Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 8/2004

01.08.2004 | Original Article

MicroPET imaging of brain tumor angiogenesis with 18F-labeled PEGylated RGD peptide

verfasst von: Xiaoyuan Chen, Ryan Park, Yingping Hou, Vazgen Khankaldyyan, Ignacio Gonzales-Gomez, Michel Tohme, James R. Bading, Walter E. Laug, Peter S. Conti

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 8/2004

Einloggen, um Zugang zu erhalten

Abstract

We have previously labeled cyclic RGD peptide c(RGDyK) with fluorine-18 through conjugation labeling via a prosthetic 4-[18F]fluorobenzoyl moiety and applied this [18F]FB-RGD radiotracer for αv-integrin expression imaging in different preclinical tumor models with good tumor-to-background contrast. However, the unfavorable hepatobiliary excretion and rapid tumor washout rate of this tracer limit its potential clinical applications. The aims of this study were to modify the [18F]FB-RGD tracer by inserting a heterobifunctional poly(ethylene glycol) (PEG, M.W. =3,400) between the 18F radiolabel and the RGD moiety and to test this [18F]FB-PEG-RGD tracer for brain tumor targeting and in vivo kinetics. [18F]FB-PEG-RGD was prepared by coupling the RGD-PEG conjugate with N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB) under slightly basic conditions (pH=8.5). The radiochemical yield was about 20–30% based on the active ester [18F]SFB, and specific activity was over 100 GBq/μmol. This tracer had fast blood clearance, rapid and high tumor uptake in the subcutaneous U87MG glioblastoma model (5.2±0.5%ID/g at 30 min p.i.). Moderately rapid tumor washout was observed, with the activity accumulation decreased to 2.2±0.4%ID/g at 4 h p.i. MicroPET and autoradiography imaging showed a very high tumor-to-background ratio and limited activity accumulation in the liver, kidneys and intestinal tracts. U87MG tumor implanted into the mouse forebrain was well visualized with [18F]FB-PEG-RGD. Although uptake in the orthotopic tumor was significantly lower (P<0.01) than in the subcutaneous tumor, the maximum tumor-to-brain ratio still reached 5.0±0.6 due to low normal brain background. The results of H&E staining post mortem agreed with the anatomical information obtained from non-invasive microPET imaging. In conclusion, PEGylation suitably modifies the physiological behavior of the RGD peptide. [18F]FB-PEG-RGD gave improved tumor retention and in vivo kinetics compared with [18F]FB-RGD.
Literatur
1.
Zurück zum Zitat Aldape KD, Okcu MF, Bondy ML, Wrensch M. Molecular epidemiology of glioblastoma. Cancer J 2003; 9:99–106.PubMed Aldape KD, Okcu MF, Bondy ML, Wrensch M. Molecular epidemiology of glioblastoma. Cancer J 2003; 9:99–106.PubMed
2.
Zurück zum Zitat Castro MG, Cowen R, Williamson IK, David A, Jimenez-Dalmaroni MJ, Yuan X, Bigliari A, Williams JC, Hu J, Lowenstein PR. Current and future strategies for the treatment of malignant brain tumors. Pharmacol Ther 2003; 98:71–108.CrossRefPubMed Castro MG, Cowen R, Williamson IK, David A, Jimenez-Dalmaroni MJ, Yuan X, Bigliari A, Williams JC, Hu J, Lowenstein PR. Current and future strategies for the treatment of malignant brain tumors. Pharmacol Ther 2003; 98:71–108.CrossRefPubMed
3.
