Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 7/2005

01.07.2005 | Original Article

Brain FDG PET study of normal aging in Japanese: effect of atrophy correction

verfasst von: Daisuke Yanase, Ichiro Matsunari, Kazuyoshi Yajima, Weiping Chen, Akihiko Fujikawa, Shintaro Nishimura, Hiroshi Matsuda, Masahito Yamada

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 7/2005

Einloggen, um Zugang zu erhalten

Abstract

Purpose

The aim of this study was to investigate the effects of atrophy correction on the results of 18F-fluorodeoxyglucose positron emission tomography (FDG PET) in the context of normal aging.

Methods

Before the human study was performed, a Hoffman 3D brain phantom experiment was carried out in order to validate a newly developed correction method for partial volume effects (PVEs). Brain FDG PET was then performed in 139 healthy Japanese volunteers (71 men, 68 women; age 24–81 years). PET images were corrected for PVEs using grey matter volume, which was segmented from co-registered magnetic resonance images and convoluted with the spatial resolution of the PET scanner. We investigated the correlation between advancing age and relative regional FDG activity, which was normalised to the global activity before and after PVE correction using Statistical Parametric Mapping 99.

Results

The PET image, when corrected for PVEs, provided more homogeneous tracer distribution in the whole phantom than in the original PET image. The human PET study of both sexes revealed significant negative correlations between age and relative FDG activity in the bilateral perisylvian and medial frontal areas before PVE correction. However, these negative correlations were largely resolved after PVE correction.

