Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 8/2004

01.08.2004 | Original Article

A new reconstruction strategy for image improvement in pinhole SPECT

verfasst von: Tsutomu Zeniya, Hiroshi Watabe, Toshiyuki Aoi, Kyeong Min Kim, Noboru Teramoto, Takuya Hayashi, Antti Sohlberg, Hiroyuki Kudo, Hidehiro Iida

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 8/2004

Einloggen, um Zugang zu erhalten

Abstract

Pinhole single-photon emission computed tomography (SPECT) is able to provide information on the biodistribution of several radioligands in small laboratory animals, but has limitations associated with non-uniform spatial resolution or axial blurring. We have hypothesised that this blurring is due to incompleteness of the projection data acquired by a single circular pinhole orbit, and have evaluated a new strategy for accurate image reconstruction with better spatial resolution uniformity. A pinhole SPECT system using two circular orbits and a dedicated three-dimensional ordered subsets expectation maximisation (3D-OSEM) reconstruction method were developed. In this system, not the camera but the object rotates, and the two orbits are at 90° and 45° relative to the object’s axis. This system satisfies Tuy’s condition, and is thus able to provide complete data for 3D pinhole SPECT reconstruction within the whole field of view (FOV). To evaluate this system, a series of experiments was carried out using a multiple-disk phantom filled with 99mTc solution. The feasibility of the proposed method for small animal imaging was tested with a mouse bone study using 99mTc-hydroxymethylene diphosphonate. Feldkamp’s filtered back-projection (FBP) method and the 3D-OSEM method were applied to these data sets, and the visual and statistical properties were examined. Axial blurring, which was still visible at the edge of the FOV even after applying the conventional 3D-OSEM instead of FBP for single-orbit data, was not visible after application of 3D-OSEM using two-orbit data. 3D-OSEM using two-orbit data dramatically reduced the resolution non-uniformity and statistical noise, and also demonstrated considerably better image quality in the mouse scan. This system may be of use in quantitative assessment of bio-physiological functions in small animals.
Literatur
1.
Zurück zum Zitat Meikle SR, Eberl S, Iida H. Instrumentation and methodology for quantitative pre-clinical imaging studies. Curr Pharm Des 2001; 7:1945–1966.PubMed Meikle SR, Eberl S, Iida H. Instrumentation and methodology for quantitative pre-clinical imaging studies. Curr Pharm Des 2001; 7:1945–1966.PubMed
2.
Zurück zum Zitat Scherfler C, Donnemiller E, Schocke M, Dierkes K, Decristoforo C, Oberladstätter M, Kolbitsch C, Zschiegner F, Riccabona G, Poewe W, Wenning G. Evaluation of striatal dopamine transporter function in rats by in vivo β-[123I]CIT pinhole SPECT. NeuroImage 2002; 17:128–141.CrossRefPubMed Scherfler C, Donnemiller E, Schocke M, Dierkes K, Decristoforo C, Oberladstätter M, Kolbitsch C, Zschiegner F, Riccabona G, Poewe W, Wenning G. Evaluation of striatal dopamine transporter function in rats by in vivo β-[123I]CIT pinhole SPECT. NeuroImage 2002; 17:128–141.CrossRefPubMed
3.
Zurück zum Zitat Jeavons AP, Chandler RA, Dettmar CAR. A 3D HIDAC-PET camera with sub-millimetre resolution for imaging small animals. IEEE Trans Nucl Sci 1999; 46:468–473. Jeavons AP, Chandler RA, Dettmar CAR. A 3D HIDAC-PET camera with sub-millimetre resolution for imaging small animals. IEEE Trans Nucl Sci 1999; 46:468–473.
4.
