Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 13/2018

29.09.2018 | Editorial

The renaissance of functional 18F-FDG PET brain activation imaging

verfasst von: Antoine Verger, Eric Guedj

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 13/2018

Einloggen, um Zugang zu erhalten

Excerpt

For a few years now, positron emission tomography (PET) has benefited from a renaissance of functional imaging through 18F-FDG PET brain activation studies. The first PET studies involving activation brain imaging nevertheless emerged in the 1980s, using intravenously administered oxygen-15-labelled water (15O-water) [1, 2]. This approach was used to measure regional cerebral blood flow (rCBF), and has been shown to be a sensitive method for quantifying regional brain activation during specific tasks [3, 4]. Such functional imaging studies proved extremely useful for mapping brain activation patterns involved in cognitive tasks such as word reading, mental imagery, timing or memory [5, 6]. The first clinical validations of quantitative analyses using Statistical Parametric Mapping (SPM, Wellcome Trust Centre for Neuroimaging, London, United Kingdom) were thus performed with PET imaging [7]. These PET imaging studies preceded the emergence of functional magnetic resonance imaging (fMRI) in the 1990s, which depicts the engagement of different brain regions within a distributed system through fluctuations of the blood-oxygen-level dependent (BOLD) signal [8]. fMRI applications have since been extended to reveal additional information about the degree to which components of large-scale neural systems are functionally coupled together to achieve specific tasks. This phenomenon underpins the study of functional connectivity, which is mathematically defined as the statistical association between two distinct time-series, i.e. the connectivity between brain regions that share functional properties. The fMRI approach enables the study of functional connectivity within single subjects or groups through serial imaging of the brain in the so-called resting state (i.e. without any specific stimulus or task) or in a condition of task-dependent activation [9]. …
Literatur
1.
Zurück zum Zitat Diksic M, Yamamoto YL, Feindel W. An on-line synthesis of [15O]N2O: new blood-flow tracer for PET imaging. J Nucl Med Off Publ Soc Nucl Med. 1983;24:603–7. Diksic M, Yamamoto YL, Feindel W. An on-line synthesis of [15O]N2O: new blood-flow tracer for PET imaging. J Nucl Med Off Publ Soc Nucl Med. 1983;24:603–7.
2.
Zurück zum Zitat Raichle ME, Martin WR, Herscovitch P, Mintun MA, Markham J. Brain blood flow measured with intravenous H2(15)O. II. Implementation and validation. J Nucl Med Off Publ Soc Nucl Med. 1983;24:790–8. Raichle ME, Martin WR, Herscovitch P, Mintun MA, Markham J. Brain blood flow measured with intravenous H2(15)O. II. Implementation and validation. J Nucl Med Off Publ Soc Nucl Med. 1983;24:790–8.
3.
Zurück zum Zitat Celesia GG, Polcyn RD, Holden JE, Nickles RJ, Gatley JS, Koeppe RA. Visual evoked potentials and positron emission tomographic mapping of regional cerebral blood flow and cerebral metabolism: can the neuronal potential generators be visualized? Electroencephalogr Clin Neurophysiol. 1982;54:243–56.CrossRefPubMedCentral Celesia GG, Polcyn RD, Holden JE, Nickles RJ, Gatley JS, Koeppe RA. Visual evoked potentials and positron emission tomographic mapping of regional cerebral blood flow and cerebral metabolism: can the neuronal potential generators be visualized? Electroencephalogr Clin Neurophysiol. 1982;54:243–56.CrossRefPubMedCentral
4.
Zurück zum Zitat Fox PT, Raichle ME. Stimulus rate dependence of regional cerebral blood flow in human striate cortex, demonstrated by positron emission tomography. J Neurophysiol. 1984;51:1109–20.CrossRefPubMedCentral Fox PT, Raichle ME. Stimulus rate dependence of regional cerebral blood flow in human striate cortex, demonstrated by positron emission tomography. J Neurophysiol. 1984;51:1109–20.CrossRefPubMedCentral
5.
