Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 2/2004

01.02.2004 | Original Article

Comparison of methodologies for the in vivo assessment of 18FLT utilisation in colorectal cancer

verfasst von: D. Visvikis, D. Francis, R. Mulligan, D. C. Costa, I. Croasdale, S. K. Luthra, I. Taylor, P. J. Ell

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 2/2004

Einloggen, um Zugang zu erhalten

Abstract

Fluorine-18 3′-deoxy-3′-fluorothymidine (18FLT) is a tissue proliferation marker which has been suggested as a new tumour-specific imaging tracer in positron emission tomography (PET). The objectives of this study were to investigate the pharmacokinetics of 18FLT in patients with colorectal cancer, defining methodologies for the quantitative analysis of the in vivo 18FLT uptake and subsequently assessing the accuracy of semi-quantitative measures. Dynamic acquisitions over a single field of view of interest identified by computed tomography were carried out for up to 60 min following injection of 18FLT (360±25 MBq). Dynamic arterial blood sampling was carried out in order to provide a blood input function. Simultaneous venous samples were also taken in order to investigate their potential utilisation in deriving a hybrid input function. Arterial and venous blood samples at 5, 15, 30, 60 and 90 min p.i. were used for metabolite analysis. Eleven patients with primary and/or metastatic colorectal cancer were studied on a lesion by lesion basis (n=21). All acquired images were reconstructed using ordered subsets expectation maximisation and segmented attenuation correction. Time-activity curves were derived by image region of interest (ROI) analysis and image-based input functions were obtained using abdominal or thoracic aorta ROIs. Standardised uptake values (SUVs) were calculated to provide semi-quantitative indices of uptake, while non-linear regression (NLR) methodology in association with a three-compartment model and Patlak analysis were carried out to derive the net influx constant K i . The metabolite analysis revealed two radioactive metabolites, with the parent compound representing ~80% of the total radioactivity in the 30-min plasma sample. In the case of NLR, better fits were obtained with a 3k model (i.e. k 4=0) for both lesion and bone marrow time-activity curves. For the same lesions, a high correlation was observed between the K i derived from either Patlak analysis or NLR(3k) and the corresponding SUVs. Our results also suggest that the quantitative behaviour of 18FLT in vivo (up to 60 min p.i.) may be characterised using a 3k model or Patlak analysis in combination with image-derived input functions. The good correlation found between the SUVs (at 60 min) and K i values supports the use of semi-quantitative indices to assess the proliferation rate of colorectal cancer lesions in vivo with 18FLT.
Literatur
1.
Zurück zum Zitat Bomanji JB, Costa DC, Ell PJ. Clinical role of positron emission tomography in oncology. Lancet Oncol 2001; 2:157–164.PubMed Bomanji JB, Costa DC, Ell PJ. Clinical role of positron emission tomography in oncology. Lancet Oncol 2001; 2:157–164.PubMed
2.
Zurück zum Zitat Gambhir SS, Czernin J, Schwimmer J, Silverman DHS, Coleman RE, Phelps ME. A tabulated summary of the FDG PET literature. J Nucl Med 2001; 42:1S–93S.PubMed Gambhir SS, Czernin J, Schwimmer J, Silverman DHS, Coleman RE, Phelps ME. A tabulated summary of the FDG PET literature. J Nucl Med 2001; 42:1S–93S.PubMed
3.
Zurück zum Zitat Parker SL, Tong T, Bolden S, Wingo PA. Cancer statistics, 1997. CA Cancer J Clin 1997; 47:5–27.PubMed Parker SL, Tong T, Bolden S, Wingo PA. Cancer statistics, 1997. CA Cancer J Clin 1997; 47:5–27.PubMed
4.
Zurück zum Zitat Galandiuk S, Wieland HS, Moertel CG, et al. Patterns of recurrence after curative resection of carcinoma of the colon and rectum. Surg Gynecol Obstet 1992; 174:27–32.PubMed Galandiuk S, Wieland HS, Moertel CG, et al. Patterns of recurrence after curative resection of carcinoma of the colon and rectum. Surg Gynecol Obstet 1992; 174:27–32.PubMed
5.
