Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 4/2011

01.04.2011 | Original Article

Reproducibility study of [18F]FPP(RGD)2 uptake in murine models of human tumor xenografts

verfasst von: Edwin Chang, Shuangdong Liu, Gayatri Gowrishankar, Shahriar Yaghoubi, James Patrick Wedgeworth, Frederick Chin, Dietmar Berndorff, Volker Gekeler, Sanjiv S. Gambhir, Zhen Cheng

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 4/2011

Einloggen, um Zugang zu erhalten

Abstract

Purpose

An 18F-labeled PEGylated arginine-glycine-aspartic acid (RGD) dimer {[18F]FPP(RGD)2} has been used to image tumor αvβ3 integrin levels in preclinical and clinical studies. Serial positron emission tomography (PET) studies may be useful for monitoring antiangiogenic therapy response or for drug screening; however, the reproducibility of serial scans has not been determined for this PET probe. The purpose of this study was to determine the reproducibility of the integrin αvβ3-targeted PET probe, [18F]FPP(RGD)2, using small animal PET.

Methods

Human HCT116 colon cancer xenografts were implanted into nude mice (n = 12) in the breast and scapular region and grown to mean diameters of 5–15 mm for approximately 2.5 weeks. A 3-min acquisition was performed on a small animal PET scanner approximately 1 h after administration of [18F]FPP(RGD)2 (1.9–3.8 MBq, 50–100 μCi) via the tail vein. A second small animal PET scan was performed approximately 6 h later after reinjection of the probe to assess for reproducibility. Images were analyzed by drawing an ellipsoidal region of interest (ROI) around the tumor xenograft activity. Percentage injected dose per gram (%ID/g) values were calculated from the mean or maximum activity in the ROIs. Coefficients of variation and differences in %ID/g values between studies from the same day were calculated to determine the reproducibility.

Results

The coefficient of variation (mean±SD) for %IDmean/g and %IDmax/g values between [18F]FPP(RGD)2 small animal PET scans performed 6 h apart on the same day were 11.1 ± 7.6% and 10.4 ± 9.3%, respectively. The corresponding differences in %IDmean/g and %IDmax/g values between scans were −0.025 ± 0.067 and −0.039 ± 0.426. Immunofluorescence studies revealed a direct relationship between extent of ανβ3 integrin expression in tumors and tumor vasculature with level of tracer uptake. Mouse body weight, injected dose, and fasting state did not contribute to the variability of the scans; however, consistent scanning parameters were necessary to ensure accurate studies, in particular, noting tumor volume, as well as making uniform: the time of imaging after injection and the ROI size. Reanalysis of ROI placement displayed variability for %IDmean/g of 6.6 ± 3.9% and 0.28 ± 0.12% for %IDmax/g.

