Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 2/2012

01.02.2012 | Original Article

Estimation of regional bone metabolism from whole-body 18F-fluoride PET static images

verfasst von: Musib Siddique, Glen M. Blake, Michelle L. Frost, Amelia E. B. Moore, Tanuj Puri, Paul K. Marsden, Ignac Fogelman

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 2/2012

Einloggen, um Zugang zu erhalten

Abstract

Purpose

We evaluate a new quantitative method of acquiring and analysing 18F positron emission tomography (PET) studies that enables regional bone plasma clearance (K i ) to be estimated from static scans acquired at multiple sites in the skeleton following a single injection of tracer.

Methods

Dynamic lumbar spine 18F PET data from two clinical trials were used to simulate a series of static scans acquired 30–60 min after injection. Venous blood samples were taken at 30, 40, 50 and 60 min and K i evaluated by Patlak analysis and the static scan method. The data were used to evaluate the precision errors of the Patlak and static scan methods expressed as the percentage coefficient of variation (%CV) and compare their response to 6 months of treatment with the bone anabolic agent teriparatide.

Results

Static scan K i measurements 30–60 min after injection were highly correlated with the Patlak results (r > 0.99). The %CV for the static scan method was 17.5% 30 min after injection, decreasing to 14.5% at 60 min, compared with 13.0% for Patlak analysis. Response to teriparatide treatment was +25.2% for the static scan method compared with +24.3% for Patlak analysis. The mean ratio (SD) of the static scan and Patlak K i results was 1.006 (0.015) at 30 min after injection decreasing to 0.965 (0.015) at 60 min.