Zurück zum Zitat Thoeni RF. Colorectal cancer. Radiologic staging. Radiol Clin North Am 1997; 35:457–485. Thoeni RF. Colorectal cancer. Radiologic staging. Radiol Clin North Am 1997; 35:457–485.
6.
Zurück zum Zitat Ruers TJM, Langenhoff BS, Neeleman GJ, Jager GJ, Strijk S, Wobbes T, Corstens FHM, Oyen WJG. Value of positron emission tomography with [18F]fluorodeoxyglucose in patients with colorectal liver metastases: a prospective study. J Clin Oncol 2002; 20:388–395.PubMed Ruers TJM, Langenhoff BS, Neeleman GJ, Jager GJ, Strijk S, Wobbes T, Corstens FHM, Oyen WJG. Value of positron emission tomography with [18F]fluorodeoxyglucose in patients with colorectal liver metastases: a prospective study. J Clin Oncol 2002; 20:388–395.PubMed
7.
Zurück zum Zitat Zeally IA, Skehan SJ, Rawlinson J, Coates G, Nahmias C, Somers S. Selection of patients for resection of hepatic metastases: improved detection of extra-hepatic disease with FDG PET. Radiographics 2001; 21:S55–S69.PubMed Zeally IA, Skehan SJ, Rawlinson J, Coates G, Nahmias C, Somers S. Selection of patients for resection of hepatic metastases: improved detection of extra-hepatic disease with FDG PET. Radiographics 2001; 21:S55–S69.PubMed
8.
Zurück zum Zitat Arulampalam T, Costa DC, Visvikis D, Boulos P, Taylor I, Ell PJ. The impact of FDG-PET on the management algorithm for recurrent colorectal cancer. Eur J Nucl Med 2001; 28:1758–1765.PubMed Arulampalam T, Costa DC, Visvikis D, Boulos P, Taylor I, Ell PJ. The impact of FDG-PET on the management algorithm for recurrent colorectal cancer. Eur J Nucl Med 2001; 28:1758–1765.PubMed
9.
Zurück zum Zitat Swanson RS. Is an FDG-PET scan the new imaging standard for colon cancer? Ann Surg Oncol 2001; 8:752–753.PubMed Swanson RS. Is an FDG-PET scan the new imaging standard for colon cancer? Ann Surg Oncol 2001; 8:752–753.PubMed
10.
Zurück zum Zitat Kubota R, Yamada S, Kubota K, Ishiwata K, Tamahashi N, Ido T. Intratumoral distribution of18F-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. J Nucl Med 1992; 33:1972–1980.PubMed Kubota R, Yamada S, Kubota K, Ishiwata K, Tamahashi N, Ido T. Intratumoral distribution of18F-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. J Nucl Med 1992; 33:1972–1980.PubMed
11.
Zurück zum Zitat Bakheet SM, Powe J, Kandil A. F-18 FDG uptake in breast infection and inflammation. Clin Nucl Med 2000; 25:100–103.PubMed Bakheet SM, Powe J, Kandil A. F-18 FDG uptake in breast infection and inflammation. Clin Nucl Med 2000; 25:100–103.PubMed
12.
Zurück zum Zitat Shreve PD. Focal fluorine-18 fluorodeoxyglucose accumulation in inflammatory pancreatic disease. Eur J Nucl Med 1998; 25:259–264.PubMed Shreve PD. Focal fluorine-18 fluorodeoxyglucose accumulation in inflammatory pancreatic disease. Eur J Nucl Med 1998; 25:259–264.PubMed
13.
Zurück zum Zitat Shreve PD, Anzai Y, Wahl RL. Pitfalls in oncologic diagnosis with FDG PET imaging: physiologic and benign variants. Radiographics 1999; 19:61–77.PubMed Shreve PD, Anzai Y, Wahl RL. Pitfalls in oncologic diagnosis with FDG PET imaging: physiologic and benign variants. Radiographics 1999; 19:61–77.PubMed
14.