Conclusion

[18F]FPP(RGD)2 small animal PET mouse tumor xenograft studies are reproducible with relatively low variability.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Akiyama SK. Integrins in cell adhesion and signaling. Hum Cell 1996;9(3):181–6.PubMed Akiyama SK. Integrins in cell adhesion and signaling. Hum Cell 1996;9(3):181–6.PubMed
3.
Zurück zum Zitat Pasqualini R, Koivunen E, Ruoslahti E. Alpha v integrins as receptors for tumor targeting by circulating ligands. Nat Biotechnol 1997;15(6):542–6.PubMedCrossRef Pasqualini R, Koivunen E, Ruoslahti E. Alpha v integrins as receptors for tumor targeting by circulating ligands. Nat Biotechnol 1997;15(6):542–6.PubMedCrossRef
4.
Zurück zum Zitat Desgrosellier JS, Barnes LA, Shields DJ, Huang M, Lau SK, Prévost N, et al. An integrin alpha(v)beta(3)-c-Src oncogenic unit promotes anchorage-independence and tumor progression. Nat Med 2009;15(10):1163–9.PubMedCrossRef Desgrosellier JS, Barnes LA, Shields DJ, Huang M, Lau SK, Prévost N, et al. An integrin alpha(v)beta(3)-c-Src oncogenic unit promotes anchorage-independence and tumor progression. Nat Med 2009;15(10):1163–9.PubMedCrossRef
5.
6.
Zurück zum Zitat Hood JD, Frausto R, Kiosses WB, Schwartz MA, Cheresh DA. Differential alphav integrin-mediated Ras-ERK signaling during two pathways of angiogenesis. J Cell Biol 2003;162(5):933–43.PubMedCrossRef Hood JD, Frausto R, Kiosses WB, Schwartz MA, Cheresh DA. Differential alphav integrin-mediated Ras-ERK signaling during two pathways of angiogenesis. J Cell Biol 2003;162(5):933–43.PubMedCrossRef
7.
Zurück zum Zitat Ruoslahti E, Reed JC. Anchorage dependence, integrins, and apoptosis. Cell 1994;77(4):477–8.PubMedCrossRef Ruoslahti E, Reed JC. Anchorage dependence, integrins, and apoptosis. Cell 1994;77(4):477–8.PubMedCrossRef
8.
Zurück zum Zitat Ruoslahti E. RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol 1996;12:697–715.PubMedCrossRef Ruoslahti E. RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol 1996;12:697–715.PubMedCrossRef
9.
Zurück zum Zitat Nabors LB, Mikkelsen T, Rosenfeld SS, Hochberg F, Akella NS, Fisher JD, et al. Phase I and correlative biology study of cilengitide in patients with recurrent malignant glioma. J Clin Oncol 2007;25(13):1651–7.PubMedCrossRef Nabors LB, Mikkelsen T, Rosenfeld SS, Hochberg F, Akella NS, Fisher JD, et al. Phase I and correlative biology study of cilengitide in patients with recurrent malignant glioma. J Clin Oncol 2007;25(13):1651–7.PubMedCrossRef
10.
Zurück zum Zitat Maubant S, Saint-Dizier D, Boutillon M, Perron-Sierra F, Casara PJ, Hickman JA, et al. Blockade of alpha v beta3 and alpha v beta5 integrins by RGD mimetics induces anoikis and not integrin-mediated death in human endothelial cells. Blood 2006;108(9):3035–44.PubMedCrossRef Maubant S, Saint-Dizier D, Boutillon M, Perron-Sierra F, Casara PJ, Hickman JA, et al. Blockade of alpha v beta3 and alpha v beta5 integrins by RGD mimetics induces anoikis and not integrin-mediated death in human endothelial cells. Blood 2006;108(9):3035–44.PubMedCrossRef
11.
Zurück zum Zitat Perron-Sierra F, Saint Dizier D, Bertrand M, Genton A, Tucker GC, Casara P. Substituted benzocyloheptenes as potent and selective alpha(v) integrin antagonists. Bioorg Med Chem Lett 2002;12(22):3291–6.PubMedCrossRef Perron-Sierra F, Saint Dizier D, Bertrand M, Genton A, Tucker GC, Casara P. Substituted benzocyloheptenes as potent and selective alpha(v) integrin antagonists. Bioorg Med Chem Lett 2002;12(22):3291–6.PubMedCrossRef
12.