Zurück zum Zitat Seidel J, Vaquero JJ, Green MV. Resolution uniformity and sensitivity of the NIH ATLAS small animal PET scanner: comparison to simulated LSO scanners without depth-of-interaction capability. IEEE Trans Nucl Sci 2003; 50:1347–1350.CrossRef Seidel J, Vaquero JJ, Green MV. Resolution uniformity and sensitivity of the NIH ATLAS small animal PET scanner: comparison to simulated LSO scanners without depth-of-interaction capability. IEEE Trans Nucl Sci 2003; 50:1347–1350.CrossRef
5.
Zurück zum Zitat Chatziioannou AF. PET scanners dedicated to molecular imaging of small animal models. Mol Imaging Biol 2002; 4:47–63.CrossRefPubMed Chatziioannou AF. PET scanners dedicated to molecular imaging of small animal models. Mol Imaging Biol 2002; 4:47–63.CrossRefPubMed
6.
Zurück zum Zitat Tai YC, Chatziioannou AF, Yang Y, Silverman RW, Meadors K, Siegel S, Newport DF, Stickel JR, Cherry SR. MicroPET II: design, development and initial performance of an improved microPET scanner for small-animal imaging. Phys Med Biol 2003; 48:1519–1537.CrossRefPubMed Tai YC, Chatziioannou AF, Yang Y, Silverman RW, Meadors K, Siegel S, Newport DF, Stickel JR, Cherry SR. MicroPET II: design, development and initial performance of an improved microPET scanner for small-animal imaging. Phys Med Biol 2003; 48:1519–1537.CrossRefPubMed
7.
Zurück zum Zitat Jaszczak RJ, Li J, Wang H, Zalutsky MR, Coleman RE. Pinhole collimation for ultra-high-resolution, small-field-of-view SPECT. Phys Med Biol 1994; 39:425–437.CrossRef Jaszczak RJ, Li J, Wang H, Zalutsky MR, Coleman RE. Pinhole collimation for ultra-high-resolution, small-field-of-view SPECT. Phys Med Biol 1994; 39:425–437.CrossRef
8.
Zurück zum Zitat Weber DA, Ivanovic M, Franceschi D, Strand SE, Erlandsson K, Franceschi M, Atkins HL, Coderre JA, Susskind H, Button T, Ljunggren K. Pinhole SPECT: an approach to in vivo high resolution SPECT imaging in small laboratory animals. J Nucl Med 1994; 35:342–348. Weber DA, Ivanovic M, Franceschi D, Strand SE, Erlandsson K, Franceschi M, Atkins HL, Coderre JA, Susskind H, Button T, Ljunggren K. Pinhole SPECT: an approach to in vivo high resolution SPECT imaging in small laboratory animals. J Nucl Med 1994; 35:342–348.
9.
Zurück zum Zitat Ishizu K, Mukai T, Yonekura Y, Pagani M, Fujita T, Magata Y, Nishizawa S, Tamaki N, Shibasaki H, Konishi J. Ultra-high resolution SPECT system using four pinhole collimators for small animal studies. J Nucl Med 1995; 36:2282–2287.PubMed Ishizu K, Mukai T, Yonekura Y, Pagani M, Fujita T, Magata Y, Nishizawa S, Tamaki N, Shibasaki H, Konishi J. Ultra-high resolution SPECT system using four pinhole collimators for small animal studies. J Nucl Med 1995; 36:2282–2287.PubMed
10.
Zurück zum Zitat Ogawa K, Kawade T, Nakamura K, Kubo A, Ichihara T. Ultra high resolution pinhole SPECT for small animal study. IEEE Trans Nucl Sci 1998; 45:3122–3126.CrossRef Ogawa K, Kawade T, Nakamura K, Kubo A, Ichihara T. Ultra high resolution pinhole SPECT for small animal study. IEEE Trans Nucl Sci 1998; 45:3122–3126.CrossRef
11.
Zurück zum Zitat Aoi T, Watabe H, Deloar HM, Ogawa M, Teramoto N, Kudomi N, Oota T, Kim KM, Matsuda T, Iida H. Absolute quantitation of regional myocardial blood flow of rats using dynamic pinhole SPECT. Conference Record of 2002 IEEE Medical Imaging Conference. Aoi T, Watabe H, Deloar HM, Ogawa M, Teramoto N, Kudomi N, Oota T, Kim KM, Matsuda T, Iida H. Absolute quantitation of regional myocardial blood flow of rats using dynamic pinhole SPECT. Conference Record of 2002 IEEE Medical Imaging Conference.