Conclusion

Correction for PVEs was effective in our FDG PET study. The reduction in FDG uptake with advancing age that was detected by FDG PET without PVE correction could be accounted for largely by an age-related cerebral volume loss in the bilateral perisylvian and medial frontal areas.
Literatur
1.
Zurück zum Zitat Hawkins RA, Mazziotta JC, Phelps ME, Huang SC, Kuhl DE, Carson RE, et al. Cerebral glucose metabolism as a function of age in man: influence of the rate constants in the fluorodeoxyglucose method. J Cereb Blood Flow Metab 1983;3:250–3. Hawkins RA, Mazziotta JC, Phelps ME, Huang SC, Kuhl DE, Carson RE, et al. Cerebral glucose metabolism as a function of age in man: influence of the rate constants in the fluorodeoxyglucose method. J Cereb Blood Flow Metab 1983;3:250–3.
2.
Zurück zum Zitat de Leon MJ, George AE, Ferris SH, Christman DR, Fowler JS, Gentes CI, et al. Positron emission tomography and computed tomography assessments of the aging human brain. J Comput Assist Tomogr 1984;8:88–94. de Leon MJ, George AE, Ferris SH, Christman DR, Fowler JS, Gentes CI, et al. Positron emission tomography and computed tomography assessments of the aging human brain. J Comput Assist Tomogr 1984;8:88–94.
3.
Zurück zum Zitat Duara R, Grady C, Haxby J, Ingvar D, Sokoloff L, Margolin RA, et al. Human brain glucose utilization and cognitive function in relation to age. Ann Neurol 1984;16:703–13. Duara R, Grady C, Haxby J, Ingvar D, Sokoloff L, Margolin RA, et al. Human brain glucose utilization and cognitive function in relation to age. Ann Neurol 1984;16:703–13.
4.
Zurück zum Zitat Kuhl DE, Metter EJ, Riege WH, Phelps ME. Effects of human aging on patterns of local cerebral glucose utilization determined by the [18F]fluorodeoxyglucose method. J Cereb Blood Flow Metab 1982;2:163–71. Kuhl DE, Metter EJ, Riege WH, Phelps ME. Effects of human aging on patterns of local cerebral glucose utilization determined by the [18F]fluorodeoxyglucose method. J Cereb Blood Flow Metab 1982;2:163–71.
5.
Zurück zum Zitat de Leon MJ, George AE, Tomanelli J, Christman D, Kluger A, Miller J, et al. Positron emission tomography studies of normal aging: a replication of PET III and 18-FDG using PET VI and 11-CDG. Neurobiol Aging 1987;8:319–23. de Leon MJ, George AE, Tomanelli J, Christman D, Kluger A, Miller J, et al. Positron emission tomography studies of normal aging: a replication of PET III and 18-FDG using PET VI and 11-CDG. Neurobiol Aging 1987;8:319–23.
6.
Zurück zum Zitat Yoshii F, Barker WW, Chang JY, Loewenstein D, Apicella A, Smith D, et al. Sensitivity of cerebral glucose metabolism to age, gender, brain volume, brain atrophy, and cerebrovascular risk factors. J Cereb Blood Flow Metab 1988;8:654–61. Yoshii F, Barker WW, Chang JY, Loewenstein D, Apicella A, Smith D, et al. Sensitivity of cerebral glucose metabolism to age, gender, brain volume, brain atrophy, and cerebrovascular risk factors. J Cereb Blood Flow Metab 1988;8:654–61.
7.
Zurück zum Zitat Salmon E, Maquet P, Sadzot B, Degueldre C, Lemaire C, Franck G. Decrease of frontal metabolism demonstrated by positron emission tomography in a population of healthy elderly volunteers. Acta Neurol Belg 1991;91:288–95. Salmon E, Maquet P, Sadzot B, Degueldre C, Lemaire C, Franck G. Decrease of frontal metabolism demonstrated by positron emission tomography in a population of healthy elderly volunteers. Acta Neurol Belg 1991;91:288–95.
8.
Zurück zum Zitat Loessner A, Alavi A, Lewandrowski KU, Mozley D, Souder E, Gur RE. Regional cerebral function determined by FDG-PET in healthy volunteers: normal patterns and changes with age. J Nucl Med 1995;36:1141–9. Loessner A, Alavi A, Lewandrowski KU, Mozley D, Souder E, Gur RE. Regional cerebral function determined by FDG-PET in healthy volunteers: normal patterns and changes with age. J Nucl Med 1995;36:1141–9.
9.
Zurück zum Zitat Moeller JR, Ishikawa T, Dhawan V, Spetsieris P, Mandel F, Alexander GE, et al. The metabolic topography of normal aging. J Cereb Blood Flow Metab 1996;16:385–98. Moeller JR, Ishikawa T, Dhawan V, Spetsieris P, Mandel F, Alexander GE, et al. The metabolic topography of normal aging. J Cereb Blood Flow Metab 1996;16:385–98.
10.