Zurück zum Zitat Armstrong TS, Gilbert MR. Glial tumors—new approaches in chemotherapy. J Neurosci Nurs 2002; 34:326–330.PubMed Armstrong TS, Gilbert MR. Glial tumors—new approaches in chemotherapy. J Neurosci Nurs 2002; 34:326–330.PubMed
4.
Zurück zum Zitat Wong TZ, van der Westhuizen GJ, Coleman RE. Positron emission tomography imaging of brain tumors. Neuroimaging Clin Am 2002; 12:615–626. Wong TZ, van der Westhuizen GJ, Coleman RE. Positron emission tomography imaging of brain tumors. Neuroimaging Clin Am 2002; 12:615–626.
5.
Zurück zum Zitat Shields AF, Grierson JR, Dohmen BM, Machulla HJ, Stayanoff JC, Lawhorn-Crews JM, Obradovich JE, Muzik O, Mangner TJ. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med 1998; 4:1334–1336.CrossRefPubMed Shields AF, Grierson JR, Dohmen BM, Machulla HJ, Stayanoff JC, Lawhorn-Crews JM, Obradovich JE, Muzik O, Mangner TJ. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med 1998; 4:1334–1336.CrossRefPubMed
6.
Zurück zum Zitat Conti PS, Alauddin MM, Fissekis JR, Schmall B, Watanabe KA. Synthesis of 2’-fluoro-5-[11C]-methyl-1-β-d-arabinofuranosyluracil ([11C]-FMAU): a potential nucleoside analog for in vivo study of cellular proliferation with PET. Nucl Med Biol 1995; 22:783–789.PubMed Conti PS, Alauddin MM, Fissekis JR, Schmall B, Watanabe KA. Synthesis of 2’-fluoro-5-[11C]-methyl-1-β-d-arabinofuranosyluracil ([11C]-FMAU): a potential nucleoside analog for in vivo study of cellular proliferation with PET. Nucl Med Biol 1995; 22:783–789.PubMed
7.
Zurück zum Zitat Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin Oncol 2002; 29:15–18. Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin Oncol 2002; 29:15–18.
8.
Zurück zum Zitat Longo R, Sarmiento R, Fanelli M, Capaccetti B, Gattuso D, Gasparini G. Anti-angiogenic therapy: rationale, challenges and clinical studies. Angiogenesis 2003; 5:237–256.CrossRef Longo R, Sarmiento R, Fanelli M, Capaccetti B, Gattuso D, Gasparini G. Anti-angiogenic therapy: rationale, challenges and clinical studies. Angiogenesis 2003; 5:237–256.CrossRef
10.
Zurück zum Zitat Fisher MJ, Adamson PC. Anti-angiogenic agents for the treatment of brain tumors. Neuroimaging Clin Am 2002; 12:477–499. Fisher MJ, Adamson PC. Anti-angiogenic agents for the treatment of brain tumors. Neuroimaging Clin Am 2002; 12:477–499.
11.
Zurück zum Zitat Mischel PS, Cloughesy TF. Targeted molecular therapy of GBM. Brain Pathol 2003; 13:52–61.PubMed Mischel PS, Cloughesy TF. Targeted molecular therapy of GBM. Brain Pathol 2003; 13:52–61.PubMed
12.
Zurück zum Zitat Mikkelsen T. Cytostatic agents in the management of malignant gliomas. Cancer Control 1998; 5:150–162.PubMed Mikkelsen T. Cytostatic agents in the management of malignant gliomas. Cancer Control 1998; 5:150–162.PubMed
13.
Zurück zum Zitat Taga T, Suzuki A, Gonzalez-Gomez I, Gilles FH, Stins M, Shimada H, Barsky L, Weinberg KI, Laug WE. αv-Integrin antagonist EMD 121974 induces apoptosis in brain tumor cells growing on vitronectin and tenascin. Int J Cancer 2002; 98:690–697.CrossRefPubMed Taga T, Suzuki A, Gonzalez-Gomez I, Gilles FH, Stins M, Shimada H, Barsky L, Weinberg KI, Laug WE. αv-Integrin antagonist EMD 121974 induces apoptosis in brain tumor cells growing on vitronectin and tenascin. Int J Cancer 2002; 98:690–697.CrossRefPubMed