Zurück zum Zitat Posner MI, Petersen SE, Fox PT, Raichle ME. Localization of cognitive operations in the human brain. Science. 1988;240:1627–31.CrossRefPubMedCentral Posner MI, Petersen SE, Fox PT, Raichle ME. Localization of cognitive operations in the human brain. Science. 1988;240:1627–31.CrossRefPubMedCentral
6.
Zurück zum Zitat Petersen SE, Fox PT, Posner MI, Mintun M, Raichle ME. Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature. 1988;331:585–9.CrossRefPubMedCentral Petersen SE, Fox PT, Posner MI, Mintun M, Raichle ME. Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature. 1988;331:585–9.CrossRefPubMedCentral
7.
Zurück zum Zitat Signorini M, Paulesu E, Friston K, Perani D, Colleluori A, Lucignani G, et al. Rapid assessment of regional cerebral metabolic abnormalities in single subjects with quantitative and nonquantitative [18F]FDG PET: a clinical validation of statistical parametric mapping. NeuroImage. 1999;9:63–80.CrossRefPubMedCentral Signorini M, Paulesu E, Friston K, Perani D, Colleluori A, Lucignani G, et al. Rapid assessment of regional cerebral metabolic abnormalities in single subjects with quantitative and nonquantitative [18F]FDG PET: a clinical validation of statistical parametric mapping. NeuroImage. 1999;9:63–80.CrossRefPubMedCentral
8.
Zurück zum Zitat Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA. 1990;87:9868–72.CrossRefPubMedCentral Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA. 1990;87:9868–72.CrossRefPubMedCentral
9.
Zurück zum Zitat Rogers BP, Morgan VL, Newton AT, Gore JC. Assessing functional connectivity in the human brain by fMRI. Magn Reson Imaging. 2007;25:1347–57.CrossRefPubMedCentral Rogers BP, Morgan VL, Newton AT, Gore JC. Assessing functional connectivity in the human brain by fMRI. Magn Reson Imaging. 2007;25:1347–57.CrossRefPubMedCentral
10.
Zurück zum Zitat Smitha KA, Akhil Raja K, Arun KM, Rajesh PG, Thomas B, Kapilamoorthy TR, et al. Resting state fMRI: a review on methods in resting state connectivity analysis and resting state networks. Neuroradiol J. 2017;30:305–17.CrossRefPubMedCentral Smitha KA, Akhil Raja K, Arun KM, Rajesh PG, Thomas B, Kapilamoorthy TR, et al. Resting state fMRI: a review on methods in resting state connectivity analysis and resting state networks. Neuroradiol J. 2017;30:305–17.CrossRefPubMedCentral
11.
Zurück zum Zitat Havsteen I, Madsen KH, Christensen H, Christensen A, Siebner HR. Diagnostic approach to functional recovery: functional magnetic resonance imaging after stroke. Front Neurol Neurosci. 2013;32:9–25.CrossRefPubMedCentral Havsteen I, Madsen KH, Christensen H, Christensen A, Siebner HR. Diagnostic approach to functional recovery: functional magnetic resonance imaging after stroke. Front Neurol Neurosci. 2013;32:9–25.CrossRefPubMedCentral
12.
13.
Zurück zum Zitat Cheng H. Variation of noise in multi-run functional MRI using generalized autocalibrating partially parallel acquisition (GRAPPA). J Magn Reson Imaging JMRI. 2012;35:462–70.CrossRefPubMedCentral Cheng H. Variation of noise in multi-run functional MRI using generalized autocalibrating partially parallel acquisition (GRAPPA). J Magn Reson Imaging JMRI. 2012;35:462–70.CrossRefPubMedCentral
14.
Zurück zum Zitat Horwitz B, Simonyan K. PET neuroimaging: plenty of studies still need to be performed: comment on Cumming: “PET neuroimaging: the white elephant packs his trunk?”. NeuroImage. 2014;84:1101–3.CrossRefPubMedCentral Horwitz B, Simonyan K. PET neuroimaging: plenty of studies still need to be performed: comment on Cumming: “PET neuroimaging: the white elephant packs his trunk?”. NeuroImage. 2014;84:1101–3.CrossRefPubMedCentral
15.