Zurück zum Zitat Petit-Taboue MC, Landeau B, Desson JF, Desgranges B, Baron JC. Effects of healthy aging on the regional cerebral metabolic rate of glucose assessed with statistical parametric mapping. Neuroimage 1998;7:176–84. Petit-Taboue MC, Landeau B, Desson JF, Desgranges B, Baron JC. Effects of healthy aging on the regional cerebral metabolic rate of glucose assessed with statistical parametric mapping. Neuroimage 1998;7:176–84.
11.
Zurück zum Zitat Ivancevic V, Alavi A, Souder E, Mozley PD, Gur RE, Benard F, et al. Regional cerebral glucose metabolism in healthy volunteers determined by fluordeoxyglucose positron emission tomography: appearance and variance in the transaxial, coronal, and sagittal planes. Clin Nucl Med 2000;25:596–602. Ivancevic V, Alavi A, Souder E, Mozley PD, Gur RE, Benard F, et al. Regional cerebral glucose metabolism in healthy volunteers determined by fluordeoxyglucose positron emission tomography: appearance and variance in the transaxial, coronal, and sagittal planes. Clin Nucl Med 2000;25:596–602.
12.
Zurück zum Zitat Herholz K, Salmon E, Perani D, Baron JC, Holthoff V, Frolich L, et al. Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET. Neuroimage 2002;17:302–16.CrossRef Herholz K, Salmon E, Perani D, Baron JC, Holthoff V, Frolich L, et al. Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET. Neuroimage 2002;17:302–16.CrossRef
13.
Zurück zum Zitat Muller-Gartner HW, Links JM, Prince JL, Bryan RN, McVeigh E, Leal JP, et al. Measurement of radiotracer concentration in brain gray matter using positron emission tomography: MRI-based correction for partial volume effects. J Cereb Blood Flow Metab 1992;12:571–83. Muller-Gartner HW, Links JM, Prince JL, Bryan RN, McVeigh E, Leal JP, et al. Measurement of radiotracer concentration in brain gray matter using positron emission tomography: MRI-based correction for partial volume effects. J Cereb Blood Flow Metab 1992;12:571–83.
14.
Zurück zum Zitat Labbe C, Froment JC, Kennedy A, Ashburner J, Cinotti L. Positron emission tomography metabolic data corrected for cortical atrophy using magnetic resonance imaging. Alzheimer Dis Assoc Disord 1996;10:141–70. Labbe C, Froment JC, Kennedy A, Ashburner J, Cinotti L. Positron emission tomography metabolic data corrected for cortical atrophy using magnetic resonance imaging. Alzheimer Dis Assoc Disord 1996;10:141–70.
15.
Zurück zum Zitat Meltzer CC, Zubieta JK, Brandt J, Tune LE, Mayberg HS, Frost JJ. Regional hypometabolism in Alzheimer’s disease as measured by positron emission tomography after correction for effects of partial volume averaging. Neurology 1996;47:454–61. Meltzer CC, Zubieta JK, Brandt J, Tune LE, Mayberg HS, Frost JJ. Regional hypometabolism in Alzheimer’s disease as measured by positron emission tomography after correction for effects of partial volume averaging. Neurology 1996;47:454–61.
16.
Zurück zum Zitat Ibanez V, Pietrini P, Alexander GE, Furey ML, Teichberg D, Rajapakse JC, et al. Regional glucose metabolic abnormalities are not the result of atrophy in Alzheimer’s disease. Neurology 1998;50:1585–93. Ibanez V, Pietrini P, Alexander GE, Furey ML, Teichberg D, Rajapakse JC, et al. Regional glucose metabolic abnormalities are not the result of atrophy in Alzheimer’s disease. Neurology 1998;50:1585–93.
17.
Zurück zum Zitat Matsuda H, Kanetaka H, Ohnishi T, Asada T, Imabayashi E, Nakano S, et al. Brain SPET abnormalities in Alzheimer’s disease before and after atrophy correction. Eur J Nucl Med Mol Imaging 2002;29:1502–5. Matsuda H, Kanetaka H, Ohnishi T, Asada T, Imabayashi E, Nakano S, et al. Brain SPET abnormalities in Alzheimer’s disease before and after atrophy correction. Eur J Nucl Med Mol Imaging 2002;29:1502–5.
18.
Zurück zum Zitat Matsuda H, Ohnishi T, Asada T, Li ZJ, Kanetaka H, Imabayashi E, et al. Correction for partial-volume effects on brain perfusion SPECT in healthy men. J Nucl Med 2003;44:1243–52. Matsuda H, Ohnishi T, Asada T, Li ZJ, Kanetaka H, Imabayashi E, et al. Correction for partial-volume effects on brain perfusion SPECT in healthy men. J Nucl Med 2003;44:1243–52.
19.
Zurück zum Zitat Folstein MF, Folstein SE, McHugh PR. Mini-mental state. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975;12:189–98.CrossRefPubMed Folstein MF, Folstein SE, McHugh PR. Mini-mental state. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975;12:189–98.CrossRefPubMed