14.
Zurück zum Zitat MacDonald TJ, Taga T, Shimada H, Tabrizi P, Zlokovic BV, Cheresh DA, Laug WE. Preferential susceptibility of brain tumors to the antiangiogenic effects of an αv-integrin antagonist. Neurosurgery 2001; 48:151–157.PubMed MacDonald TJ, Taga T, Shimada H, Tabrizi P, Zlokovic BV, Cheresh DA, Laug WE. Preferential susceptibility of brain tumors to the antiangiogenic effects of an αv-integrin antagonist. Neurosurgery 2001; 48:151–157.PubMed
15.
Zurück zum Zitat Sipkins DA, Cheresh DA, Kazemi MR, Nevin LM, Bednarski MD, Li KC. Detection of tumor angiogenesis in vivo by αvβ3-targeted magnetic resonance imaging. Nat Med 1998; 4:623–626.PubMed Sipkins DA, Cheresh DA, Kazemi MR, Nevin LM, Bednarski MD, Li KC. Detection of tumor angiogenesis in vivo by αvβ3-targeted magnetic resonance imaging. Nat Med 1998; 4:623–626.PubMed
16.
Zurück zum Zitat Haubner R, Wester HJ, Reuning U, Senekowitsch-Schmidtke R, Diefenbach B, Kessler H, Stocklin G, Schwaiger M. Radiolabeled αvβ3 integrin antagonists: a new class of tracers for tumor targeting. J Nucl Med 1999; 40:1061–1071. Haubner R, Wester HJ, Reuning U, Senekowitsch-Schmidtke R, Diefenbach B, Kessler H, Stocklin G, Schwaiger M. Radiolabeled αvβ3 integrin antagonists: a new class of tracers for tumor targeting. J Nucl Med 1999; 40:1061–1071.
17.
Zurück zum Zitat Haubner R, Wester HJ, Burkhart F, Senekowitsch-Schmidtke R, Weber W, Goodman SL, Kessler H, Schwaiger M. Glycosylated RGD-containing peptides: tracer for tumor targeting and angiogenesis imaging with improved biokinetics. J Nucl Med 2001; 42:326–336.PubMed Haubner R, Wester HJ, Burkhart F, Senekowitsch-Schmidtke R, Weber W, Goodman SL, Kessler H, Schwaiger M. Glycosylated RGD-containing peptides: tracer for tumor targeting and angiogenesis imaging with improved biokinetics. J Nucl Med 2001; 42:326–336.PubMed
18.
Zurück zum Zitat Haubner R, Wester HJ, Weber WA, Mang C, Ziegler SI, Goodman SL, Senekowitsch-Schmidtke R, Kessler H, Schwaiger M. Noninvasive imaging of αvβ3 integrin expression using18F-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Res 2001; 61:1781–1785.PubMed Haubner R, Wester HJ, Weber WA, Mang C, Ziegler SI, Goodman SL, Senekowitsch-Schmidtke R, Kessler H, Schwaiger M. Noninvasive imaging of αvβ3 integrin expression using18F-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Res 2001; 61:1781–1785.PubMed
19.
Zurück zum Zitat Ogawa M, Hatano K, Oishi S, Kawasumi Y, Fujii N, Kawaguchi M, Doi R, Imamura M, Yamamoto M, Ajito K, Mukai T, Saji H, Ito K. Direct electrophilic radiofluorination of a cyclic RGD peptide for in vivo αvβ3 integrin related tumor imaging. Nucl Med Biol 2003; 30:1–9. Ogawa M, Hatano K, Oishi S, Kawasumi Y, Fujii N, Kawaguchi M, Doi R, Imamura M, Yamamoto M, Ajito K, Mukai T, Saji H, Ito K. Direct electrophilic radiofluorination of a cyclic RGD peptide for in vivo αvβ3 integrin related tumor imaging. Nucl Med Biol 2003; 30:1–9.
20.
