Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 11/2014

01.11.2014 | Original Article

Comparing amyloid-β deposition, neuroinflammation, glucose metabolism, and mitochondrial complex I activity in brain: a PET study in aged monkeys

verfasst von: Hideo Tsukada, Shingo Nishiyama, Hiroyuki Ohba, Masakatsu Kanazawa, Takeharu Kakiuchi, Norihiro Harada

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 11/2014

Einloggen, um Zugang zu erhalten

Abstract

Purpose

The aim of the present study was to compare amyloid-β (Aβ) deposition, translocator protein (TSPO) activity, regional cerebral metabolic rate of glucose (rCMRglc), and mitochondrial complex I (MC-I) activity in the brain of aged monkeys.

Methods

PET scans with 11C-PIB (Aβ), 18F-BCPP-EF (MC-I), 11C-DPA-713 (TSPO), and 18F-FDG (rCMRglc) were performed in aged monkeys (Macaca mulatta) in the conscious state and under isoflurane anaesthesia. 11C-PIB binding to Aβ and 11C-DPA-713 binding to TSPO were evaluated in terms of standard uptake values (SUV). The total volume of distribution (V T) of 18F-BCPP-EF and rCMRglc with 18F-FDG were calculated using arterial blood sampling.

Results

Isoflurane did not affect MC-I activity measured in terms of 18F-BCPP-EF uptake in living brain. There was a significant negative correlation between 18F-BCPP-EF binding (V T) and 11C-PIB uptake (SUVR), and there was a significant positive correlation between 11C-DPA-713 uptake (SUV) and 11C-PIB uptake. In contrast, there was no significant correlation between rCMRglc ratio and 11C-PIB uptake.