Zurück zum Zitat Edwards CA, Kouzani A, Lee KH, Ross EK. Neurostimulation devices for the treatment of neurologic disorders. Mayo Clin Proc. 2017;92:1427–44.CrossRef Edwards CA, Kouzani A, Lee KH, Ross EK. Neurostimulation devices for the treatment of neurologic disorders. Mayo Clin Proc. 2017;92:1427–44.CrossRef
17.
Zurück zum Zitat Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol. 1979;6:371–88.CrossRef Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol. 1979;6:371–88.CrossRef
18.
Zurück zum Zitat Varrone A, Asenbaum S, Vander Borght T, Booij J, Nobili F, Någren K, et al. EANM procedure guidelines for PET brain imaging using [18F]FDG, version 2. Eur J Nucl Med Mol Imaging. 2009;36:2103–10.CrossRef Varrone A, Asenbaum S, Vander Borght T, Booij J, Nobili F, Någren K, et al. EANM procedure guidelines for PET brain imaging using [18F]FDG, version 2. Eur J Nucl Med Mol Imaging. 2009;36:2103–10.CrossRef
19.
Zurück zum Zitat Verger A, Lagarde S, Maillard L, Bartolomei F, Guedj E. Brain molecular imaging in pharmacoresistant focal epilepsy: current practice and perspectives. Rev Neurol (Paris). 2018;174:16–27.CrossRef Verger A, Lagarde S, Maillard L, Bartolomei F, Guedj E. Brain molecular imaging in pharmacoresistant focal epilepsy: current practice and perspectives. Rev Neurol (Paris). 2018;174:16–27.CrossRef
20.
Zurück zum Zitat Sasaki K, Ohsawa Y, Sasaki M, Kaga M, Takashima S, Matsuda H. Cerebral cortical dysplasia: assessment by MRI and SPECT. Pediatr Neurol. 2000;23:410–5.CrossRefPubMedCentral Sasaki K, Ohsawa Y, Sasaki M, Kaga M, Takashima S, Matsuda H. Cerebral cortical dysplasia: assessment by MRI and SPECT. Pediatr Neurol. 2000;23:410–5.CrossRefPubMedCentral
21.
Zurück zum Zitat Devous MD, Thisted RA, Morgan GF, Leroy RF, Rowe CC. SPECT brain imaging in epilepsy: a meta-analysis. J Nucl Med Off Publ Soc Nucl Med. 1998;39:285–93. Devous MD, Thisted RA, Morgan GF, Leroy RF, Rowe CC. SPECT brain imaging in epilepsy: a meta-analysis. J Nucl Med Off Publ Soc Nucl Med. 1998;39:285–93.
22.
Zurück zum Zitat Siclari F, Prior JO, Rossetti AO. Ictal cerebral positron emission tomography (PET) in focal status epilepticus. Epilepsy Res. 2013;105:356–61.CrossRefPubMedCentral Siclari F, Prior JO, Rossetti AO. Ictal cerebral positron emission tomography (PET) in focal status epilepticus. Epilepsy Res. 2013;105:356–61.CrossRefPubMedCentral
23.
Zurück zum Zitat Kim S, Mountz JM. SPECT imaging of epilepsy: an overview and comparison with F-18 FDG PET. Int J Mol Imaging. 2011;2011:813028.CrossRefPubMedCentral Kim S, Mountz JM. SPECT imaging of epilepsy: an overview and comparison with F-18 FDG PET. Int J Mol Imaging. 2011;2011:813028.CrossRefPubMedCentral
24.
Zurück zum Zitat Arbizu J, Giuliani A, Gállego Perez-Larraya J, Riverol M, Jonsson C, García-García B, et al. Emerging clinical issues and multivariate analyses in PET investigations. Q J Nucl Med Mol Imaging. 2017;61:386–404. Arbizu J, Giuliani A, Gállego Perez-Larraya J, Riverol M, Jonsson C, García-García B, et al. Emerging clinical issues and multivariate analyses in PET investigations. Q J Nucl Med Mol Imaging. 2017;61:386–404.