Zurück zum Zitat Shields AF, Mankoff DA, Link JM, Graham MW, Eary JF, Kozawa SM, Zheng M, Lewellen B, Lewellen TK, Grierson JR, Krohn KA. carbon-11-thymidine and FDG to measure therapy response. J Nucl Med 1998; 39:1757–1762.PubMed Shields AF, Mankoff DA, Link JM, Graham MW, Eary JF, Kozawa SM, Zheng M, Lewellen B, Lewellen TK, Grierson JR, Krohn KA. carbon-11-thymidine and FDG to measure therapy response. J Nucl Med 1998; 39:1757–1762.PubMed
15.
Zurück zum Zitat Kalff V, Hicks RJ, Ware RE, Hogg A, Binns D, McKenzie AF. The clinical impact of18F-FDG PET in patients with suspected or confirmed recurrence of colorectal cancer: a prospective study. J Nucl Med 2002; 43:492–499.PubMed Kalff V, Hicks RJ, Ware RE, Hogg A, Binns D, McKenzie AF. The clinical impact of18F-FDG PET in patients with suspected or confirmed recurrence of colorectal cancer: a prospective study. J Nucl Med 2002; 43:492–499.PubMed
16.
Zurück zum Zitat Huebner RH, Park KC, Shepherd JE, Schwimmer J, Czernin J, Phelps ME, Gambhir SS. A meta-analysis of the literature for whole body FDG PET detection of recurrent colorectal cancer. J Nucl Med 2000; 41:1177–1189.PubMed Huebner RH, Park KC, Shepherd JE, Schwimmer J, Czernin J, Phelps ME, Gambhir SS. A meta-analysis of the literature for whole body FDG PET detection of recurrent colorectal cancer. J Nucl Med 2000; 41:1177–1189.PubMed
17.
Zurück zum Zitat Sundoro-Wu BM, Schmall B, Conti PS, et al. Selective alkylation of pyrimidyl-dianons: synthesis and purification of11C labeled thymidine for tumor visualization using positron emission tomography. Appl Radiat Isot 1985; 35:705–708. Sundoro-Wu BM, Schmall B, Conti PS, et al. Selective alkylation of pyrimidyl-dianons: synthesis and purification of11C labeled thymidine for tumor visualization using positron emission tomography. Appl Radiat Isot 1985; 35:705–708.
18.
Zurück zum Zitat Vander Borght T, Labar D, Pauwels S, Lambotte L. Production of [2-11C]thymidine for quantification of cellular proliferation with PET. Appl Radiat Isot 1991; 42:103–104. Vander Borght T, Labar D, Pauwels S, Lambotte L. Production of [2-11C]thymidine for quantification of cellular proliferation with PET. Appl Radiat Isot 1991; 42:103–104.
19.
Zurück zum Zitat Grierson JR, Shields AF. Radiosynthesis of 3′-deoxy-3′-[18F]fluorothymidine: [18F]FLT for imaging of cellular proliferation in vivo. Nucl Med Biol 2000; 27:143–156.CrossRefPubMed Grierson JR, Shields AF. Radiosynthesis of 3′-deoxy-3′-[18F]fluorothymidine: [18F]FLT for imaging of cellular proliferation in vivo. Nucl Med Biol 2000; 27:143–156.CrossRefPubMed
20.
Zurück zum Zitat Machulla HJ, Blocker A, Kuntzsch M, Piert M, Wie R, Grierson JR. Simplified labeling approach for synthesizing 3′-deoxy-3′-[18F]fluorothymidine ([18F]FLT). J Radioanal Nucl Chem 2000; 243:843–846.CrossRef Machulla HJ, Blocker A, Kuntzsch M, Piert M, Wie R, Grierson JR. Simplified labeling approach for synthesizing 3′-deoxy-3′-[18F]fluorothymidine ([18F]FLT). J Radioanal Nucl Chem 2000; 243:843–846.CrossRef
21.
