Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 3/2008

01.03.2008 | Original Article

FDG uptake by the bone marrow in NSCLC patients is related to TGF-β but not to VEGF or G-CSF serum levels

verfasst von: Christophe Van de Wiele, Frédéric VandeVyver, Caroline Debruyne, Jan Philippé, Jan P. van Meerbeeck

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 3/2008

Einloggen, um Zugang zu erhalten

Abstract

Introduction

Non small cell lung carcinomas (NSCLC) are known to secrete various cytokines such as VEGF (vascular endothelial growth factor), G-CSF (granulocyte-colony stimulating factor) and TGF-β (transforming growth factor-beta) that may stimulate bone marrow activity.

Purpose

This study reports on the relationship between serum levels of VEGF, G-CSF, TGF-β and FDG uptake by the bone marrow in NSCLC patients.

Methods

Thirty-three patients suffering from newly diagnosed NSCLC who were successively referred to undergo an FDG PET scan as a part of their routine staging procedure and that did not suffer from bone metastases were included in the study. FDG bone marrow activity was determined in all patients and related to pre-treatment VEGF, G-CSF and TGF-β serum levels.

Results

Mean standardized uptake values (SUV mean) of the bone marrow ranged from 0.1 to 2.1 (mean 1.1). G-CSF, VEGF and TGF-β serum levels ranged from 13.5 to 110 pg/ml (mean 41.4 pg/ml), from 95 to 3,221 pg/ml (mean 1,111 pg/ml) and from 269 to 615 pg/ml (mean 387 pg/ml), respectively. SUV mean values of the bone marrow significantly correlated with TGF-β serum measurements (r = 0.621, p < 0.0001), but not with VEGF and G-CSF measurements.

