMed
Zurück zum Zitat Devanne H, Lavoie BA, Capaday C (1997) Input-output properties and gain changes in the human corticospinal pathway. Exp Brain Res 114:329–338PubMed Devanne H, Lavoie BA, Capaday C (1997) Input-output properties and gain changes in the human corticospinal pathway. Exp Brain Res 114:329–338PubMed
Zurück zum Zitat Fritz C, Braune HJ, Pylatiuk C, Pohl M (1997) Silent period following transcranial magnetic stimulation: a study of intra- and inter-examiner reliability. Electroencephalogr Clin Neurophysiol 105:235–240 Fritz C, Braune HJ, Pylatiuk C, Pohl M (1997) Silent period following transcranial magnetic stimulation: a study of intra- and inter-examiner reliability. Electroencephalogr Clin Neurophysiol 105:235–240
Zurück zum Zitat Hallett M (1995) Transcranial magnetic stimulation: negative effects. Adv Neurol 67:107–113 Hallett M (1995) Transcranial magnetic stimulation: negative effects. Adv Neurol 67:107–113
Zurück zum Zitat Haug BA, Schonle PW, Knobloch C, Kohne M (1992) Silent period measurement revives as a valuable diagnostic tool with transcranial magnetic stimulation. Electroencephalogr Clin Neurophysiol 85:158–160CrossRefPubMed Haug BA, Schonle PW, Knobloch C, Kohne M (1992) Silent period measurement revives as a valuable diagnostic tool with transcranial magnetic stimulation. Electroencephalogr Clin Neurophysiol 85:158–160CrossRefPubMed
Zurück zum Zitat Ho K, Nithi K, Mills K (1998) Co variation between human intrinsic hand muscles of the silent periods and compound muscle action potentials evoked by magnetic brain stimulation: evidence for common inhibitory connections. Exp Brain Res 122:433–440 Ho K, Nithi K, Mills K (1998) Co variation between human intrinsic hand muscles of the silent periods and compound muscle action potentials evoked by magnetic brain stimulation: evidence for common inhibitory connections. Exp Brain Res 122:433–440
Zurück zum Zitat Inghilleri M, Berardelli A, Cruccu G, Manfredi M (1993) Silent period evoked by transcranial stimulation of the human cortex and cervicomedullary junction. J Physiol 466:521–534PubMed Inghilleri M, Berardelli A, Cruccu G, Manfredi M (1993) Silent period evoked by transcranial stimulation of the human cortex and cervicomedullary junction. J Physiol 466:521–534PubMed
Zurück zum Zitat Kukowski B, Haug B (1992) Quantitative evaluation of the silent period evoked by transcranial magnetic stimulation during sustained muscle contraction in normal man and in patients with stroke. Electromyogr Clin Neurophysiol 32:373–378 Kukowski B, Haug B (1992) Quantitative evaluation of the silent period evoked by transcranial magnetic stimulation during sustained muscle contraction in normal man and in patients with stroke. Electromyogr Clin Neurophysiol 32:373–378
Zurück zum Zitat Maccabee PJ, Amassian VE, Ziemann U et al. (2000) Cortical Silent Period. In: Levin K, Luders H (eds) Comprehensive clinical neurophysiology. WB Saunders, Philadelphia, pp 335–336 Maccabee PJ, Amassian VE, Ziemann U et al. (2000) Cortical Silent Period. In: Levin K, Luders H (eds) Comprehensive clinical neurophysiology. WB Saunders, Philadelphia, pp 335–336
Zurück zum Zitat Mathis J, de Quervain D, Hess CW (1998) Dependence of the transcranially induced silent period on the “instruction set” and the individual reaction time. Electoencephalogr Clin Neurophysiol 109:426–435 Mathis J, de Quervain D, Hess CW (1998) Dependence of the transcranially induced silent period on the “instruction set” and the individual reaction time. Electoencephalogr Clin Neurophysiol 109:426–435
Zurück zum Zitat McLean MJ, Schmutz M, Wamil A et al. (1994) Oxcarbazepine: mechanisms of action. Epilepsia 35:5–9. McLean MJ, Schmutz M, Wamil A et al. (1994) Oxcarbazepine: mechanisms of action. Epilepsia 35:5–9.