12.
Zurück zum Zitat Feldkamp LA, Davis LC, Kress JW. Practical cone-beam algorithm. J Opt Soc Am A 1984; 1:612–619. Feldkamp LA, Davis LC, Kress JW. Practical cone-beam algorithm. J Opt Soc Am A 1984; 1:612–619.
13.
Zurück zum Zitat Sohlberg A, Kuikka JT, Ruotsalainen U. Pinhole single-photon emission tomography reconstruction based on median root prior. Eur J Nucl Med Mol Imaging 2003; 30:217–221.PubMed Sohlberg A, Kuikka JT, Ruotsalainen U. Pinhole single-photon emission tomography reconstruction based on median root prior. Eur J Nucl Med Mol Imaging 2003; 30:217–221.PubMed
14.
Zurück zum Zitat Sohlberg A, Ruotsalainen U, Watabe H, Iida H, Kuikka JT. Accelerated median root prior reconstruction for pinhole single-photon emission tomography (SPET). Phys Med Biol 2003; 48:1957–1969.CrossRefPubMed Sohlberg A, Ruotsalainen U, Watabe H, Iida H, Kuikka JT. Accelerated median root prior reconstruction for pinhole single-photon emission tomography (SPET). Phys Med Biol 2003; 48:1957–1969.CrossRefPubMed
15.
Zurück zum Zitat Shepp LA, Vardi Y. Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imag 1982; MI-1:113–122. Shepp LA, Vardi Y. Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imag 1982; MI-1:113–122.
16.
Zurück zum Zitat Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imag 1994; 13:601–609.CrossRef Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imag 1994; 13:601–609.CrossRef
17.
Zurück zum Zitat Vanhove C, Defrise M, Franken PR, Everaert H, Deconinck F, Bossuyt A. Interest of the ordered subsets expectation maximization (OS-EM) algorithm in pinhole single-photon emission tomography reconstruction: a phantom study. Eur J Nucl Med 2000; 27:140–146.PubMed Vanhove C, Defrise M, Franken PR, Everaert H, Deconinck F, Bossuyt A. Interest of the ordered subsets expectation maximization (OS-EM) algorithm in pinhole single-photon emission tomography reconstruction: a phantom study. Eur J Nucl Med 2000; 27:140–146.PubMed
18.
Zurück zum Zitat Kudo H, Saito T. Derivation and implementation of a cone-beam reconstruction algorithm for nonplanar orbits. IEEE Trans Med Imag 1994; 13:196–211.CrossRef Kudo H, Saito T. Derivation and implementation of a cone-beam reconstruction algorithm for nonplanar orbits. IEEE Trans Med Imag 1994; 13:196–211.CrossRef
19.
Zurück zum Zitat Tuy HK. An inversion formula for cone-beam reconstruction. SIAM J Appl Math 1983; 43:546–552. Tuy HK. An inversion formula for cone-beam reconstruction. SIAM J Appl Math 1983; 43:546–552.
20.
Zurück zum Zitat Kudo H, Saito T. Feasible cone beam scanning methods for exact reconstruction in three-dimensional tomography. J Opt Soc Am A 1990; 7:2169–2181.PubMed Kudo H, Saito T. Feasible cone beam scanning methods for exact reconstruction in three-dimensional tomography. J Opt Soc Am A 1990; 7:2169–2181.PubMed
21.
Zurück zum Zitat Zeng GL, Gullberg GT. A cone-beam tomography algorithm for orthogonal circle-and-line orbit. Phys Med Biol 1992; 37:563–577.CrossRefPubMed Zeng GL, Gullberg GT. A cone-beam tomography algorithm for orthogonal circle-and-line orbit. Phys Med Biol 1992; 37:563–577.CrossRefPubMed
22.
Zurück zum Zitat Li J, Jaszczak RJ, Greer KL, Coleman RE. A filtered backprojection algorithm for pinhole SPECT with a displaced centre of rotation. Phys Med Biol 1994; 39:165–176.PubMed Li J, Jaszczak RJ, Greer KL, Coleman RE. A filtered backprojection algorithm for pinhole SPECT with a displaced centre of rotation. Phys Med Biol 1994; 39:165–176.PubMed
23.