20.
Zurück zum Zitat Hoffman EJ, Cutler PD, Diby WM, Mazziota JC. Three dimensional phantom to simulate cerebral blood flow and metabolic image for PET. IEEE Trans Nucl Sci 1990;37:616–20. Hoffman EJ, Cutler PD, Diby WM, Mazziota JC. Three dimensional phantom to simulate cerebral blood flow and metabolic image for PET. IEEE Trans Nucl Sci 1990;37:616–20.
21.
Zurück zum Zitat Talairach J, Tournoux P. Co-planar stereotaxic atlas of the human brain. New York: Thieme Medical; 1988. Talairach J, Tournoux P. Co-planar stereotaxic atlas of the human brain. New York: Thieme Medical; 1988.
22.
Zurück zum Zitat Frith CD, Friston KJ, Ashburner J, Holmes A, Poline J, Worsley K, et al. Principles and methods. In: Frackowiak R, Friston K, Frith C, Dolan R, Mazziotta J, editors. Human brain function. San Diego: Academic; 1997. p. 3–159. Frith CD, Friston KJ, Ashburner J, Holmes A, Poline J, Worsley K, et al. Principles and methods. In: Frackowiak R, Friston K, Frith C, Dolan R, Mazziotta J, editors. Human brain function. San Diego: Academic; 1997. p. 3–159.
23.
Zurück zum Zitat Ohnishi T, Matsuda H, Tabira T, Asada T, Uno M. Changes in brain morphology in Alzheimer disease and normal aging: is Alzheimer disease an exaggerated aging process? AJNR 2001;22:1680–5. Ohnishi T, Matsuda H, Tabira T, Asada T, Uno M. Changes in brain morphology in Alzheimer disease and normal aging: is Alzheimer disease an exaggerated aging process? AJNR 2001;22:1680–5.
24.
Zurück zum Zitat Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS. A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 2001;14:21–36.CrossRefPubMed Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS. A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 2001;14:21–36.CrossRefPubMed
25.
Zurück zum Zitat Baron JC, Godeau C. Human aging. In: Toga A, Mazziotta JC, editors. Brain mapping: the systems. San Diego: Academic; 2000. p. 591–604. Baron JC, Godeau C. Human aging. In: Toga A, Mazziotta JC, editors. Brain mapping: the systems. San Diego: Academic; 2000. p. 591–604.
26.
Zurück zum Zitat Baxter LR Jr, Mazziotta JC, Phelps ME, Selin CE, Guze BH, Fairbanks L. Cerebral glucose metabolic rates in normal human females versus normal males. Psychiatry Res 1987;21:237–45. Baxter LR Jr, Mazziotta JC, Phelps ME, Selin CE, Guze BH, Fairbanks L. Cerebral glucose metabolic rates in normal human females versus normal males. Psychiatry Res 1987;21:237–45.
27.
Zurück zum Zitat Miura SA, Schapiro MB, Grady CL, Kumar A, Salerno JA, Kozachuk WE, et al. Effect of gender on glucose utilization rates in healthy humans: a positron emission tomography study. J Neurosci Res 1990;27:500–4. Miura SA, Schapiro MB, Grady CL, Kumar A, Salerno JA, Kozachuk WE, et al. Effect of gender on glucose utilization rates in healthy humans: a positron emission tomography study. J Neurosci Res 1990;27:500–4.
28.
Zurück zum Zitat Andreason PJ, Zametkin AJ, Guo AC, Baldwin P, Cohen RM. Gender-related differences in regional cerebral glucose metabolism in normal volunteers. Psychiatry Res 1994;51:175–83. Andreason PJ, Zametkin AJ, Guo AC, Baldwin P, Cohen RM. Gender-related differences in regional cerebral glucose metabolism in normal volunteers. Psychiatry Res 1994;51:175–83.
29.
Zurück zum Zitat Gur RC, Mozley LH, Mozley PD, Resnick SM, Karp JS, Alavi A, et al. Sex differences in regional cerebral glucose metabolism during a resting state. Science 1995;267:528–31.PubMed Gur RC, Mozley LH, Mozley PD, Resnick SM, Karp JS, Alavi A, et al. Sex differences in regional cerebral glucose metabolism during a resting state. Science 1995;267:528–31.PubMed
30.
Zurück zum Zitat Murphy DG, DeCarli C, McIntosh AR, Daly E, Mentis MJ, Pietrini P, et al. Sex differences in human brain morphometry and metabolism: an in vivo quantitative magnetic resonance imaging and positron emission tomography study on the effect of aging. Arch Gen Psychiatry 1996;53:585–94. Murphy DG, DeCarli C, McIntosh AR, Daly E, Mentis MJ, Pietrini P, et al. Sex differences in human brain morphometry and metabolism: an in vivo quantitative magnetic resonance imaging and positron emission tomography study on the effect of aging. Arch Gen Psychiatry 1996;53:585–94.