Zurück zum Zitat Nisato RE, Tille JC, Jonczyk A, Goodman SL, Pepper MS. alphav beta 3 and alphav beta 5 integrin antagonists inhibit angiogenesis in vitro. Angiogenesis 2003;6(2):105–19.PubMedCrossRef Nisato RE, Tille JC, Jonczyk A, Goodman SL, Pepper MS. alphav beta 3 and alphav beta 5 integrin antagonists inhibit angiogenesis in vitro. Angiogenesis 2003;6(2):105–19.PubMedCrossRef
13.
Zurück zum Zitat Wu Y, Cai W, Chen X. Near-infrared fluorescence imaging of tumor integrin alpha v beta 3 expression with Cy7-labeled RGD multimers. Mol Imaging Biol 2006;8(4):226–36.PubMedCrossRef Wu Y, Cai W, Chen X. Near-infrared fluorescence imaging of tumor integrin alpha v beta 3 expression with Cy7-labeled RGD multimers. Mol Imaging Biol 2006;8(4):226–36.PubMedCrossRef
14.
Zurück zum Zitat Beer AJ, Schwaiger M. Imaging of integrin alphavbeta3 expression. Cancer Metastasis Rev 2008;27(4):631–44.PubMedCrossRef Beer AJ, Schwaiger M. Imaging of integrin alphavbeta3 expression. Cancer Metastasis Rev 2008;27(4):631–44.PubMedCrossRef
15.
Zurück zum Zitat Eskens FA, Dumez H, Hoekstra R, Perschl A, Brindley C, Böttcher S, et al. Phase I and pharmacokinetic study of continuous twice weekly intravenous administration of Cilengitide (EMD 121974), a novel inhibitor of the integrins alphavbeta3 and alphavbeta5 in patients with advanced solid tumours. Eur J Cancer 2003;39(7):917–26.PubMedCrossRef Eskens FA, Dumez H, Hoekstra R, Perschl A, Brindley C, Böttcher S, et al. Phase I and pharmacokinetic study of continuous twice weekly intravenous administration of Cilengitide (EMD 121974), a novel inhibitor of the integrins alphavbeta3 and alphavbeta5 in patients with advanced solid tumours. Eur J Cancer 2003;39(7):917–26.PubMedCrossRef
16.
Zurück zum Zitat Reynolds AR, Hart IR, Watson AR, Welti JC, Silva RG, Robinson SD, et al. Stimulation of tumor growth and angiogenesis by low concentrations of RGD-mimetic integrin inhibitors. Nat Med 2009;15(4):392–400.PubMedCrossRef Reynolds AR, Hart IR, Watson AR, Welti JC, Silva RG, Robinson SD, et al. Stimulation of tumor growth and angiogenesis by low concentrations of RGD-mimetic integrin inhibitors. Nat Med 2009;15(4):392–400.PubMedCrossRef
17.
Zurück zum Zitat Schottelius M, Laufer B, Kessler H, Wester HJ. Ligands for mapping alphavbeta3-integrin expression in vivo. Acc Chem Res 2009;42(7):969–80.PubMedCrossRef Schottelius M, Laufer B, Kessler H, Wester HJ. Ligands for mapping alphavbeta3-integrin expression in vivo. Acc Chem Res 2009;42(7):969–80.PubMedCrossRef
18.
Zurück zum Zitat Liu S. Radiolabeled multimeric cyclic RGD peptides as integrin alphavbeta3 targeted radiotracers for tumor imaging. Mol Pharm 2006;3(5):472–87.PubMedCrossRef Liu S. Radiolabeled multimeric cyclic RGD peptides as integrin alphavbeta3 targeted radiotracers for tumor imaging. Mol Pharm 2006;3(5):472–87.PubMedCrossRef
19.
Zurück zum Zitat Haubner R, Decristoforo C. Radiolabelled RGD peptides and peptidomimetics for tumour targeting. Front Biosci 2009;14:872–86.PubMedCrossRef Haubner R, Decristoforo C. Radiolabelled RGD peptides and peptidomimetics for tumour targeting. Front Biosci 2009;14:872–86.PubMedCrossRef
20.
Zurück zum Zitat Beer AJ, Niemeyer M, Carlsen J, Sarbia M, Nährig J, Watzlowik P, et al. Patterns of alphavbeta3 expression in primary and metastatic human breast cancer as shown by 18F-Galacto-RGD PET. J Nucl Med 2008;49(2):255–9.PubMedCrossRef Beer AJ, Niemeyer M, Carlsen J, Sarbia M, Nährig J, Watzlowik P, et al. Patterns of alphavbeta3 expression in primary and metastatic human breast cancer as shown by 18F-Galacto-RGD PET. J Nucl Med 2008;49(2):255–9.PubMedCrossRef
21.