Conclusion

18F-BCPP-EF could be a potential PET probe for quantitative imaging of impaired MC-I activity that is correlated with Aβ deposition in the living brain.
Literatur
1.
Zurück zum Zitat Bratic A, Larsson NG. The role of mitochondria in aging. J Clin Invest. 2013;123:952–7. Bratic A, Larsson NG. The role of mitochondria in aging. J Clin Invest. 2013;123:952–7.
2.
Zurück zum Zitat Ankarcrona M, Dypbukt JM, Bonfoco E, Zhivotovsky B, Orrenius S, Lipton SA, et al. Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron. 1995;15:961–73.PubMedCrossRef Ankarcrona M, Dypbukt JM, Bonfoco E, Zhivotovsky B, Orrenius S, Lipton SA, et al. Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron. 1995;15:961–73.PubMedCrossRef
3.
Zurück zum Zitat Baek BS, Kwon HJ, Lee KH, Yoo MA, Kim KW, Ikeno Y, et al. Regional difference of ROS generation, lipid peroxidation, and antioxidant enzyme activity in rat brain and their dietary modulation. Arch Pharm Res. 1999;22:361–6.PubMedCrossRef Baek BS, Kwon HJ, Lee KH, Yoo MA, Kim KW, Ikeno Y, et al. Regional difference of ROS generation, lipid peroxidation, and antioxidant enzyme activity in rat brain and their dietary modulation. Arch Pharm Res. 1999;22:361–6.PubMedCrossRef
4.
Zurück zum Zitat Kannurpatti SS, Sanganahalli BG, Mishra S, Joshi PG, Joshi NB. Glutamate-induced differential mitochondrial response in young and adult rats. Neurochem Int. 2004;44:361–9.PubMedCrossRef Kannurpatti SS, Sanganahalli BG, Mishra S, Joshi PG, Joshi NB. Glutamate-induced differential mitochondrial response in young and adult rats. Neurochem Int. 2004;44:361–9.PubMedCrossRef
5.
7.
Zurück zum Zitat Lenaz G, Cavazzoni M, Genova ML, D’Aurelio M, Pich MM, Pallotti F, et al. Oxidative stress, antioxidant defences and aging. Biofactors. 1998;8:195–204.PubMedCrossRef Lenaz G, Cavazzoni M, Genova ML, D’Aurelio M, Pich MM, Pallotti F, et al. Oxidative stress, antioxidant defences and aging. Biofactors. 1998;8:195–204.PubMedCrossRef
8.
Zurück zum Zitat Robinson BH. Human complex I deficiency: clinical spectrum and involvement of oxygen free radicals in the pathogenicity of the defect. Biochim Biophys Acta. 1998;1364:271–86.PubMedCrossRef Robinson BH. Human complex I deficiency: clinical spectrum and involvement of oxygen free radicals in the pathogenicity of the defect. Biochim Biophys Acta. 1998;1364:271–86.PubMedCrossRef
9.
Zurück zum Zitat Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297:353–6.PubMedCrossRef Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297:353–6.PubMedCrossRef
10.
Zurück zum Zitat Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A. 1986;83:4913–7.PubMedCrossRefPubMedCentral Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A. 1986;83:4913–7.PubMedCrossRefPubMedCentral
11.
Zurück zum Zitat Monson NL, Ireland SJ, Ligocki AJ, Chen D, Rounds WH, Li M, et al. Elevated CNS inflammation in patients with preclinical Alzheimer’s disease. J Cereb Blood Flow Metab. 2014;34:30–3.PubMedCrossRef Monson NL, Ireland SJ, Ligocki AJ, Chen D, Rounds WH, Li M, et al. Elevated CNS inflammation in patients with preclinical Alzheimer’s disease. J Cereb Blood Flow Metab. 2014;34:30–3.PubMedCrossRef
12.
Zurück zum Zitat Silva DF, Selfridge JE, Lu J, Lezi E, Cardoso SM, Swerdlow RH. Mitochondrial abnormalities in Alzheimer’s disease: possible targets for therapeutic intervention. Adv Pharmacol. 2012;64:83–126.PubMedCrossRefPubMedCentral Silva DF, Selfridge JE, Lu J, Lezi E, Cardoso SM, Swerdlow RH. Mitochondrial abnormalities in Alzheimer’s disease: possible targets for therapeutic intervention. Adv Pharmacol. 2012;64:83–126.PubMedCrossRefPubMedCentral
14.