Conclusion

FDG uptake by bone marrow in newly diagnosed NSCLC patients correlates with serum levels of TGF-β, but not with VEGF or G-CSF levels.
Literatur
1.
Zurück zum Zitat Prévost S, Bocuher L, Larivée P, Boileau R, Bénard F. Bone marrow hypermetabolism on 18F-FDG PET as a survival prognostic factor in non-small cell lung cancer. J Nucl Med 2006;47:559–65.PubMed Prévost S, Bocuher L, Larivée P, Boileau R, Bénard F. Bone marrow hypermetabolism on 18F-FDG PET as a survival prognostic factor in non-small cell lung cancer. J Nucl Med 2006;47:559–65.PubMed
2.
Zurück zum Zitat Dudek A, Mahaseth H. Circulating angiogenic cytokines in patients with advanced non-small cell lung cancer: correlation with treatment response and survival. Cancer Investig 2005;23:193–200.CrossRef Dudek A, Mahaseth H. Circulating angiogenic cytokines in patients with advanced non-small cell lung cancer: correlation with treatment response and survival. Cancer Investig 2005;23:193–200.CrossRef
3.
Zurück zum Zitat Choi J, Kim H, Lim H, Nam D, Kim H, Yi J, et al. Vascular endothelial growth factor in the serum of patients with non-small cell lung cancer: correlation with platelet and leukocyte counts. Lung Cancer 2001;33:171–9.PubMedCrossRef Choi J, Kim H, Lim H, Nam D, Kim H, Yi J, et al. Vascular endothelial growth factor in the serum of patients with non-small cell lung cancer: correlation with platelet and leukocyte counts. Lung Cancer 2001;33:171–9.PubMedCrossRef
4.
Zurück zum Zitat Takigawa N, Segawa Y, Fujimoto N, Hotta K, Eguchi K. Elevated vascular endothelial growth factor levels in sera of patients with lung cancer. Anticancer Res 1998;18:1251–4.PubMed Takigawa N, Segawa Y, Fujimoto N, Hotta K, Eguchi K. Elevated vascular endothelial growth factor levels in sera of patients with lung cancer. Anticancer Res 1998;18:1251–4.PubMed
5.
Zurück zum Zitat Mroczko B, Szmitkowski M, Niklinski J. Granulocyte-colony stimulating factor and macrophage-colony stimulating factoring in patients with non-small cell lung cancer. Clin Chem Lab Med 2001;39:374–9.PubMedCrossRef Mroczko B, Szmitkowski M, Niklinski J. Granulocyte-colony stimulating factor and macrophage-colony stimulating factoring in patients with non-small cell lung cancer. Clin Chem Lab Med 2001;39:374–9.PubMedCrossRef
6.
Zurück zum Zitat Colasante A, Mascetra N, Brunetti M, Lattanzio G, Diodoro M, Caltagirone S, et al. Transforming growth factor beta 1, interleukin-8 and interleukin-1, in non-small cell lung tumors. Am J Respir Crit Care Med 1997;156:968–73.PubMed Colasante A, Mascetra N, Brunetti M, Lattanzio G, Diodoro M, Caltagirone S, et al. Transforming growth factor beta 1, interleukin-8 and interleukin-1, in non-small cell lung tumors. Am J Respir Crit Care Med 1997;156:968–73.PubMed
7.
Zurück zum Zitat Hasegawa Y, Takanashi S, Kanehira Y, Tsushima T, Imai T, Okumura K. Transforming growth factor-beta1 level correlates with angiogenesis, tumor progression, and prognosis in patients with non-small cell lung carcinoma. Cancer 2001;91:964–71.PubMedCrossRef Hasegawa Y, Takanashi S, Kanehira Y, Tsushima T, Imai T, Okumura K. Transforming growth factor-beta1 level correlates with angiogenesis, tumor progression, and prognosis in patients with non-small cell lung carcinoma. Cancer 2001;91:964–71.PubMedCrossRef
8.
Zurück zum Zitat Pacquet N, Albert A, Foidart J, Hustinx R. Within-patient variability of 18F-FDG: standardized uptake values in normal tissues. J Nucl Med 2004;5:784–8. Pacquet N, Albert A, Foidart J, Hustinx R. Within-patient variability of 18F-FDG: standardized uptake values in normal tissues. J Nucl Med 2004;5:784–8.
9.
Zurück zum Zitat Souvatzoglou M, Ziegler S, Martinez M, et al. Standardised uptake values from PET/CT images: comparison with conventional attenuation-corrected PET. Eur J Nucl Med Mol Imaging; e-pub ahead of print: DOI 10.1007/s00259-006-0196-1. Souvatzoglou M, Ziegler S, Martinez M, et al. Standardised uptake values from PET/CT images: comparison with conventional attenuation-corrected PET. Eur J Nucl Med Mol Imaging; e-pub ahead of print: DOI 10.​1007/​s00259-006-0196-1.
10.