25.
Zurück zum Zitat Magistretti PJ, Pellerin L. Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Philos Trans R Soc Lond Ser B Biol Sci. 1999;354:1155–63.CrossRef Magistretti PJ, Pellerin L. Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Philos Trans R Soc Lond Ser B Biol Sci. 1999;354:1155–63.CrossRef
26.
Zurück zum Zitat Leiderman DB, Balish M, Sato S, Kufta C, Reeves P, Gaillard WD, et al. Comparison of PET measurements of cerebral blood flow and glucose metabolism for the localization of human epileptic foci. Epilepsy Res. 1992;13:153–7.CrossRefPubMedCentral Leiderman DB, Balish M, Sato S, Kufta C, Reeves P, Gaillard WD, et al. Comparison of PET measurements of cerebral blood flow and glucose metabolism for the localization of human epileptic foci. Epilepsy Res. 1992;13:153–7.CrossRefPubMedCentral
27.
Zurück zum Zitat Wehrl HF, Hossain M, Lankes K, Liu C-C, Bezrukov I, Martirosian P, et al. Simultaneous PET-MRI reveals brain function in activated and resting state on metabolic, hemodynamic and multiple temporal scales. Nat Med. 2013;19:1184–9.CrossRefPubMedCentral Wehrl HF, Hossain M, Lankes K, Liu C-C, Bezrukov I, Martirosian P, et al. Simultaneous PET-MRI reveals brain function in activated and resting state on metabolic, hemodynamic and multiple temporal scales. Nat Med. 2013;19:1184–9.CrossRefPubMedCentral
28.
Zurück zum Zitat Gunn RN, Rabiner EA. PET neuroimaging: the elephant unpacks his trunk: comment on Cumming: “PET neuroimaging: the white elephant packs his trunk?”. NeuroImage. 2014;94:408–10.CrossRefPubMedCentral Gunn RN, Rabiner EA. PET neuroimaging: the elephant unpacks his trunk: comment on Cumming: “PET neuroimaging: the white elephant packs his trunk?”. NeuroImage. 2014;94:408–10.CrossRefPubMedCentral
29.
Zurück zum Zitat Shimada H, Ishii K, Makizako H, Ishiwata K, Oda K, Suzukawa M. Effects of exercise on brain activity during walking in older adults: a randomized controlled trial. J Neuroengineering Rehabil. 2017;14:50.CrossRef Shimada H, Ishii K, Makizako H, Ishiwata K, Oda K, Suzukawa M. Effects of exercise on brain activity during walking in older adults: a randomized controlled trial. J Neuroengineering Rehabil. 2017;14:50.CrossRef
30.
Zurück zum Zitat Coez A, Zilbovicius M, Ferrary E, Bouccara D, Mosnier I, Ambert-Dahan E, et al. Cochlear implant benefits in deafness rehabilitation: PET study of temporal voice activations. J Nucl Med. 2007;49:60–7.CrossRefPubMedCentral Coez A, Zilbovicius M, Ferrary E, Bouccara D, Mosnier I, Ambert-Dahan E, et al. Cochlear implant benefits in deafness rehabilitation: PET study of temporal voice activations. J Nucl Med. 2007;49:60–7.CrossRefPubMedCentral
31.
Zurück zum Zitat Verger A, Malbos E, Reynaud E, Mallet P, Mestre D, Pergandi JM, et al. Brain metabolism and related connectivity in patients with acrophobia treated by virtual reality therapy: an 18F-FDG PET pilot study sensitized by virtual exposure. EJNMMI Res. In press. Verger A, Malbos E, Reynaud E, Mallet P, Mestre D, Pergandi JM, et al. Brain metabolism and related connectivity in patients with acrophobia treated by virtual reality therapy: an 18F-FDG PET pilot study sensitized by virtual exposure. EJNMMI Res. In press.
32.