Zurück zum Zitat Harada N, Nishiyama S, Kanazawa M, Tsukada H. Development of novel PET probes, [18F]BCPP-EF, [18F]BCPP-BF, and [11C]BCPP-EM for mitochondrial complex I imaging in the living brain. J Labelled Comp Radiopharm. 2013;56:553–61.PubMedCrossRef Harada N, Nishiyama S, Kanazawa M, Tsukada H. Development of novel PET probes, [18F]BCPP-EF, [18F]BCPP-BF, and [11C]BCPP-EM for mitochondrial complex I imaging in the living brain. J Labelled Comp Radiopharm. 2013;56:553–61.PubMedCrossRef
15.
Zurück zum Zitat Tsukada H, Nishiyama S, Fukumoto D, Kanazawa M, Harada N. Novel PET probes 18F-BCPP-EF and 18F-BCPP-BF for mitochondrial complex I: a PET study by comparison with 18F-BMS-747158-02 in rat brain. J Nucl Med. 2014;55:473–80.PubMedCrossRef Tsukada H, Nishiyama S, Fukumoto D, Kanazawa M, Harada N. Novel PET probes 18F-BCPP-EF and 18F-BCPP-BF for mitochondrial complex I: a PET study by comparison with 18F-BMS-747158-02 in rat brain. J Nucl Med. 2014;55:473–80.PubMedCrossRef
16.
Zurück zum Zitat Tsukada H, Ohba H, Kanazawa M, Kakiuchi T, Harada N. Evaluation of 18F-BCPP-EF for mitochondrial complex I imaging in conscious monkey brain using PET. Eur J Nucl Med Mol Imaging. 2014;41:755–63.PubMedCrossRef Tsukada H, Ohba H, Kanazawa M, Kakiuchi T, Harada N. Evaluation of 18F-BCPP-EF for mitochondrial complex I imaging in conscious monkey brain using PET. Eur J Nucl Med Mol Imaging. 2014;41:755–63.PubMedCrossRef
17.
Zurück zum Zitat Tsukada H, Ohba H, Nishiyama S, Kanazawa M, Kakiuchi T, Harada N. PET imaging of ischemia-induced impairment of mitochondrial complex I function in monkey brain. J Cereb Blood Flow Metab. 2014;34:708–14.PubMedCrossRef Tsukada H, Ohba H, Nishiyama S, Kanazawa M, Kakiuchi T, Harada N. PET imaging of ischemia-induced impairment of mitochondrial complex I function in monkey brain. J Cereb Blood Flow Metab. 2014;34:708–14.PubMedCrossRef
18.
Zurück zum Zitat Tsukada H, Miyasato K, Kakiuchi T, Nishiyama S, Harada N, Domino EF. Comparative effects of methamphetamine and nicotine on the striatal [11C]raclopride binding in unanesthetized monkeys. Synapse. 2002;45:207–12.PubMedCrossRef Tsukada H, Miyasato K, Kakiuchi T, Nishiyama S, Harada N, Domino EF. Comparative effects of methamphetamine and nicotine on the striatal [11C]raclopride binding in unanesthetized monkeys. Synapse. 2002;45:207–12.PubMedCrossRef
19.
Zurück zum Zitat Noda A, Takamatsu H, Minoshima S, Tsukada H, Nishimura S. Determination of kinetic rate constants for FDG and partition coefficient of water in conscious macaque and alterations in aging or anesthesia examined on parametric images with an anatomic standardization technique. J Cereb Blood Flow Metab. 2003;23:1441–7.PubMedCrossRef Noda A, Takamatsu H, Minoshima S, Tsukada H, Nishimura S. Determination of kinetic rate constants for FDG and partition coefficient of water in conscious macaque and alterations in aging or anesthesia examined on parametric images with an anatomic standardization technique. J Cereb Blood Flow Metab. 2003;23:1441–7.PubMedCrossRef
20.
Zurück zum Zitat Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol. 2004;55:306–19.PubMedCrossRef Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol. 2004;55:306–19.PubMedCrossRef
21.
Zurück zum Zitat Boutin H, Chauveau F, Thominiaux C, Gregoire MC, James ML, Trebossen R, et al. Receptor PET ligand for in vivo imaging of neuroinflammation. J Nucl Med. 2007;48:573–81.PubMedCrossRef Boutin H, Chauveau F, Thominiaux C, Gregoire MC, James ML, Trebossen R, et al. Receptor PET ligand for in vivo imaging of neuroinflammation. J Nucl Med. 2007;48:573–81.PubMedCrossRef
22.
Zurück zum Zitat Oberdorfer F, Hull WE, Traving BC, Maier-Borst W. Synthesis and purification of 2-deoxy-2-[18F]fluoro-D-glucose and 2-deoxy-2-[18F]fluoro-D-mannose: characterization of products by 1H- and 19F-NMR spectroscopy. Int J Rad Appl Instrum A. 1986;37:695–701.PubMedCrossRef Oberdorfer F, Hull WE, Traving BC, Maier-Borst W. Synthesis and purification of 2-deoxy-2-[18F]fluoro-D-glucose and 2-deoxy-2-[18F]fluoro-D-mannose: characterization of products by 1H- and 19F-NMR spectroscopy. Int J Rad Appl Instrum A. 1986;37:695–701.PubMedCrossRef