Zurück zum Zitat Janssen M, Oyen WJ, Massuger LF, Frielink C, Dijkgraaf I, Edwards DS, Radjopadhye M, Corstens FH, Boerman OC. Comparison of a monomeric and dimeric radiolabeled RGD-peptide for tumor targeting. Cancer Biother Radiopharm 2002; 17:641–646.CrossRefPubMed Janssen M, Oyen WJ, Massuger LF, Frielink C, Dijkgraaf I, Edwards DS, Radjopadhye M, Corstens FH, Boerman OC. Comparison of a monomeric and dimeric radiolabeled RGD-peptide for tumor targeting. Cancer Biother Radiopharm 2002; 17:641–646.CrossRefPubMed
21.
Zurück zum Zitat Janssen ML, Oyen WJ, Dijkgraaf I, Massuger LF, Frielink C, Edwards DS, Rajopadhye M, Boonstra H, Corstens FH, Boerman OC. Tumor targeting with radiolabeled αvβ3 integrin binding peptides in a nude mouse model. Cancer Res 2002; 62:6146–6151.PubMed Janssen ML, Oyen WJ, Dijkgraaf I, Massuger LF, Frielink C, Edwards DS, Rajopadhye M, Boonstra H, Corstens FH, Boerman OC. Tumor targeting with radiolabeled αvβ3 integrin binding peptides in a nude mouse model. Cancer Res 2002; 62:6146–6151.PubMed
22.
Zurück zum Zitat Van Hagen PM, Breeman WA, Bernard HF, Schaar M, Mooij CM, Srinivasan A, Schmidt MA, Krenning EP, de Jong M. Evaluation of a radiolabelled cyclic DTPA-RGD analogue for tumour imaging and radionuclide therapy. Int J Cancer 2000; 90:186–198.PubMed Van Hagen PM, Breeman WA, Bernard HF, Schaar M, Mooij CM, Srinivasan A, Schmidt MA, Krenning EP, de Jong M. Evaluation of a radiolabelled cyclic DTPA-RGD analogue for tumour imaging and radionuclide therapy. Int J Cancer 2000; 90:186–198.PubMed
23.
Zurück zum Zitat Su ZF, Liu G, Gupta S, Zhu Z, Rusckowski M, Hnatowich DJ. In vitro and in vivo evaluation of a technetium-99m-labeled cyclic RGD peptide as a specific marker of αvβ3 integrin for tumor imaging. Bioconjug Chem 2002; 13:561–570.CrossRefPubMed Su ZF, Liu G, Gupta S, Zhu Z, Rusckowski M, Hnatowich DJ. In vitro and in vivo evaluation of a technetium-99m-labeled cyclic RGD peptide as a specific marker of αvβ3 integrin for tumor imaging. Bioconjug Chem 2002; 13:561–570.CrossRefPubMed
24.
Zurück zum Zitat Chen X, Park R, Shahinian AH, Tohme M, Khankaldyyan V, Bozorgzadeh MH, Bading JR, Moats R, Laug WE, Conti PS.18F-labeled RGD peptide: initial evaluation for imaging brain tumor angiogenesis. Nucl Med Biol 2004; 31:179–189 Chen X, Park R, Shahinian AH, Tohme M, Khankaldyyan V, Bozorgzadeh MH, Bading JR, Moats R, Laug WE, Conti PS.18F-labeled RGD peptide: initial evaluation for imaging brain tumor angiogenesis. Nucl Med Biol 2004; 31:179–189
25.
Zurück zum Zitat Chen X, Park R, Shahinian AH, Bading JR, Conti PS. Pharmacokinetics and tumor retention of125I-labeled RGD peptide are improved by PEGylation. Nucl Med Biol 2004; 31:11–19.CrossRef Chen X, Park R, Shahinian AH, Bading JR, Conti PS. Pharmacokinetics and tumor retention of125I-labeled RGD peptide are improved by PEGylation. Nucl Med Biol 2004; 31:11–19.CrossRef
26.
Zurück zum Zitat Harris JM, Chess RB. Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov 2003; 2:214–221. Harris JM, Chess RB. Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov 2003; 2:214–221.
27.
Zurück zum Zitat Harris JM, Martin NE, Modi M. Pegylation: a novel process for modifying pharmacokinetics. Clin Pharmacokinet 2001; 40:539–551.PubMed Harris JM, Martin NE, Modi M. Pegylation: a novel process for modifying pharmacokinetics. Clin Pharmacokinet 2001; 40:539–551.PubMed
28.