Zurück zum Zitat Beer AJ, Grosu AL, Carlsen J, Kolk A, Sarbia M, Stangier I, et al. [18F]galacto-RGD positron emission tomography for imaging of alphavbeta3 expression on the neovasculature in patients with squamous cell carcinoma of the head and neck. Clin Cancer Res 2007;13(22 Pt 1):6610–6.PubMedCrossRef Beer AJ, Grosu AL, Carlsen J, Kolk A, Sarbia M, Stangier I, et al. [18F]galacto-RGD positron emission tomography for imaging of alphavbeta3 expression on the neovasculature in patients with squamous cell carcinoma of the head and neck. Clin Cancer Res 2007;13(22 Pt 1):6610–6.PubMedCrossRef
22.
Zurück zum Zitat Beer AJ, Haubner R, Sarbia M, Goebel M, Luderschmidt S, Grosu AL, et al. Positron emission tomography using [18F]Galacto-RGD identifies the level of integrin alpha(v)beta3 expression in man. Clin Cancer Res 2006;12(13):3942–9.PubMedCrossRef Beer AJ, Haubner R, Sarbia M, Goebel M, Luderschmidt S, Grosu AL, et al. Positron emission tomography using [18F]Galacto-RGD identifies the level of integrin alpha(v)beta3 expression in man. Clin Cancer Res 2006;12(13):3942–9.PubMedCrossRef
23.
Zurück zum Zitat Liu S, Liu Z, Chen K, Yan Y, Watzlowik P, Wester HJ, et al. 18F-labeled galacto and PEGylated RGD dimers for PET imaging of αvβ3 integrin expression. Mol Imaging Biol 2010;12(5):530–8.PubMedCrossRef Liu S, Liu Z, Chen K, Yan Y, Watzlowik P, Wester HJ, et al. 18F-labeled galacto and PEGylated RGD dimers for PET imaging of αvβ3 integrin expression. Mol Imaging Biol 2010;12(5):530–8.PubMedCrossRef
24.
Zurück zum Zitat Wu Z, Li ZB, Cai W, He L, Chin FT, Li F, et al. 18F-labeled mini-PEG spacered RGD dimer (18F-FPRGD2): synthesis and microPET imaging of alphavbeta3 integrin expression. Eur J Nucl Med Mol Imaging 2007;34(11):1823–31.PubMedCrossRef Wu Z, Li ZB, Cai W, He L, Chin FT, Li F, et al. 18F-labeled mini-PEG spacered RGD dimer (18F-FPRGD2): synthesis and microPET imaging of alphavbeta3 integrin expression. Eur J Nucl Med Mol Imaging 2007;34(11):1823–31.PubMedCrossRef
25.
Zurück zum Zitat Zhang X, Xiong Z, Wu Y, Cai W, Tseng JR, Gambhir SS, et al. Quantitative PET imaging of tumor integrin alphavbeta3 expression with 18F-FRGD2. J Nucl Med 2006;47(1):113–21.PubMed Zhang X, Xiong Z, Wu Y, Cai W, Tseng JR, Gambhir SS, et al. Quantitative PET imaging of tumor integrin alphavbeta3 expression with 18F-FRGD2. J Nucl Med 2006;47(1):113–21.PubMed
26.
Zurück zum Zitat Wu Z, Li ZB, Chen K, Cai W, He L, Chin FT, et al. microPET of tumor integrin alphavbeta3 expression using 18F-labeled PEGylated tetrameric RGD peptide (18F-FPRGD4). J Nucl Med 2007;48(9):1536–44.PubMedCrossRef Wu Z, Li ZB, Chen K, Cai W, He L, Chin FT, et al. microPET of tumor integrin alphavbeta3 expression using 18F-labeled PEGylated tetrameric RGD peptide (18F-FPRGD4). J Nucl Med 2007;48(9):1536–44.PubMedCrossRef
27.
Zurück zum Zitat Chin FT, Shen B, Liu SL, Berganos RA, Chang E, Mittra E, Chen XY, Gambhir SS. Initial experience with clinical-grade [18F]FPPRGD2: an automated multi-step radiosynthesis for human PET studies. Submitted to Mol Imaging Biol 2010. Chin FT, Shen B, Liu SL, Berganos RA, Chang E, Mittra E, Chen XY, Gambhir SS. Initial experience with clinical-grade [18F]FPPRGD2: an automated multi-step radiosynthesis for human PET studies. Submitted to Mol Imaging Biol 2010.
28.
Zurück zum Zitat Dijkgraaf I, Beer AJ, Wester HJ. Application of RGD-containing peptides as imaging probes for alphavbeta3 expression. Front Biosci 2009;14:887–99.PubMedCrossRef Dijkgraaf I, Beer AJ, Wester HJ. Application of RGD-containing peptides as imaging probes for alphavbeta3 expression. Front Biosci 2009;14:887–99.PubMedCrossRef
29.
Zurück zum Zitat Cai W, Rao J, Gambhir SS, Chen X. How molecular imaging is speeding up antiangiogenic drug development. Mol Cancer Ther 2006;5(11):2624–33.PubMedCrossRef Cai W, Rao J, Gambhir SS, Chen X. How molecular imaging is speeding up antiangiogenic drug development. Mol Cancer Ther 2006;5(11):2624–33.PubMedCrossRef