23.
Zurück zum Zitat Noda A, Murakami Y, Nishiyama S, Fukumoto D, Miyoshi S, Tsukada H, et al. Amyloid imaging in aged and young macaques with [11C]PIB and [18F]FDDNP. Synapse. 2008;62:472–5.PubMedCrossRef Noda A, Murakami Y, Nishiyama S, Fukumoto D, Miyoshi S, Tsukada H, et al. Amyloid imaging in aged and young macaques with [11C]PIB and [18F]FDDNP. Synapse. 2008;62:472–5.PubMedCrossRef
24.
Zurück zum Zitat Jones EG, Stone JM, Karten HJ. High-resolution digital brain atlases: a Hubble telescope for the brain. Ann NY Acad Sci. 2011;1225 Suppl 1:E147–59.PubMedCrossRef Jones EG, Stone JM, Karten HJ. High-resolution digital brain atlases: a Hubble telescope for the brain. Ann NY Acad Sci. 2011;1225 Suppl 1:E147–59.PubMedCrossRef
25.
Zurück zum Zitat Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, et al. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem. 1977;28:897–916.PubMedCrossRef Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, et al. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem. 1977;28:897–916.PubMedCrossRef
26.
Zurück zum Zitat Reivich M, Alavi A, Wolf A, Fowler J, Russell J, Arnett C, et al. Glucose metabolic rate kinetic model parameter determination in humans: the lumped constants and rate constants for [18F]fluorodeoxyglucose and [11C]deoxyglucose. J Cereb Blood Flow Metab. 1985;5:179–92.PubMedCrossRef Reivich M, Alavi A, Wolf A, Fowler J, Russell J, Arnett C, et al. Glucose metabolic rate kinetic model parameter determination in humans: the lumped constants and rate constants for [18F]fluorodeoxyglucose and [11C]deoxyglucose. J Cereb Blood Flow Metab. 1985;5:179–92.PubMedCrossRef
27.
Zurück zum Zitat Furst AJ, Rabinovici GD, Rostomian AH, Steed T, Alkalay A, Racine C, et al. Cognition, glucose metabolism and amyloid burden in Alzheimer’s disease. Neurobiol Aging. 2010;49:1490–5. Furst AJ, Rabinovici GD, Rostomian AH, Steed T, Alkalay A, Racine C, et al. Cognition, glucose metabolism and amyloid burden in Alzheimer’s disease. Neurobiol Aging. 2010;49:1490–5.
28.
Zurück zum Zitat Dukart J, Mueller K, Horstmann A, Vogt B, Frisch S, Barthel H, et al. Differential effects of global and cerebellar normalization on detection and differentiation of dementia in FDG-PET studies. J Cereb Blood Flow Metab. 2005;25:1528–47.CrossRef Dukart J, Mueller K, Horstmann A, Vogt B, Frisch S, Barthel H, et al. Differential effects of global and cerebellar normalization on detection and differentiation of dementia in FDG-PET studies. J Cereb Blood Flow Metab. 2005;25:1528–47.CrossRef
29.
Zurück zum Zitat Kumar A, Muzik O, Shandal V, Chugani D, Chakraborty P, Chugani HT. Evaluation of age-related changes in translocator protein (TSPO) in human brain using 11C-[R]-PK11195 PET. J Neuroinflammation. 2012;9:232.PubMedCrossRefPubMedCentral Kumar A, Muzik O, Shandal V, Chugani D, Chakraborty P, Chugani HT. Evaluation of age-related changes in translocator protein (TSPO) in human brain using 11C-[R]-PK11195 PET. J Neuroinflammation. 2012;9:232.PubMedCrossRefPubMedCentral
30.
Zurück zum Zitat Hanley PJ, Ray J, Brandt U, Daut J. Halothane, isoflurane and sevoflurane inhibit NADH:ubiquinone oxidoreductase (complex I) of cardiac mitochondria. J Physiol. 2002;544(3):687–93.PubMedCrossRefPubMedCentral Hanley PJ, Ray J, Brandt U, Daut J. Halothane, isoflurane and sevoflurane inhibit NADH:ubiquinone oxidoreductase (complex I) of cardiac mitochondria. J Physiol. 2002;544(3):687–93.PubMedCrossRefPubMedCentral
31.
Zurück zum Zitat Bains R, Moe MC, Vinje ML, Berg-Johnsen J. Isoflurane-induced depolarization of neural mitochondria increases with age. Acta Anaesthesiol Scand. 2009;53:85–92.PubMedCrossRef Bains R, Moe MC, Vinje ML, Berg-Johnsen J. Isoflurane-induced depolarization of neural mitochondria increases with age. Acta Anaesthesiol Scand. 2009;53:85–92.PubMedCrossRef