31.
Zurück zum Zitat Volkow ND, Wang GJ, Fowler JS, Hitzemann R, Pappas N, Pascani K, et al. Gender differences in cerebellar metabolism: test-retest reproducibility. Am J Psychiatry 1997;154:119–21. Volkow ND, Wang GJ, Fowler JS, Hitzemann R, Pappas N, Pascani K, et al. Gender differences in cerebellar metabolism: test-retest reproducibility. Am J Psychiatry 1997;154:119–21.
32.
Zurück zum Zitat Bentourkia M, Bol A, Ivanoiu A, Labar D, Sibomana M, Coppens A, et al. Comparison of regional cerebral blood flow and glucose metabolism in the normal brain: effect of aging. J Neurol Sci 2000;181:19–28. Bentourkia M, Bol A, Ivanoiu A, Labar D, Sibomana M, Coppens A, et al. Comparison of regional cerebral blood flow and glucose metabolism in the normal brain: effect of aging. J Neurol Sci 2000;181:19–28.
33.
Zurück zum Zitat Kadekaro M, Crane AM, Sokoloff L. Differential effects of electrical stimulation of sciatic nerve on metabolic activity in spinal cord and dorsal root ganglion in the rat. Proc Natl Acad Sci U S A 1985;82:6010–3. Kadekaro M, Crane AM, Sokoloff L. Differential effects of electrical stimulation of sciatic nerve on metabolic activity in spinal cord and dorsal root ganglion in the rat. Proc Natl Acad Sci U S A 1985;82:6010–3.
34.
Zurück zum Zitat Scheibel ME, Lindsay RD, Tomiyasu U, Scheibel AB. Progressive dendritic changes in aging human cortex. Exp Neurol 1975;47:392–403. Scheibel ME, Lindsay RD, Tomiyasu U, Scheibel AB. Progressive dendritic changes in aging human cortex. Exp Neurol 1975;47:392–403.
35.
Zurück zum Zitat Huttenlocher PR. Synaptic density in human frontal cortex—developmental changes and effects of aging. Brain Res 1979;163:195–205. Huttenlocher PR. Synaptic density in human frontal cortex—developmental changes and effects of aging. Brain Res 1979;163:195–205.
36.
Zurück zum Zitat Gibson PH. EM study of the numbers of cortical synapses in the brains of ageing people and people with Alzheimer-type dementia. Acta Neuropathol (Berl) 1983;62:127–33. Gibson PH. EM study of the numbers of cortical synapses in the brains of ageing people and people with Alzheimer-type dementia. Acta Neuropathol (Berl) 1983;62:127–33.
37.
Zurück zum Zitat Masliah E, Mallory M, Hansen L, DeTeresa R, Terry RD. Quantitative synaptic alterations in the human neocortex during normal aging. Neurology 1993;43:192–7. Masliah E, Mallory M, Hansen L, DeTeresa R, Terry RD. Quantitative synaptic alterations in the human neocortex during normal aging. Neurology 1993;43:192–7.
38.
Zurück zum Zitat Liu X, Erikson C, Brun A. Cortical synaptic changes and gliosis in normal aging, Alzheimer’s disease and frontal lobe degeneration. Dementia 1996;7:128–34. Liu X, Erikson C, Brun A. Cortical synaptic changes and gliosis in normal aging, Alzheimer’s disease and frontal lobe degeneration. Dementia 1996;7:128–34.
39.
Zurück zum Zitat Terry RD, DeTeresa R, Hansen LA. Neocortical cell counts in normal human adult aging. Ann Neurol 1987;21:530–39. Terry RD, DeTeresa R, Hansen LA. Neocortical cell counts in normal human adult aging. Ann Neurol 1987;21:530–39.
40.
Zurück zum Zitat Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann Neurol 1997;42:85–94.PubMed Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann Neurol 1997;42:85–94.PubMed
41.
Zurück zum Zitat Baron JC, Chetelat G, Desgranges B, Perchey G, Landeau B, de la Sayette V, et al. In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer’s disease. Neuroimage 2001;14:298–309. Baron JC, Chetelat G, Desgranges B, Perchey G, Landeau B, de la Sayette V, et al. In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer’s disease. Neuroimage 2001;14:298–309.
Metadaten
Titel
Brain FDG PET study of normal aging in Japanese: effect of atrophy correction
verfasst von
Daisuke Yanase
Ichiro Matsunari
Kazuyoshi Yajima
Weiping Chen
Akihiko Fujikawa
Shintaro Nishimura
Hiroshi Matsuda
Masahito Yamada
Publikationsdatum
01.07.2005
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 7/2005
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-005-1767-2

Weitere Artikel der Ausgabe 7/2005

European Journal of Nuclear Medicine and Molecular Imaging 7/2005 Zur Ausgabe