30.
Zurück zum Zitat Tseng JR, Dandekar M, Subbarayan M, Cheng Z, Park JM, Louie S, et al. Reproducibility of 3'-deoxy-3'-(18)F-fluorothymidine microPET studies in tumor xenografts in mice. J Nucl Med 2005;46(11):1851–7.PubMed Tseng JR, Dandekar M, Subbarayan M, Cheng Z, Park JM, Louie S, et al. Reproducibility of 3'-deoxy-3'-(18)F-fluorothymidine microPET studies in tumor xenografts in mice. J Nucl Med 2005;46(11):1851–7.PubMed
31.
Zurück zum Zitat Knoess C, Siegel S, Smith A, Newport D, Richerzhagen N, Winkeler A, et al. Performance evaluation of the microPET R4 PET scanner for rodents. Eur J Nucl Med Mol Imaging 2003;30(5):737–47.PubMedCrossRef Knoess C, Siegel S, Smith A, Newport D, Richerzhagen N, Winkeler A, et al. Performance evaluation of the microPET R4 PET scanner for rodents. Eur J Nucl Med Mol Imaging 2003;30(5):737–47.PubMedCrossRef
32.
Zurück zum Zitat Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 1994;13(4):601–9.PubMedCrossRef Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 1994;13(4):601–9.PubMedCrossRef
33.
Zurück zum Zitat Loening AM, Gambhir SS. AMIDE: a free software tool for multimodality medical image analysis. Mol Imaging 2003;2(3):131–7.PubMedCrossRef Loening AM, Gambhir SS. AMIDE: a free software tool for multimodality medical image analysis. Mol Imaging 2003;2(3):131–7.PubMedCrossRef
34.
Zurück zum Zitat Atkinson G, Nevill AM. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med 1998;26(4):217–38.PubMedCrossRef Atkinson G, Nevill AM. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med 1998;26(4):217–38.PubMedCrossRef
35.
Zurück zum Zitat Dandekar M, Tseng JR, Gambhir SS. Reproducibility of 18F-FDG microPET studies in mouse tumor xenografts. J Nucl Med 2007;48(4):602–7.PubMedCrossRef Dandekar M, Tseng JR, Gambhir SS. Reproducibility of 18F-FDG microPET studies in mouse tumor xenografts. J Nucl Med 2007;48(4):602–7.PubMedCrossRef
36.
Zurück zum Zitat Weber WA, Ziegler SI, Thödtmann R, Hanauske AR, Schwaiger M. Reproducibility of metabolic measurements in malignant tumors using FDG PET. J Nucl Med 1999;40(11):1771–7.PubMed Weber WA, Ziegler SI, Thödtmann R, Hanauske AR, Schwaiger M. Reproducibility of metabolic measurements in malignant tumors using FDG PET. J Nucl Med 1999;40(11):1771–7.PubMed
37.
Zurück zum Zitat Minn H, Zasadny KR, Quint LE, Wahl RL. Lung cancer: reproducibility of quantitative measurements for evaluating 2-[F-18]-fluoro-2-deoxy-D-glucose uptake at PET. Radiology 1995;196(1):167–73.PubMed Minn H, Zasadny KR, Quint LE, Wahl RL. Lung cancer: reproducibility of quantitative measurements for evaluating 2-[F-18]-fluoro-2-deoxy-D-glucose uptake at PET. Radiology 1995;196(1):167–73.PubMed
38.
Zurück zum Zitat Iyer AK, Khaled G, Fang J, Maeda H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today 2006;11(17–18):812–8.PubMedCrossRef Iyer AK, Khaled G, Fang J, Maeda H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today 2006;11(17–18):812–8.PubMedCrossRef
Metadaten
Titel
Reproducibility study of [18F]FPP(RGD)2 uptake in murine models of human tumor xenografts
verfasst von
Edwin Chang
Shuangdong Liu
Gayatri Gowrishankar
Shahriar Yaghoubi
James Patrick Wedgeworth
Frederick Chin
Dietmar Berndorff
Volker Gekeler
Sanjiv S. Gambhir
Zhen Cheng
Publikationsdatum
01.04.2011
Verlag
Springer-Verlag
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 4/2011
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-010-1672-1

Weitere Artikel der Ausgabe 4/2011

European Journal of Nuclear Medicine and Molecular Imaging 4/2011 Zur Ausgabe