Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 6/2008

01.06.2008 | Original Article

Evaluation of [18F]gefitinib as a molecular imaging probe for the assessment of the epidermal growth factor receptor status in malignant tumors

verfasst von: Helen Su, Yann Seimbille, Gregory Z. Ferl, Claudia Bodenstein, Barbara Fueger, Kevin J. Kim, Yu-Tien Hsu, Steven M. Dubinett, Michael E. Phelps, Johannes Czernin, Wolfgang A. Weber

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 6/2008

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Gefitinib, an inhibitor of the epidermal growth factor receptor–tyrosine kinase (EGFR-TK), has shown potent effects in a subset of patients carrying specific EGFR-TK mutations in advanced non-small-cell lung cancer. In this study, we asked whether PET with [18F]gefitinib may be used to study noninvasively the pharmacokinetics of gefitinib in vivo and to image the EGFR status of cancer cells.

Materials and methods

Synthesis of [18F]gefitinib has been previously described. The biodistribution and metabolic stability of [18F]gefitinib was assessed in mice and vervet monkeys for up to 2 h post injection by both micropositron emission tomography (PET)/computed tomography (CT) scans and postmortem ex vivo tissue harvesting. Uptake levels of radiolabeled gefitinib in EGFR-expressing human cancer cell lines with various levels of EGFR expression or mutation status were evaluated both in vivo and in vitro.

Results

MicroPET/CT scans in two species demonstrated a rapid and predominantly hepatobiliary clearance of [18F]gefitinib in vivo. However, uptake levels of radiolabeled gefitinib, both in vivo and in vitro, did not correlate with EGFR expression levels or functional status. This unexpected observation was due to high nonspecific, nonsaturable cellular uptake of gefitinib.