Conclusion

18F-Fluoride bone plasma clearance can be estimated from a static scan and venous blood samples acquired 30–60 min after injection. The method enables K i to be estimated at multiple skeletal sites with a single injection of tracer.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Hawkins RA, Choi Y, Huang S-C, Hoh CK, Dahlborn M, Schiepers C, et al. Evaluation of the skeletal kinetics of fluorine-18-fluoride ion with PET. J Nucl Med 1992;33:633–42.PubMed Hawkins RA, Choi Y, Huang S-C, Hoh CK, Dahlborn M, Schiepers C, et al. Evaluation of the skeletal kinetics of fluorine-18-fluoride ion with PET. J Nucl Med 1992;33:633–42.PubMed
2.
Zurück zum Zitat Schiepers C, Nuyts J, Bormans G, Dequeker J, Bouillon R, Mortelmans L, et al. Fluoride kinetics of the axial skeleton measured in vivo with fluorine-18-fluoride PET. J Nucl Med 1997;38:1970–6.PubMed Schiepers C, Nuyts J, Bormans G, Dequeker J, Bouillon R, Mortelmans L, et al. Fluoride kinetics of the axial skeleton measured in vivo with fluorine-18-fluoride PET. J Nucl Med 1997;38:1970–6.PubMed
3.
Zurück zum Zitat Cook GJR, Blake GM, Marsden PK, Cronin B, Fogelman I. Quantification of skeletal kinetic indices in Paget’s disease using dynamic 18F-fluoride positron emission tomography. J Bone Miner Res 2002;17:854–9.PubMedCrossRef Cook GJR, Blake GM, Marsden PK, Cronin B, Fogelman I. Quantification of skeletal kinetic indices in Paget’s disease using dynamic 18F-fluoride positron emission tomography. J Bone Miner Res 2002;17:854–9.PubMedCrossRef
4.
Zurück zum Zitat Frost ML, Cook GJR, Blake GM, Marsden PK, Benatar NA, Fogelman I. A prospective study of risedronate on regional bone metabolism and blood flow at the lumbar spine measured by 18F-fluoride positron emission tomography. J Bone Miner Res 2003;18:2215–22.PubMedCrossRef Frost ML, Cook GJR, Blake GM, Marsden PK, Benatar NA, Fogelman I. A prospective study of risedronate on regional bone metabolism and blood flow at the lumbar spine measured by 18F-fluoride positron emission tomography. J Bone Miner Res 2003;18:2215–22.PubMedCrossRef
5.
Zurück zum Zitat Installé J, Nzeusseu A, Bol A, Depresseux G, Devogelaer JP, Lonneux M. (18)F-fluoride PET for monitoring therapeutic response in Paget’s disease of bone. J Nucl Med 2005;46:1650–8.PubMed Installé J, Nzeusseu A, Bol A, Depresseux G, Devogelaer JP, Lonneux M. (18)F-fluoride PET for monitoring therapeutic response in Paget’s disease of bone. J Nucl Med 2005;46:1650–8.PubMed
6.
Zurück zum Zitat Uchida K, Nakajima H, Miyazaki T, Yayama T, Kawahara H, Kobayashi S, et al. Effects of alendronate on bone metabolism in glucocorticoid-induced osteoporosis measured by 18F-fluoride PET: a prospective study. J Nucl Med 2009;50:1808–14.PubMedCrossRef Uchida K, Nakajima H, Miyazaki T, Yayama T, Kawahara H, Kobayashi S, et al. Effects of alendronate on bone metabolism in glucocorticoid-induced osteoporosis measured by 18F-fluoride PET: a prospective study. J Nucl Med 2009;50:1808–14.PubMedCrossRef
7.
Zurück zum Zitat Frost ML, Siddique M, Blake GM, Moore AE, Schleyer PJ, Dunn JT, et al. Differential effects of teriparatide on regional bone formation using (18)F-fluoride positron emission tomography. J Bone Miner Res 2011;26:1002–11.PubMedCrossRef Frost ML, Siddique M, Blake GM, Moore AE, Schleyer PJ, Dunn JT, et al. Differential effects of teriparatide on regional bone formation using (18)F-fluoride positron emission tomography. J Bone Miner Res 2011;26:1002–11.PubMedCrossRef
8.
Zurück zum Zitat Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 1983;3:1–7.PubMedCrossRef Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 1983;3:1–7.PubMedCrossRef
9.
Zurück zum Zitat Brenner W, Vernon C, Muzi M, Mankoff DA, Link JM, Conrad EU, et al. Comparison of different quantitative approaches to 18F-fluoride PET scans. J Nucl Med 2004;45:1493–500.PubMed Brenner W, Vernon C, Muzi M, Mankoff DA, Link JM, Conrad EU, et al. Comparison of different quantitative approaches to 18F-fluoride PET scans. J Nucl Med 2004;45:1493–500.PubMed
10.
Zurück zum Zitat Siddique M, Frost ML, Blake GM, et al. The precision and sensitivity of 18F-fluoride PET for measuring regional bone metabolism: a comparison of quantification methods. J Nucl Med 2011. doi:10.2967/jnumed.111.093195 Siddique M, Frost ML, Blake GM, et al. The precision and sensitivity of 18F-fluoride PET for measuring regional bone metabolism: a comparison of quantification methods. J Nucl Med 2011. doi:10.​2967/​jnumed.​111.​093195
11.