Zurück zum Zitat Martin SJ, Eisenbarth JA, Wagner-Utermann U, Mier W, Haberkorn U, Eisenhut M. [18F]FLT: 18F labeling of 3-Boc-1-(2-deoxy-3-O-nosyl-5-O-trityl-β-d-lyxofuranosyl)thymine and other thymine derivatives. J Nucl Med 2000; 41:255P. Martin SJ, Eisenbarth JA, Wagner-Utermann U, Mier W, Haberkorn U, Eisenhut M. [18F]FLT: 18F labeling of 3-Boc-1-(2-deoxy-3-O-nosyl-5-O-trityl-β-d-lyxofuranosyl)thymine and other thymine derivatives. J Nucl Med 2000; 41:255P.
22.
Zurück zum Zitat Hengstschlager M, Knofler M, Mullner EW, Ogris E, Wintersberger E, Wawra E. Different regulation of thymidine kinase during the cell cycle of normal versus DNA tumor virus-transformed cells. J Biol Chem 1994; 269:13836–13942.PubMed Hengstschlager M, Knofler M, Mullner EW, Ogris E, Wintersberger E, Wawra E. Different regulation of thymidine kinase during the cell cycle of normal versus DNA tumor virus-transformed cells. J Biol Chem 1994; 269:13836–13942.PubMed
23.
Zurück zum Zitat Toyohara J, Waki A, Takamatsu S, Yonekura Y, Magata Y, Fujibayashi Y. Basis of FLT as a cell proliferation marker: comparative uptake studies with [3H]thymidine and [3H]arabinothymidine, and cell analysis in 22 asynchronously growing tumor cell lines. Nucl Med Biol 2002; 29:281–287.PubMed Toyohara J, Waki A, Takamatsu S, Yonekura Y, Magata Y, Fujibayashi Y. Basis of FLT as a cell proliferation marker: comparative uptake studies with [3H]thymidine and [3H]arabinothymidine, and cell analysis in 22 asynchronously growing tumor cell lines. Nucl Med Biol 2002; 29:281–287.PubMed
24.
Zurück zum Zitat Shields AF, Dohmen BM, Mangner TJ, Lawhorn-Crews JM, Machulla H, Muzik O, Bares R. Imaging of thoracic tumors with18FLT. J Nucl Med 2000; 41:74P. Shields AF, Dohmen BM, Mangner TJ, Lawhorn-Crews JM, Machulla H, Muzik O, Bares R. Imaging of thoracic tumors with18FLT. J Nucl Med 2000; 41:74P.
25.
Zurück zum Zitat Buck AK, Schirrmeister H, Hetzel M, von der Heide M, Halter G, Glatting G, Mattfeldt T, Liewald F, Reske SN, Neumaier B. 3-Deoxy-3-[18F]fluorothymidine-positron emission tomography for noninvasive assessment of proliferation in pulmonary nodules. Cancer Res 2002; 62:3331–3334.PubMed Buck AK, Schirrmeister H, Hetzel M, von der Heide M, Halter G, Glatting G, Mattfeldt T, Liewald F, Reske SN, Neumaier B. 3-Deoxy-3-[18F]fluorothymidine-positron emission tomography for noninvasive assessment of proliferation in pulmonary nodules. Cancer Res 2002; 62:3331–3334.PubMed
26.
Zurück zum Zitat Shields AF, Grierson JR, Muzik O, Stayanoff JC, Lawhorn JM, Obradovich JE, Mangner TJ. Kinetics of 3-deoxy-3-[18F]fluorothymidine uptake and retention in dogs. Mol Imag Biol 2002; 4:83–89.CrossRef Shields AF, Grierson JR, Muzik O, Stayanoff JC, Lawhorn JM, Obradovich JE, Mangner TJ. Kinetics of 3-deoxy-3-[18F]fluorothymidine uptake and retention in dogs. Mol Imag Biol 2002; 4:83–89.CrossRef
27.
Zurück zum Zitat Visvikis D, Cheze-LeRest C, Costa DC, Bomanji J, Gacinovic S, Ell PJ. Influence of OSEM and segmented attenuation correction in the calculation of standardised uptake values for18FDG PET. Eur J Nucl Med 2001; 28:1326–1335.PubMed Visvikis D, Cheze-LeRest C, Costa DC, Bomanji J, Gacinovic S, Ell PJ. Influence of OSEM and segmented attenuation correction in the calculation of standardised uptake values for18FDG PET. Eur J Nucl Med 2001; 28:1326–1335.PubMed
28.