Conclusion

The biodistribution of the drug analogue [18F]gefitinib suggests that it may be used to assess noninvasively the pharmacokinetics of gefitinib in patients by PET imaging. This is of clinical relevance, as insufficient intratumoral drug concentrations are considered to be a factor for resistance to gefitinib therapy. However, the highly nonspecific cellular binding of [18F]gefitinib may preclude the use of this imaging probe for noninvasive assessment of EGFR receptor status in patients.
Literatur
1.
Zurück zum Zitat Pao W, Miller VA. Epidermal growth factor receptor mutations, small-molecule kinase inhibitors, and non-small-cell lung cancer: current knowledge and future directions. J Clin Oncol. 2005;23:2556–68.PubMedCrossRef Pao W, Miller VA. Epidermal growth factor receptor mutations, small-molecule kinase inhibitors, and non-small-cell lung cancer: current knowledge and future directions. J Clin Oncol. 2005;23:2556–68.PubMedCrossRef
2.
Zurück zum Zitat Saba NF, Khuri FR, Shin DM. Targeting the epidermal growth factor receptor. Trials in head and neck and lung cancer. Oncology. 2006;20:153–61.PubMed Saba NF, Khuri FR, Shin DM. Targeting the epidermal growth factor receptor. Trials in head and neck and lung cancer. Oncology. 2006;20:153–61.PubMed
3.
Zurück zum Zitat Halatsch ME, Schmidt U, Behnke-Mursch J, Unterberg A, Wirtz CR. Epidermal growth factor receptor inhibition for the treatment of glioblastoma multiforme and other malignant brain tumours. Cancer Treat Rev. 2006;32:74–89.PubMedCrossRef Halatsch ME, Schmidt U, Behnke-Mursch J, Unterberg A, Wirtz CR. Epidermal growth factor receptor inhibition for the treatment of glioblastoma multiforme and other malignant brain tumours. Cancer Treat Rev. 2006;32:74–89.PubMedCrossRef
4.
Zurück zum Zitat Mendelsohn J. Targeting the epidermal growth factor receptor for cancer therapy. J Clin Oncol. 2002;20:1S–13S.PubMed Mendelsohn J. Targeting the epidermal growth factor receptor for cancer therapy. J Clin Oncol. 2002;20:1S–13S.PubMed
5.
Zurück zum Zitat Kris MG, Natale RB, Herbst RS, Lynch TJ Jr., Prager D, Belani CP, et al. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. Jama. 2003;290:2149–58.PubMedCrossRef Kris MG, Natale RB, Herbst RS, Lynch TJ Jr., Prager D, Belani CP, et al. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. Jama. 2003;290:2149–58.PubMedCrossRef
6.
Zurück zum Zitat Fukuoka M, Yano S, Giaccone G, Tamura T, Nakagawa K, Douillard JY, et al. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (The IDEAL 1 Trial) [corrected]. J Clin Oncol. 2003;21:2237–46.PubMedCrossRef Fukuoka M, Yano S, Giaccone G, Tamura T, Nakagawa K, Douillard JY, et al. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (The IDEAL 1 Trial) [corrected]. J Clin Oncol. 2003;21:2237–46.PubMedCrossRef
7.
Zurück zum Zitat Wakeling AE, Guy SP, Woodburn JR, Ashton SE, Curry BJ, Barker AJ, et al. ZD1839 (Iressa): an orally active inhibitor of epidermal growth factor signaling with potential for cancer therapy. Cancer Res. 2002;62:5749–54.PubMed Wakeling AE, Guy SP, Woodburn JR, Ashton SE, Curry BJ, Barker AJ, et al. ZD1839 (Iressa): an orally active inhibitor of epidermal growth factor signaling with potential for cancer therapy. Cancer Res. 2002;62:5749–54.PubMed
8.
Zurück zum Zitat Shepherd FA, Rodrigues Pereira J, Ciuleanu T, Tan EH, Hirsh V, Thongprasert S, et al. Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med. 2005;353:123–32.PubMedCrossRef Shepherd FA, Rodrigues Pereira J, Ciuleanu T, Tan EH, Hirsh V, Thongprasert S, et al. Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med. 2005;353:123–32.PubMedCrossRef
9.
Zurück zum Zitat Cappuzzo F, Finocchiaro G, Metro G, Bartolini S, Magrini E, Cancellieri A, et al. Clinical experience with gefitinib: an update. Crit Rev Oncol Hematol. 2006;58:31–45.PubMedCrossRef Cappuzzo F, Finocchiaro G, Metro G, Bartolini S, Magrini E, Cancellieri A, et al. Clinical experience with gefitinib: an update. Crit Rev Oncol Hematol. 2006;58:31–45.PubMedCrossRef