Zurück zum Zitat Cheebsumon P, Velasquez LM, Hoekstra CJ, Hayes W, Kloet RW, Hoetjes NJ, et al. Measuring response to therapy using FDG PET: semi-quantitative and full kinetic analysis. Eur J Nucl Med Mol Imaging 2011;38:832–42.PubMedCrossRef Cheebsumon P, Velasquez LM, Hoekstra CJ, Hayes W, Kloet RW, Hoetjes NJ, et al. Measuring response to therapy using FDG PET: semi-quantitative and full kinetic analysis. Eur J Nucl Med Mol Imaging 2011;38:832–42.PubMedCrossRef
12.
Zurück zum Zitat Blake GM, Siddique M, Frost ML, Moore AEB, Fogelman I. Radionuclide studies of bone metabolism: do bone uptake and bone plasma clearance provide equivalent measurements of bone turnover? Bone 2011;49:537–42.PubMedCrossRef Blake GM, Siddique M, Frost ML, Moore AEB, Fogelman I. Radionuclide studies of bone metabolism: do bone uptake and bone plasma clearance provide equivalent measurements of bone turnover? Bone 2011;49:537–42.PubMedCrossRef
13.
Zurück zum Zitat Blake GM, Frost ML, Fogelman I. Quantitative radionuclide studies of bone. J Nucl Med 2009;50:1747–50.PubMedCrossRef Blake GM, Frost ML, Fogelman I. Quantitative radionuclide studies of bone. J Nucl Med 2009;50:1747–50.PubMedCrossRef
14.
Zurück zum Zitat Cook GJ, Lodge MA, Marsden PK, Dynes A, Fogelman I. Non-invasive assessment of skeletal kinetics using fluorine-18 fluoride positron emission tomography: evaluation of image and population-derived arterial input functions. Eur J Nucl Med 1999;26:1424–9.PubMedCrossRef Cook GJ, Lodge MA, Marsden PK, Dynes A, Fogelman I. Non-invasive assessment of skeletal kinetics using fluorine-18 fluoride positron emission tomography: evaluation of image and population-derived arterial input functions. Eur J Nucl Med 1999;26:1424–9.PubMedCrossRef
15.
Zurück zum Zitat Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1(8476):307–10.PubMedCrossRef Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1(8476):307–10.PubMedCrossRef
16.
Zurück zum Zitat Glüer C-C, Blake G, Lu Y, Blunt BA, Jergas M, Genant HK. Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporos Int 1995;5:262–70.PubMedCrossRef Glüer C-C, Blake G, Lu Y, Blunt BA, Jergas M, Genant HK. Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporos Int 1995;5:262–70.PubMedCrossRef
17.
Zurück zum Zitat Lockhart CM, MacDonald LR, Alessio AM, McDougald WA, Doot RK, Kinahan PE. Quantifying and reducing the effect of calibration error on variability of PET/CT standardized uptake value measurements. J Nucl Med 2011;52:218–24.PubMedCrossRef Lockhart CM, MacDonald LR, Alessio AM, McDougald WA, Doot RK, Kinahan PE. Quantifying and reducing the effect of calibration error on variability of PET/CT standardized uptake value measurements. J Nucl Med 2011;52:218–24.PubMedCrossRef
18.
Zurück zum Zitat Ishizu K, Nishizawa S, Yonekura Y, Sadato N, Magata Y, Tamaki N, et al. Effects of hyperglycemia on FDG uptake in human brain and glioma. J Nucl Med 1994;35:1104–9.PubMed Ishizu K, Nishizawa S, Yonekura Y, Sadato N, Magata Y, Tamaki N, et al. Effects of hyperglycemia on FDG uptake in human brain and glioma. J Nucl Med 1994;35:1104–9.PubMed
19.
Zurück zum Zitat Thie JA. Clarification of a fractional uptake concept. J Nucl Med 1995;36:711–2.PubMed Thie JA. Clarification of a fractional uptake concept. J Nucl Med 1995;36:711–2.PubMed
20.
Zurück zum Zitat Ishizu K, Yonekura Y. Clarification of a fractional uptake concept—reply. J Nucl Med 1995;36:712. Ishizu K, Yonekura Y. Clarification of a fractional uptake concept—reply. J Nucl Med 1995;36:712.
21.
Zurück zum Zitat Puri T, Blake GM, Frost ML, Moore AE, Siddique M, Cook GJ, et al. Validation of image-derived arterial input functions at the femoral artery using 18F-fluoride positron emission tomography. Nucl Med Commun 2011;32:808–17.PubMedCrossRef Puri T, Blake GM, Frost ML, Moore AE, Siddique M, Cook GJ, et al. Validation of image-derived arterial input functions at the femoral artery using 18F-fluoride positron emission tomography. Nucl Med Commun 2011;32:808–17.PubMedCrossRef
22.
Zurück zum Zitat Blake GM, Park-Holohan S, Cook GJR, Fogelman I. Quantitative studies of bone with the use of 18F-fluoride and 99mTc-methylene diphosphonate. Semin Nucl Med 2001;31:28–49.PubMedCrossRef Blake GM, Park-Holohan S, Cook GJR, Fogelman I. Quantitative studies of bone with the use of 18F-fluoride and 99mTc-methylene diphosphonate. Semin Nucl Med 2001;31:28–49.PubMedCrossRef
Metadaten
Titel
Estimation of regional bone metabolism from whole-body 18F-fluoride PET static images
verfasst von
Musib Siddique
Glen M. Blake
Michelle L. Frost
Amelia E. B. Moore
Tanuj Puri
Paul K. Marsden
Ignac Fogelman
Publikationsdatum
01.02.2012
Verlag
Springer-Verlag
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 2/2012
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-011-1966-y

Weitere Artikel der Ausgabe 2/2012

European Journal of Nuclear Medicine and Molecular Imaging 2/2012 Zur Ausgabe