Zurück zum Zitat Metzler SD, Greer KL, Jaszczak RJ. Helical pinhole SPECT for small-animal imaging: a method for addressing sampling completeness. IEEE Trans Nucl Sci 2003; 50:1575–1583.CrossRef Metzler SD, Greer KL, Jaszczak RJ. Helical pinhole SPECT for small-animal imaging: a method for addressing sampling completeness. IEEE Trans Nucl Sci 2003; 50:1575–1583.CrossRef
24.
Zurück zum Zitat Anger HO. Radioisotope cameras. In: Hine GJ, ed. Instrumentation in nuclear medicine. New York: Academic; 1967:485–552. Anger HO. Radioisotope cameras. In: Hine GJ, ed. Instrumentation in nuclear medicine. New York: Academic; 1967:485–552.
25.
Zurück zum Zitat Smith MF, Jaszczak RJ. The effect of gamma ray penetration on angle-dependent sensitivity for pinhole collimation in nuclear medicine. Med Phys 1997; 24:1701–1709.CrossRef Smith MF, Jaszczak RJ. The effect of gamma ray penetration on angle-dependent sensitivity for pinhole collimation in nuclear medicine. Med Phys 1997; 24:1701–1709.CrossRef
26.
Zurück zum Zitat Metzler SD, Bowsher JE, Smith MF, Jaszczak RJ. Analytic determination of pinhole collimator sensitivity with penetration. IEEE Trans Med Imag 2001; 20:730–741.CrossRef Metzler SD, Bowsher JE, Smith MF, Jaszczak RJ. Analytic determination of pinhole collimator sensitivity with penetration. IEEE Trans Med Imag 2001; 20:730–741.CrossRef
27.
Zurück zum Zitat Metzler SD, Bowsher JE, Greer KL, Jaszczak RJ. Analytic determination of the pinhole collimator’s point-spread function and RMS resolution with penetration. IEEE Trans Med Imag 2002; 21:878–887.CrossRef Metzler SD, Bowsher JE, Greer KL, Jaszczak RJ. Analytic determination of the pinhole collimator’s point-spread function and RMS resolution with penetration. IEEE Trans Med Imag 2002; 21:878–887.CrossRef
28.
Zurück zum Zitat Hutton BF, Lau YH. Application of distance-dependent resolution compensation and post-reconstruction filtering for myocardial SPECT. Phys Med Biol 1998; 43:1679–1693. Hutton BF, Lau YH. Application of distance-dependent resolution compensation and post-reconstruction filtering for myocardial SPECT. Phys Med Biol 1998; 43:1679–1693.
29.
Zurück zum Zitat Yokoi T, Shinohara H, Onishi H. Performance evaluation of OSEM reconstruction algorithm incorporating three-dimensional distance-dependent resolution compensation for brain SPECT: A simulation study. Ann Nucl Med 2002; 16:11–18.PubMed Yokoi T, Shinohara H, Onishi H. Performance evaluation of OSEM reconstruction algorithm incorporating three-dimensional distance-dependent resolution compensation for brain SPECT: A simulation study. Ann Nucl Med 2002; 16:11–18.PubMed
30.
Zurück zum Zitat Deloar HM, Watabe H, Aoi T, Iida H. Evaluation of penetration and scattering components in conventional pinhole SPECT: phantom studies using Monte Carlo simulation. Phys Med Biol 2003; 48:995–1008.CrossRefPubMed Deloar HM, Watabe H, Aoi T, Iida H. Evaluation of penetration and scattering components in conventional pinhole SPECT: phantom studies using Monte Carlo simulation. Phys Med Biol 2003; 48:995–1008.CrossRefPubMed
Metadaten
Titel
A new reconstruction strategy for image improvement in pinhole SPECT
verfasst von
Tsutomu Zeniya
Hiroshi Watabe
Toshiyuki Aoi
Kyeong Min Kim
Noboru Teramoto
Takuya Hayashi
Antti Sohlberg
Hiroyuki Kudo
Hidehiro Iida
Publikationsdatum
01.08.2004
Verlag
Springer-Verlag
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 8/2004
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-004-1510-4

Weitere Artikel der Ausgabe 8/2004

European Journal of Nuclear Medicine and Molecular Imaging 8/2004 Zur Ausgabe

Letter

Reply