32.
Zurück zum Zitat Nicholls DG, Budd SL. Mitochondria and neuronal survival. Physiol Rev. 2000;80:315–60.PubMed Nicholls DG, Budd SL. Mitochondria and neuronal survival. Physiol Rev. 2000;80:315–60.PubMed
33.
Zurück zum Zitat Logan J, Volkow ND, Fowler JS, Wang G-J, Dewey SL, MacGregor R, et al. Effects of blood flow on [11C]raclopride binding in the brain: model simulations and kinetic analysis of PET data. J Cereb Blood Flow Metab. 1994;14:995–1010.PubMedCrossRef Logan J, Volkow ND, Fowler JS, Wang G-J, Dewey SL, MacGregor R, et al. Effects of blood flow on [11C]raclopride binding in the brain: model simulations and kinetic analysis of PET data. J Cereb Blood Flow Metab. 1994;14:995–1010.PubMedCrossRef
35.
Zurück zum Zitat Kemppainen NM, Aalto S, Wilson LA, Nagren K, Helin S, Bruck A, et al. PET amyloid ligand [11C]PIB uptake is increased in mild cognitive impairment. Neurology. 2007;68:1603–6.PubMedCrossRef Kemppainen NM, Aalto S, Wilson LA, Nagren K, Helin S, Bruck A, et al. PET amyloid ligand [11C]PIB uptake is increased in mild cognitive impairment. Neurology. 2007;68:1603–6.PubMedCrossRef
36.
Zurück zum Zitat Mosconi L, Andrews RD, Matthews DC. Comparing brain amyloid deposition, glucose metabolism, and atrophy in mild cognitive impairment with and without a family history of dementia. J Alzheimers Dis. 2013;35:509–24.PubMed Mosconi L, Andrews RD, Matthews DC. Comparing brain amyloid deposition, glucose metabolism, and atrophy in mild cognitive impairment with and without a family history of dementia. J Alzheimers Dis. 2013;35:509–24.PubMed
37.
Zurück zum Zitat Edison P, Archer HA, Hinz R, Hammers A, Pavese N, Tai YF, et al. Amyloid, hypometabolism, and cognition in Alzheimer disease: an [11C]PIB and [18F]FDG PET study. Neurology. 2007;68:501–8.PubMedCrossRef Edison P, Archer HA, Hinz R, Hammers A, Pavese N, Tai YF, et al. Amyloid, hypometabolism, and cognition in Alzheimer disease: an [11C]PIB and [18F]FDG PET study. Neurology. 2007;68:501–8.PubMedCrossRef
38.
Zurück zum Zitat Warburg O. On respiratory impairment in cancer cells. Science. 1956;124:269–70.PubMed Warburg O. On respiratory impairment in cancer cells. Science. 1956;124:269–70.PubMed
39.
Zurück zum Zitat Winkeler A, Boisgard R, Martin A, Tavitian B. Radioisotopic imaging of neuroinflammation. J Nucl Med. 2010;51:1–4.PubMedCrossRef Winkeler A, Boisgard R, Martin A, Tavitian B. Radioisotopic imaging of neuroinflammation. J Nucl Med. 2010;51:1–4.PubMedCrossRef
40.
Zurück zum Zitat Navarro A, Boveris A. The mitochondrial energy transduction system and the aging process. Am J Physiol Cell Physiol. 2007;292:C670–86.PubMedCrossRef Navarro A, Boveris A. The mitochondrial energy transduction system and the aging process. Am J Physiol Cell Physiol. 2007;292:C670–86.PubMedCrossRef
41.
Zurück zum Zitat Manczak M, Jung Y, Park BS, Partovi D, Reddy PH. Time-course of mitochondrial gene expressions in mice brains: implications for mitochondrial dysfunction, oxidative damage, and cytochrome c in aging. J Neurochem. 2005;92:494–504.PubMedCrossRef Manczak M, Jung Y, Park BS, Partovi D, Reddy PH. Time-course of mitochondrial gene expressions in mice brains: implications for mitochondrial dysfunction, oxidative damage, and cytochrome c in aging. J Neurochem. 2005;92:494–504.PubMedCrossRef
Metadaten
Titel
Comparing amyloid-β deposition, neuroinflammation, glucose metabolism, and mitochondrial complex I activity in brain: a PET study in aged monkeys
verfasst von
Hideo Tsukada
Shingo Nishiyama
Hiroyuki Ohba
Masakatsu Kanazawa
Takeharu Kakiuchi
Norihiro Harada
Publikationsdatum
01.11.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 11/2014
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-014-2821-8

Weitere Artikel der Ausgabe 11/2014

European Journal of Nuclear Medicine and Molecular Imaging 11/2014 Zur Ausgabe