Zurück zum Zitat Bettinardi V, Pagani E, Gilardi MC, Landoni C, Riddell C, Rizzo G, Castiglioni I, Belluzzo D, Lucignani G, Schubert S, Fazio F. An automatic classification technique for attenuation correction in positron emission tomography. Eur J Nucl Med 1999; 26:447–458.PubMed Bettinardi V, Pagani E, Gilardi MC, Landoni C, Riddell C, Rizzo G, Castiglioni I, Belluzzo D, Lucignani G, Schubert S, Fazio F. An automatic classification technique for attenuation correction in positron emission tomography. Eur J Nucl Med 1999; 26:447–458.PubMed
29.
Zurück zum Zitat DeGrado T, Turkington T, Williams J, Stearns C, Hoffman J. Performance characteristics of a whole body PET scanner. J Nucl Med 1994; 35:1398–1406.PubMed DeGrado T, Turkington T, Williams J, Stearns C, Hoffman J. Performance characteristics of a whole body PET scanner. J Nucl Med 1994; 35:1398–1406.PubMed
30.
Zurück zum Zitat Cleij MC, Steel CJ, Brady F, Ell PJ, Pike VW, Luthra SK. An improved synthesis of 3-deoxy-3-[18F]fluorothymidine. J Lab Comp Radiopharm 2001; 44. Cleij MC, Steel CJ, Brady F, Ell PJ, Pike VW, Luthra SK. An improved synthesis of 3-deoxy-3-[18F]fluorothymidine. J Lab Comp Radiopharm 2001; 44.
31.
Zurück zum Zitat Lodge MA, Lucas JD, Marsden PK, Cronin BF, O’Doherty MJ, Smith MA. A PET study of18FDG uptake in soft tissue masses. Eur J Nucl Med 1999; 26:22–30.CrossRefPubMed Lodge MA, Lucas JD, Marsden PK, Cronin BF, O’Doherty MJ, Smith MA. A PET study of18FDG uptake in soft tissue masses. Eur J Nucl Med 1999; 26:22–30.CrossRefPubMed
32.
Zurück zum Zitat Eary JF, Mankoff DA. Tumor metabolic rates in sarcoma using FDG PET. J Nucl Med 1998; 39:250–254.PubMed Eary JF, Mankoff DA. Tumor metabolic rates in sarcoma using FDG PET. J Nucl Med 1998; 39:250–254.PubMed
33.
Zurück zum Zitat Ohtake T, Kosaka N, Watanabe T, Yokohama I, Moritan T, Masuo M, Iizuka M, Kozeni K, Momose T, Oku S, Nishikawa J, Sasaki Y, Iio M. Noninvasive method to obtain input function for measuring tissue glucose utilization of thoracic and abdominal organs. J Nucl Med 1991; 32:1432–1438.PubMed Ohtake T, Kosaka N, Watanabe T, Yokohama I, Moritan T, Masuo M, Iizuka M, Kozeni K, Momose T, Oku S, Nishikawa J, Sasaki Y, Iio M. Noninvasive method to obtain input function for measuring tissue glucose utilization of thoracic and abdominal organs. J Nucl Med 1991; 32:1432–1438.PubMed
34.
Zurück zum Zitat Germano G, Chen BC, Huang SC, Gambhir SS, Hoffman EJ, Phelps ME. Use of the abdominal aorta for arterial input function determination in hepatic and renal PET studies. J Nucl Med 1992; 33:613–620.PubMed Germano G, Chen BC, Huang SC, Gambhir SS, Hoffman EJ, Phelps ME. Use of the abdominal aorta for arterial input function determination in hepatic and renal PET studies. J Nucl Med 1992; 33:613–620.PubMed
35.
Zurück zum Zitat van der Weerdt AP, Klein LJ, Boellaard R, Visser CA, Visser FC, Lammertsma AA. Image-derived input functions for determination of MRGlu in cardiac18F-FDG PET scans. J Nucl Med 2001; 42:1622–1629.PubMed van der Weerdt AP, Klein LJ, Boellaard R, Visser CA, Visser FC, Lammertsma AA. Image-derived input functions for determination of MRGlu in cardiac18F-FDG PET scans. J Nucl Med 2001; 42:1622–1629.PubMed
36.