Zurück zum Zitat Roberts MJ, Bentley MD, Harris JM. Chemistry for peptide and protein PEGylation. Adv Drug Deliv Rev 2002; 54:459–476.CrossRefPubMed Roberts MJ, Bentley MD, Harris JM. Chemistry for peptide and protein PEGylation. Adv Drug Deliv Rev 2002; 54:459–476.CrossRefPubMed
29.
Zurück zum Zitat Wester HJ, Hamacher K, Stocklin G. A comparative study of N.C.A. fluorine-18 labeling of proteins via acylation and photochemical conjugation. Nucl Med Biol 1996; 23:365–372.CrossRefPubMed Wester HJ, Hamacher K, Stocklin G. A comparative study of N.C.A. fluorine-18 labeling of proteins via acylation and photochemical conjugation. Nucl Med Biol 1996; 23:365–372.CrossRefPubMed
30.
Zurück zum Zitat Kilbourn MR, Dence CS, Welch MJ, Mathias CJ. Fluorine-18 labeling of proteins. J Nucl Med 1987; 28:462–470.PubMed Kilbourn MR, Dence CS, Welch MJ, Mathias CJ. Fluorine-18 labeling of proteins. J Nucl Med 1987; 28:462–470.PubMed
31.
Zurück zum Zitat Lang L, Eckelman WC. Labeling proteins at high specific activity using N-succinimidyl 4-[18F](fluoromethyl) benzoate. Appl Radiat Isot 1997; 48:169–173.CrossRefPubMed Lang L, Eckelman WC. Labeling proteins at high specific activity using N-succinimidyl 4-[18F](fluoromethyl) benzoate. Appl Radiat Isot 1997; 48:169–173.CrossRefPubMed
32.
Zurück zum Zitat Bailon P, Berthold W. Polyethylene glycol-conjugated pharmaceutical proteins. Pharm Sci Technol Today 1998; 1:353–356. Bailon P, Berthold W. Polyethylene glycol-conjugated pharmaceutical proteins. Pharm Sci Technol Today 1998; 1:353–356.
33.
Zurück zum Zitat Delgado C, Francis GE, Fisher D. The uses and properties of PEG-linked proteins. Crit Rev Ther Drug Carrier Syst 1992; 9:249–304. Delgado C, Francis GE, Fisher D. The uses and properties of PEG-linked proteins. Crit Rev Ther Drug Carrier Syst 1992; 9:249–304.
34.
Zurück zum Zitat Brenner B, Rector F Jr. Brenner and Rector’s: the kidney, 5th edn. Philadelphia: Saunders, 1996. Brenner B, Rector F Jr. Brenner and Rector’s: the kidney, 5th edn. Philadelphia: Saunders, 1996.
35.
Zurück zum Zitat Ruoslahti E, Pierschbacher MD. New perspectives in cell adhesion: RGD and integrins. Science 1987; 238:491–497.PubMed Ruoslahti E, Pierschbacher MD. New perspectives in cell adhesion: RGD and integrins. Science 1987; 238:491–497.PubMed
36.
Zurück zum Zitat Dechantsreiter MA, Planker E, Mathae B, Lohof E, Hoelzemann G, Jonczyk A, Goodman SL, Kessler H. N-methylated cyclic RGD peptide as highly active and selective αvβ3 integrin antagonists. J Med Chem 1999; 42:3033–3040.CrossRefPubMed Dechantsreiter MA, Planker E, Mathae B, Lohof E, Hoelzemann G, Jonczyk A, Goodman SL, Kessler H. N-methylated cyclic RGD peptide as highly active and selective αvβ3 integrin antagonists. J Med Chem 1999; 42:3033–3040.CrossRefPubMed
Metadaten
Titel
MicroPET imaging of brain tumor angiogenesis with 18F-labeled PEGylated RGD peptide
verfasst von
Xiaoyuan Chen
Ryan Park
Yingping Hou
Vazgen Khankaldyyan
Ignacio Gonzales-Gomez
Michel Tohme
James R. Bading
Walter E. Laug
Peter S. Conti
Publikationsdatum
01.08.2004
Verlag
Springer-Verlag
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 8/2004
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-003-1452-2

Weitere Artikel der Ausgabe 8/2004

European Journal of Nuclear Medicine and Molecular Imaging 8/2004 Zur Ausgabe