10.
Zurück zum Zitat Fowler JS, Ding YS, Volkow ND. Radiotracers for positron emission tomography imaging. Semin Nucl Med. 2003;33:14–27.PubMedCrossRef Fowler JS, Ding YS, Volkow ND. Radiotracers for positron emission tomography imaging. Semin Nucl Med. 2003;33:14–27.PubMedCrossRef
11.
Zurück zum Zitat Murali D, Flores LG, Converse AK, Barlett RM, Barnhart TE, Armstrong EA, et al. Evaluation of [F-18]Iressa as aPET imaging agent for tumor overexpressing epidermal growth factor (EGFR) receptors. J Labelled Compd Radiopharm. 2005;48:S1–S341.CrossRef Murali D, Flores LG, Converse AK, Barlett RM, Barnhart TE, Armstrong EA, et al. Evaluation of [F-18]Iressa as aPET imaging agent for tumor overexpressing epidermal growth factor (EGFR) receptors. J Labelled Compd Radiopharm. 2005;48:S1–S341.CrossRef
12.
Zurück zum Zitat Seimbille Y, Phelps ME, Czernin J, Silverman DS. Fluorin-18 labeling of 6,7-distributed anilinoquinazoline derivatives, for positron emission tomography (PET) imaging of tyrosine kianse receptors:synthesis of 18F-Iressa and related molecular probes.J Labelled Compd Radiopharm. 2005;48:819–27.CrossRef Seimbille Y, Phelps ME, Czernin J, Silverman DS. Fluorin-18 labeling of 6,7-distributed anilinoquinazoline derivatives, for positron emission tomography (PET) imaging of tyrosine kianse receptors:synthesis of 18F-Iressa and related molecular probes.J Labelled Compd Radiopharm. 2005;48:819–27.CrossRef
13.
Zurück zum Zitat Holt DP, Ravert HT, Dannals RF, Pomper MG. Synthesis of [11C]gefitinib for imaging epidermal growth factor receptor tyrosine kinase with positron emission tomography. J Labelled Compd Radiopharm. 2006;49:883–8.CrossRef Holt DP, Ravert HT, Dannals RF, Pomper MG. Synthesis of [11C]gefitinib for imaging epidermal growth factor receptor tyrosine kinase with positron emission tomography. J Labelled Compd Radiopharm. 2006;49:883–8.CrossRef
14.
Zurück zum Zitat Wang JQ, Gao M, Miller KD, Sledge GW, Zheng QH. Synthesis of [11C]Iressa as a new potential PET cancer imaging agent for epidermal growth factor receptor tyrosine kinase. Bioorg Med Chem Lett. 2006;16:4102–6.PubMedCrossRef Wang JQ, Gao M, Miller KD, Sledge GW, Zheng QH. Synthesis of [11C]Iressa as a new potential PET cancer imaging agent for epidermal growth factor receptor tyrosine kinase. Bioorg Med Chem Lett. 2006;16:4102–6.PubMedCrossRef
15.
Zurück zum Zitat Swaisland HC, Smith RP, Laight A, Kerr DJ, Ranson M, Wilder-Smith CH, et al. Single-dose clinical pharmacokinetic studies of gefitinib. Clin Pharmacokinet. 2005;44:1165–77.PubMedCrossRef Swaisland HC, Smith RP, Laight A, Kerr DJ, Ranson M, Wilder-Smith CH, et al. Single-dose clinical pharmacokinetic studies of gefitinib. Clin Pharmacokinet. 2005;44:1165–77.PubMedCrossRef
16.
Zurück zum Zitat Blackhall F, Ranson M, Thatcher N. Where next for gefitinib in patients with lung cancer? Lancet Oncol. 2006;7:499–507.PubMedCrossRef Blackhall F, Ranson M, Thatcher N. Where next for gefitinib in patients with lung cancer? Lancet Oncol. 2006;7:499–507.PubMedCrossRef
17.
Zurück zum Zitat Elkind NB, Szentpetery Z, Apati A, Ozvegy-Laczka C, Varady G, Ujhelly O, et al. Multidrug transporter ABCG2 prevents tumor cell death induced by the epidermal growth factor receptor inhibitor Iressa (ZD1839, gefitinib). Cancer Res. 2005;65:1770–7.PubMedCrossRef Elkind NB, Szentpetery Z, Apati A, Ozvegy-Laczka C, Varady G, Ujhelly O, et al. Multidrug transporter ABCG2 prevents tumor cell death induced by the epidermal growth factor receptor inhibitor Iressa (ZD1839, gefitinib). Cancer Res. 2005;65:1770–7.PubMedCrossRef
18.
Zurück zum Zitat Tai YC, Ruangma A, Rowland D, Siegel S, Newport DF, Chow PL, et al. Performance evaluation of the microPET focus: a third-generation microPET scanner dedicated to animal imaging. J Nucl Med. 2005;46:455–63.PubMed Tai YC, Ruangma A, Rowland D, Siegel S, Newport DF, Chow PL, et al. Performance evaluation of the microPET focus: a third-generation microPET scanner dedicated to animal imaging. J Nucl Med. 2005;46:455–63.PubMed