Zurück zum Zitat Tigue C, McKov J, Evans A, Trifilio S, Tallman M, Bennett C. Granulocyte-colony stimulating factor administration to healthy individuals and persons with chronic neutropenia or cancer: an overview of safety considerations from the Research on Adverse Drug Events and Reports project. Bone Marrow Transplant 2007;40:185–92; e-pub ahead of print. Tigue C, McKov J, Evans A, Trifilio S, Tallman M, Bennett C. Granulocyte-colony stimulating factor administration to healthy individuals and persons with chronic neutropenia or cancer: an overview of safety considerations from the Research on Adverse Drug Events and Reports project. Bone Marrow Transplant 2007;40:185–92; e-pub ahead of print.
11.
Zurück zum Zitat Kazama T, Swanston N, Podoloff D, Macapinlac H. Effect of colony-stimulating factor and conventional- or high-dose chemotherapy on FDG uptake in bone marrow. Eur J Nucl Med Mol Imaging 2005;32:1406–11.PubMedCrossRef Kazama T, Swanston N, Podoloff D, Macapinlac H. Effect of colony-stimulating factor and conventional- or high-dose chemotherapy on FDG uptake in bone marrow. Eur J Nucl Med Mol Imaging 2005;32:1406–11.PubMedCrossRef
12.
Zurück zum Zitat Kasuga I, Makino S, Kivokawa H, Katoh H, Ebihara Y, Ohyashiki K. Tumor-related leucocytosis is linked with poor prognosis in patients with lung carcinoma. Cancer 2001;92:2399–405.PubMedCrossRef Kasuga I, Makino S, Kivokawa H, Katoh H, Ebihara Y, Ohyashiki K. Tumor-related leucocytosis is linked with poor prognosis in patients with lung carcinoma. Cancer 2001;92:2399–405.PubMedCrossRef
13.
Zurück zum Zitat Larrivee B, Pollet I, Karsan A. Activation of vascular endothelial growth factor receptor-2 in bone marrow leads to accumulation of myeloid cells: role of granulocyte-macrophage colony-stimulating factor. J Immunol 2005;175:3015–24.PubMed Larrivee B, Pollet I, Karsan A. Activation of vascular endothelial growth factor receptor-2 in bone marrow leads to accumulation of myeloid cells: role of granulocyte-macrophage colony-stimulating factor. J Immunol 2005;175:3015–24.PubMed
14.
Zurück zum Zitat Gerber H, Malik A, Solar G, et al. VEGF regulates haematopoietic stem cell survival by an internal autocrine loop mechanism. Nature 2002;417:954–8.PubMedCrossRef Gerber H, Malik A, Solar G, et al. VEGF regulates haematopoietic stem cell survival by an internal autocrine loop mechanism. Nature 2002;417:954–8.PubMedCrossRef
15.
Zurück zum Zitat D’Ambrosio D. Regulatory T cells: how do they find their space in the immunological arena. Semin Cancer Biol 2006;16:91–7.PubMedCrossRef D’Ambrosio D. Regulatory T cells: how do they find their space in the immunological arena. Semin Cancer Biol 2006;16:91–7.PubMedCrossRef
16.
Zurück zum Zitat Zou L, Barnett B, Safah H, LaRussa V, Evdemon-Hogan M, Mottram P, et al. Bone marrow is a reservoir for CD24+CD25+ regulatory T-cells that traffic through CXCL12/CXCR4 signals. Cancer Res 2004;64:5451–55. Zou L, Barnett B, Safah H, LaRussa V, Evdemon-Hogan M, Mottram P, et al. Bone marrow is a reservoir for CD24+CD25+ regulatory T-cells that traffic through CXCL12/CXCR4 signals. Cancer Res 2004;64:5451–55.
17.
Zurück zum Zitat Wahl S, Wen J, Moutsopoulos N. TGF-β: a mobile purveyor of immune privilege. Immunol Rev 2006;213–27. Wahl S, Wen J, Moutsopoulos N. TGF-β: a mobile purveyor of immune privilege. Immunol Rev 2006;213–27.
18.
Zurück zum Zitat Liu V, Wong L, Jang T, Shah A, Park I, Yang X, et al. Tumor evasion of the immune system by converting CD24+CD25- T cells into CD4+CD25+ regulatory cells: role of tumor derived TGF-b. J Immunol 2007;178:2883–92. Liu V, Wong L, Jang T, Shah A, Park I, Yang X, et al. Tumor evasion of the immune system by converting CD24+CD25- T cells into CD4+CD25+ regulatory cells: role of tumor derived TGF-b. J Immunol 2007;178:2883–92.
Metadaten
Titel
FDG uptake by the bone marrow in NSCLC patients is related to TGF-β but not to VEGF or G-CSF serum levels
verfasst von
Christophe Van de Wiele
Frédéric VandeVyver
Caroline Debruyne
Jan Philippé
Jan P. van Meerbeeck
Publikationsdatum
01.03.2008
Verlag
Springer-Verlag
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 3/2008
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-007-0628-6

Weitere Artikel der Ausgabe 3/2008

European Journal of Nuclear Medicine and Molecular Imaging 3/2008 Zur Ausgabe