Zurück zum Zitat Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple time uptake data. J Cereb Blood Flow Metab 1983; 3:1–7.PubMed Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple time uptake data. J Cereb Blood Flow Metab 1983; 3:1–7.PubMed
37.
Zurück zum Zitat Patlak CS, Blasberg RG. Graphical evaluation of blood-to-brain transfer constants from multiple time uptake data: generalizations. J Cereb Blood Flow Metab 1985; 5:584–590.PubMed Patlak CS, Blasberg RG. Graphical evaluation of blood-to-brain transfer constants from multiple time uptake data: generalizations. J Cereb Blood Flow Metab 1985; 5:584–590.PubMed
38.
Zurück zum Zitat Hoekstra CJ, Paglianiti I, Hoekstra OS, Smit EF, Postmus PE, Teule GJJ, Lammertsma AA. Monitoring response to therapy in cancer using18F-2-fluoro-2-deoxy-d-glucose and positron emission tomography: an overview of different analytical methods. Eur J Nucl Med 2000; 27:731–743.CrossRefPubMed Hoekstra CJ, Paglianiti I, Hoekstra OS, Smit EF, Postmus PE, Teule GJJ, Lammertsma AA. Monitoring response to therapy in cancer using18F-2-fluoro-2-deoxy-d-glucose and positron emission tomography: an overview of different analytical methods. Eur J Nucl Med 2000; 27:731–743.CrossRefPubMed
39.
Zurück zum Zitat Phelps ME, Mazziotta JC, Schelbert HR. Positron emission tomography and autoradiography (principles and applications for the brain and heart). New York: Raven, 1986. Phelps ME, Mazziotta JC, Schelbert HR. Positron emission tomography and autoradiography (principles and applications for the brain and heart). New York: Raven, 1986.
40.
Zurück zum Zitat Akaike H. A new look at the statistical identification. IEEE Trans Autom Contr 1978; 19:716–723. Akaike H. A new look at the statistical identification. IEEE Trans Autom Contr 1978; 19:716–723.
41.
Zurück zum Zitat Schwarz G. Estimating the dimension of a model. Ann Stat 1978; 6:461–464. Schwarz G. Estimating the dimension of a model. Ann Stat 1978; 6:461–464.
42.
Zurück zum Zitat Shields AF, Dohmen BM, Mangner TJ, Kuntzsch M, Bares R, Stayanoff J, Muzik O, Machulla HJ. Metabolism of18FLT in patients. J Nucl Med 2000; 41:36P. Shields AF, Dohmen BM, Mangner TJ, Kuntzsch M, Bares R, Stayanoff J, Muzik O, Machulla HJ. Metabolism of18FLT in patients. J Nucl Med 2000; 41:36P.
43.
Zurück zum Zitat Francis DF, Visvikis D, Costa DC, Arulampalam T, Townsend C, Luthra SK, Taylor I, Ell PJ. Potential impact of18F-FLT versus 18F-FDG in positron emission tomography for colorectal cancer. Eur J Nucl Med Mol Imaging 2003; 30:988–994.PubMed Francis DF, Visvikis D, Costa DC, Arulampalam T, Townsend C, Luthra SK, Taylor I, Ell PJ. Potential impact of18F-FLT versus 18F-FDG in positron emission tomography for colorectal cancer. Eur J Nucl Med Mol Imaging 2003; 30:988–994.PubMed
Metadaten
Titel
Comparison of methodologies for the in vivo assessment of 18FLT utilisation in colorectal cancer
verfasst von
D. Visvikis
D. Francis
R. Mulligan
D. C. Costa
I. Croasdale
S. K. Luthra
I. Taylor
P. J. Ell
Publikationsdatum
01.02.2004
Verlag
Springer-Verlag
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 2/2004
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-003-1339-2

Weitere Artikel der Ausgabe 2/2004

European Journal of Nuclear Medicine and Molecular Imaging 2/2004 Zur Ausgabe