19.
Zurück zum Zitat Loening AM, Gambhir SS. AMIDE: a free software tool for multimodality medical image analysis. Mol Imaging. 2003;2:131–7.PubMedCrossRef Loening AM, Gambhir SS. AMIDE: a free software tool for multimodality medical image analysis. Mol Imaging. 2003;2:131–7.PubMedCrossRef
20.
Zurück zum Zitat Brix G, Zaers J, Adam LE, Bellemann ME, Ostertag H, Trojan H, et al. Performance evaluation of a whole-body PET scanner using the NEMA protocol. National Electrical Manufacturers Association. J Nucl Med. 1997;38:1614–23.PubMed Brix G, Zaers J, Adam LE, Bellemann ME, Ostertag H, Trojan H, et al. Performance evaluation of a whole-body PET scanner using the NEMA protocol. National Electrical Manufacturers Association. J Nucl Med. 1997;38:1614–23.PubMed
21.
Zurück zum Zitat Ortu G, Ben-David I, Rozen Y, Freedman NM, Chisin R, Levitzki A, et al. Labeled EGFr-TK irreversible inhibitor (ML03): in vitro and in vivo properties, potential as PET biomarker for cancer and feasibility as anticancer drug. Int J Cancer. 2002;101:360–70.PubMedCrossRef Ortu G, Ben-David I, Rozen Y, Freedman NM, Chisin R, Levitzki A, et al. Labeled EGFr-TK irreversible inhibitor (ML03): in vitro and in vivo properties, potential as PET biomarker for cancer and feasibility as anticancer drug. Int J Cancer. 2002;101:360–70.PubMedCrossRef
22.
Zurück zum Zitat Mellinghoff IK, Wang MY, Vivanco I, Haas-Kogan DA, Zhu S, Dia EQ, et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med. 2005;353:2012–24.PubMedCrossRef Mellinghoff IK, Wang MY, Vivanco I, Haas-Kogan DA, Zhu S, Dia EQ, et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med. 2005;353:2012–24.PubMedCrossRef
23.
Zurück zum Zitat Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004;304:1497–500.PubMedCrossRef Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004;304:1497–500.PubMedCrossRef
24.
Zurück zum Zitat Pao W, Miller VA, Politi KA, Riely GJ, Somwar R, Zakowski MF, et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med. 2005;2:e73.PubMedCrossRef Pao W, Miller VA, Politi KA, Riely GJ, Somwar R, Zakowski MF, et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med. 2005;2:e73.PubMedCrossRef
25.
Zurück zum Zitat Schwartz JL, Tamura Y, Jordan R, Grierson JR, Krohn KA. Monitoring tumor cell proliferation by targeting DNA synthetic processes with thymidine and thymidine analogs. J Nucl Med. 2003;44:2027–32.PubMed Schwartz JL, Tamura Y, Jordan R, Grierson JR, Krohn KA. Monitoring tumor cell proliferation by targeting DNA synthetic processes with thymidine and thymidine analogs. J Nucl Med. 2003;44:2027–32.PubMed
26.
Zurück zum Zitat Amann J, Kalyankrishna S, Massion PP, Ohm JE, Girard L, Shigematsu H, et al. Aberrant epidermal growth factor receptor signaling and enhanced sensitivity to EGFR inhibitors in lung cancer. Cancer Res. 2005;65:226–35.PubMed Amann J, Kalyankrishna S, Massion PP, Ohm JE, Girard L, Shigematsu H, et al. Aberrant epidermal growth factor receptor signaling and enhanced sensitivity to EGFR inhibitors in lung cancer. Cancer Res. 2005;65:226–35.PubMed
27.
Zurück zum Zitat Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab. 2007;27:1533–9.PubMedCrossRef Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab. 2007;27:1533–9.PubMedCrossRef
28.
Zurück zum Zitat Huang SC, Truong D, Wu HM, Chatziioannou AF, Shao W, Wu AM, et al. An internet-based “kinetic imaging system” (KIS) for MicroPET. Mol Imaging Biol. 2005;7:330–41.PubMedCrossRef Huang SC, Truong D, Wu HM, Chatziioannou AF, Shao W, Wu AM, et al. An internet-based “kinetic imaging system” (KIS) for MicroPET. Mol Imaging Biol. 2005;7:330–41.PubMedCrossRef
29.