Zurück zum Zitat Mills KR, Boniface SJ, Schubert M (1992) Magnetic brain stimulation with a double coil: the importance of coil orientation. Electoencephalogr Clin Neurophysiol 85:17–21 Mills KR, Boniface SJ, Schubert M (1992) Magnetic brain stimulation with a double coil: the importance of coil orientation. Electoencephalogr Clin Neurophysiol 85:17–21
Zurück zum Zitat Mills KR (1999) Measurement of the silent period. In: Mills KR (ed) Magnetic stimulation of the human nervous system. Oxford University Press, Oxford, p 177 Mills KR (1999) Measurement of the silent period. In: Mills KR (ed) Magnetic stimulation of the human nervous system. Oxford University Press, Oxford, p 177
Zurück zum Zitat Mills KR, Nithi KA (1997) Corticomotor threshold to magnetic stimulation: normal values and repeatability. Muscle Nerve 20:570–576 Mills KR, Nithi KA (1997) Corticomotor threshold to magnetic stimulation: normal values and repeatability. Muscle Nerve 20:570–576
Zurück zum Zitat Motulsky HJ (1999) Introducing curve fitting and non-linear regression. In: Analyzing data with Graph Pad Prism. Graph Pad Software Inc, San Diego, CA, pp 157–241 Motulsky HJ (1999) Introducing curve fitting and non-linear regression. In: Analyzing data with Graph Pad Prism. Graph Pad Software Inc, San Diego, CA, pp 157–241
Zurück zum Zitat Orth M, Rothwell JC (2004) The cortical silent period: intrinsic variability and relation to the waveform of the transcranial magnetic stimulation pulse. Clin Neurophysiol 115:1076–1082CrossRefPubMed Orth M, Rothwell JC (2004) The cortical silent period: intrinsic variability and relation to the waveform of the transcranial magnetic stimulation pulse. Clin Neurophysiol 115:1076–1082CrossRefPubMed
Zurück zum Zitat Parada A, Soares-da-Silva P (2002) The novel anticonvulsant BIA 2–093 inhibits transmitter release during opening of voltage-gated sodium channels: a comparison with carbazepine and oxcarbazepine. Neurochem Int 40:435–440 Parada A, Soares-da-Silva P (2002) The novel anticonvulsant BIA 2–093 inhibits transmitter release during opening of voltage-gated sodium channels: a comparison with carbazepine and oxcarbazepine. Neurochem Int 40:435–440
Zurück zum Zitat Reid AE, Chiappa KH, Cross D (2002) Motor threshold, facilitation and the silent period in cortical magnetic stimulation. In: Pascual-Leone A, Davey NJ, Rothwell J, Wassermann EM, Puri BK (eds) Handbook of transcranial magnetic stimulation. Arnold, London, pp 103–108 Reid AE, Chiappa KH, Cross D (2002) Motor threshold, facilitation and the silent period in cortical magnetic stimulation. In: Pascual-Leone A, Davey NJ, Rothwell J, Wassermann EM, Puri BK (eds) Handbook of transcranial magnetic stimulation. Arnold, London, pp 103–108
Zurück zum Zitat Schnitzler A, Benecke R (1994) The silent period after transcranial magnetic stimulation is of exclusive cortical origin: evidence from isolated cortical ischemic lesions in man. Neurosci Lett 180:41–45CrossRefPubMed Schnitzler A, Benecke R (1994) The silent period after transcranial magnetic stimulation is of exclusive cortical origin: evidence from isolated cortical ischemic lesions in man. Neurosci Lett 180:41–45CrossRefPubMed
Zurück zum Zitat Triggs WJ, Macdonell RA, Cros D, Chiappa KH, Shahani BT, Day BJ (1992) Motor inhibition and excitation are independent effects of magnetic cortical stimulation. Ann Neurol 32:345–351 Triggs WJ, Macdonell RA, Cros D, Chiappa KH, Shahani BT, Day BJ (1992) Motor inhibition and excitation are independent effects of magnetic cortical stimulation. Ann Neurol 32:345–351
Zurück zum Zitat Uncini A, Treviso M, Di Muzio A, Simone P, Pullman S (1993) Physiological basis of voluntary activity inhibition induced by transcranial magnetic stimulation. Electroencephalogr Clin Neurophysiol 89:211–220 Uncini A, Treviso M, Di Muzio A, Simone P, Pullman S (1993) Physiological basis of voluntary activity inhibition induced by transcranial magnetic stimulation. Electroencephalogr Clin Neurophysiol 89:211–220