Zurück zum Zitat Antunes P, Ginj M, Zhang H, Waser B, Baum RP, Reubi JC, et al. Are radiogallium-labelled DOTA-conjugated somatostatin analogues superior to those labelled with other radiometals? Eur J Nucl Med Mol Imaging. 2007;34:982–93.PubMedCrossRef Antunes P, Ginj M, Zhang H, Waser B, Baum RP, Reubi JC, et al. Are radiogallium-labelled DOTA-conjugated somatostatin analogues superior to those labelled with other radiometals? Eur J Nucl Med Mol Imaging. 2007;34:982–93.PubMedCrossRef
30.
Zurück zum Zitat Senekowitsch-Schmidtke R, Steiner K, Haunschild J, Mollenstadt S, Truckenbrodt R. In vivo evaluation of epidermal growth factor (EGF) receptor density on human tumor xenografts using radiolabeled EGF and anti-(EGF receptor) mAb 425. Cancer Immunol Immunother. 1996;42:108–14.PubMedCrossRef Senekowitsch-Schmidtke R, Steiner K, Haunschild J, Mollenstadt S, Truckenbrodt R. In vivo evaluation of epidermal growth factor (EGF) receptor density on human tumor xenografts using radiolabeled EGF and anti-(EGF receptor) mAb 425. Cancer Immunol Immunother. 1996;42:108–14.PubMedCrossRef
31.
Zurück zum Zitat Eckelman WC. The application of receptor theory to receptor-binding and enzyme-binding oncologic radiopharmaceuticals. Nucl Med Biol. 1994;21:759–69.PubMedCrossRef Eckelman WC. The application of receptor theory to receptor-binding and enzyme-binding oncologic radiopharmaceuticals. Nucl Med Biol. 1994;21:759–69.PubMedCrossRef
32.
Zurück zum Zitat Bonasera TA, Ortu G, Rozen Y, Krais R, Freedman NM, Chisin R, et al. Potential (18)F-labeled biomarkers for epidermal growth factor receptor tyrosine kinase. Nucl Med Biol. 2001;28:359–74.PubMedCrossRef Bonasera TA, Ortu G, Rozen Y, Krais R, Freedman NM, Chisin R, et al. Potential (18)F-labeled biomarkers for epidermal growth factor receptor tyrosine kinase. Nucl Med Biol. 2001;28:359–74.PubMedCrossRef
33.
Zurück zum Zitat McKillop D, Partridge EA, Kemp JV, Spence MP, Kendrew J, Barnett S, et al. Tumor penetration of gefitinib (Iressa), an epidermal growth factor receptor tyrosine kinase inhibitor. Mol Cancer Ther. 2005;4:641–9.PubMedCrossRef McKillop D, Partridge EA, Kemp JV, Spence MP, Kendrew J, Barnett S, et al. Tumor penetration of gefitinib (Iressa), an epidermal growth factor receptor tyrosine kinase inhibitor. Mol Cancer Ther. 2005;4:641–9.PubMedCrossRef
34.
Zurück zum Zitat Brehmer D, Greff Z, Godl K, Blencke S, Kurtenbach A, Weber M, et al. Cellular targets of gefitinib. Cancer Res. 2005;65:379–82.PubMed Brehmer D, Greff Z, Godl K, Blencke S, Kurtenbach A, Weber M, et al. Cellular targets of gefitinib. Cancer Res. 2005;65:379–82.PubMed
35.
Zurück zum Zitat Sordella R, Bell DW, Haber DA, Settleman J. Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science. 2004;305:1163–7.PubMedCrossRef Sordella R, Bell DW, Haber DA, Settleman J. Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science. 2004;305:1163–7.PubMedCrossRef
36.
Zurück zum Zitat Pal A, Glekas A, Doubrovin M, Balatoni J, Beresten T, Maxwell D, et al. Molecular Imaging of EGFR Kinase Activity in Tumors with (124)I-Labeled Small Molecular Tracer and Positron Emission Tomography. Mol Imaging Biol. 2006;8:262–77.PubMedCrossRef Pal A, Glekas A, Doubrovin M, Balatoni J, Beresten T, Maxwell D, et al. Molecular Imaging of EGFR Kinase Activity in Tumors with (124)I-Labeled Small Molecular Tracer and Positron Emission Tomography. Mol Imaging Biol. 2006;8:262–77.PubMedCrossRef
Metadaten
Titel
Evaluation of [18F]gefitinib as a molecular imaging probe for the assessment of the epidermal growth factor receptor status in malignant tumors
verfasst von
Helen Su
Yann Seimbille
Gregory Z. Ferl
Claudia Bodenstein
Barbara Fueger
Kevin J. Kim
Yu-Tien Hsu
Steven M. Dubinett
Michael E. Phelps
Johannes Czernin
Wolfgang A. Weber
Publikationsdatum
01.06.2008
Verlag
Springer-Verlag
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 6/2008
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-007-0636-6

Weitere Artikel der Ausgabe 6/2008

European Journal of Nuclear Medicine and Molecular Imaging 6/2008 Zur Ausgabe