Zurück zum Zitat Uozumi T, Ito Y, Tsuji S, Murai Y (1992) Inhibitory period following motor potentials evoked by magnetic cortical stimulation. Electroencephalogr Clin Neurophysiol 85:273–279 Uozumi T, Ito Y, Tsuji S, Murai Y (1992) Inhibitory period following motor potentials evoked by magnetic cortical stimulation. Electroencephalogr Clin Neurophysiol 85:273–279
Zurück zum Zitat Valls-Solle J, Pascual-Leone A, Brasil-Neto JP, Cammarota A, McShane L, Hallett M (1994) Abnormal facilitation of the response to transcranial magnetic stimulation in patients with Parkinson’s disease. Neurology 44:735–741 Valls-Solle J, Pascual-Leone A, Brasil-Neto JP, Cammarota A, McShane L, Hallett M (1994) Abnormal facilitation of the response to transcranial magnetic stimulation in patients with Parkinson’s disease. Neurology 44:735–741
Zurück zum Zitat Van der Kamp W, Zwinderman AH, Ferrari MD, van Dijk JG (1996) Cortical excitability and response variability of transcranial magnetic stimulation. J Clin Neurophysiol 13:164–171 Van der Kamp W, Zwinderman AH, Ferrari MD, van Dijk JG (1996) Cortical excitability and response variability of transcranial magnetic stimulation. J Clin Neurophysiol 13:164–171
Zurück zum Zitat Waldmeier PC, Baumann PA, Wicki P et al. (1995) Similar potency of carbamazepine, oxcarbazepine, and lamotrigine in inhibiting the release of glutamate and other neurotransmitters. Neurology 45:1907–1913 Waldmeier PC, Baumann PA, Wicki P et al. (1995) Similar potency of carbamazepine, oxcarbazepine, and lamotrigine in inhibiting the release of glutamate and other neurotransmitters. Neurology 45:1907–1913
Zurück zum Zitat Wassermann E, Pascual-Leone A, Valls-Sole J, Toro C, Cohen LG, Hallett M (1993) Topography of the inhibitory and excitatory responses to transcranial magnetic stimulation in a hand muscle. Electroencephalogr Clin Neurophysiol 89:424–433 Wassermann E, Pascual-Leone A, Valls-Sole J, Toro C, Cohen LG, Hallett M (1993) Topography of the inhibitory and excitatory responses to transcranial magnetic stimulation in a hand muscle. Electroencephalogr Clin Neurophysiol 89:424–433
Zurück zum Zitat Werhahn KJ, Kunesch E, Noachtar S, Benecke R, Classen J (1999) Differential effects on motorcortical inhibition induced by blockade of GABA uptake in humans. J Physiol 517:591–597PubMed Werhahn KJ, Kunesch E, Noachtar S, Benecke R, Classen J (1999) Differential effects on motorcortical inhibition induced by blockade of GABA uptake in humans. J Physiol 517:591–597PubMed
Zurück zum Zitat Wilson SA, Lockwood RJ, Thickbroom GW, Mastaglia FL (1993) The muscle silent period following transcranial magnetic cortical stimulation. J Neurol Sci 114:216–222 Wilson SA, Lockwood RJ, Thickbroom GW, Mastaglia FL (1993) The muscle silent period following transcranial magnetic cortical stimulation. J Neurol Sci 114:216–222
Zurück zum Zitat Ziemann U, Lonnecker S, Steinhoff BJ, Paulus W (1996) The effect of lorazepam on the motor cortical excitability in man. Exp Brain Res 109:127–135CrossRefPubMed Ziemann U, Lonnecker S, Steinhoff BJ, Paulus W (1996) The effect of lorazepam on the motor cortical excitability in man. Exp Brain Res 109:127–135CrossRefPubMed
Metadaten
Titel
Silent period to transcranial magnetic stimulation: construction and properties of stimulus–response curves in healthy volunteers
verfasst von
V. K. Kimiskidis
S. Papagiannopoulos
K. Sotirakoglou
D. A. Kazis
A. Kazis
K. R. Mills
Publikationsdatum
01.05.2005
Erschienen in
Experimental Brain Research / Ausgabe 1/2005
Print ISSN: 0014-4819
Elektronische ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-004-2134-4

Weitere Artikel der Ausgabe 1/2005

Experimental Brain Research 1/2005 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.