Zurück zum Zitat Coelho CM, Santos JA, Silvério J, Silva CF. Virtual reality and acrophobia: one-year follow-up and case study. Cyberpsychology Behav Impact Internet Multimed Virtual Real Behav Soc. 2006;9:336–41. Coelho CM, Santos JA, Silvério J, Silva CF. Virtual reality and acrophobia: one-year follow-up and case study. Cyberpsychology Behav Impact Internet Multimed Virtual Real Behav Soc. 2006;9:336–41.
33.
Zurück zum Zitat Wright CL, Binzel K, Zhang J, Knopp MV. Advanced functional tumor imaging and precision nuclear medicine enabled by digital PET technologies. Contrast Media Mol Imaging. 2017;2017:5260305.CrossRefPubMedCentral Wright CL, Binzel K, Zhang J, Knopp MV. Advanced functional tumor imaging and precision nuclear medicine enabled by digital PET technologies. Contrast Media Mol Imaging. 2017;2017:5260305.CrossRefPubMedCentral
34.
Zurück zum Zitat Villien M, Wey H-Y, Mandeville JB, Catana C, Polimeni JR, Sander CY, et al. Dynamic functional imaging of brain glucose utilization using fPET-FDG. NeuroImage. 2014;100:192–9.CrossRefPubMedCentral Villien M, Wey H-Y, Mandeville JB, Catana C, Polimeni JR, Sander CY, et al. Dynamic functional imaging of brain glucose utilization using fPET-FDG. NeuroImage. 2014;100:192–9.CrossRefPubMedCentral
35.
Zurück zum Zitat Hahn A, Gryglewski G, Nics L, Hienert M, Rischka L, Vraka C, et al. Quantification of task-specific glucose metabolism with constant infusion of 18F-FDG. J Nucl Med. 2016;57:1933–40.CrossRefPubMedCentral Hahn A, Gryglewski G, Nics L, Hienert M, Rischka L, Vraka C, et al. Quantification of task-specific glucose metabolism with constant infusion of 18F-FDG. J Nucl Med. 2016;57:1933–40.CrossRefPubMedCentral
36.
Zurück zum Zitat Rischka L, Gryglewski G, Pfaff S, Vanicek T, Hienert M, Klöbl M, et al. Reduced task durations in functional PET imaging with [ 18 F]FDG approaching that of functional MRI. NeuroImage. 2018;181:323–30.CrossRef Rischka L, Gryglewski G, Pfaff S, Vanicek T, Hienert M, Klöbl M, et al. Reduced task durations in functional PET imaging with [ 18 F]FDG approaching that of functional MRI. NeuroImage. 2018;181:323–30.CrossRef
37.
Zurück zum Zitat Verger A, Roman S, Chaudat R-M, Felician O, Ceccaldi M, Didic M, et al. Changes of metabolism and functional connectivity in late-onset deafness: evidence from cerebral 18F-FDG-PET. Hear Res. 2017;353:8–16.CrossRef Verger A, Roman S, Chaudat R-M, Felician O, Ceccaldi M, Didic M, et al. Changes of metabolism and functional connectivity in late-onset deafness: evidence from cerebral 18F-FDG-PET. Hear Res. 2017;353:8–16.CrossRef
38.
Zurück zum Zitat Trotta N, Baete K, Van Laere K, Goldman S, De Tiège X, Wens V. Letter to the Editor: Neurometabolic resting-state networks derived from seed-based functional connectivity analysis. J Nucl Med. 2018;jnumed.118.212878. Trotta N, Baete K, Van Laere K, Goldman S, De Tiège X, Wens V. Letter to the Editor: Neurometabolic resting-state networks derived from seed-based functional connectivity analysis. J Nucl Med. 2018;jnumed.118.212878.
39.
Zurück zum Zitat Savio A, Fünger S, Tahmasian M, Rachakonda S, Manoliu A, Sorg C, et al. Resting-state networks as simultaneously measured with functional MRI and PET. J Nucl Med. 2017;58:1314–7.CrossRef Savio A, Fünger S, Tahmasian M, Rachakonda S, Manoliu A, Sorg C, et al. Resting-state networks as simultaneously measured with functional MRI and PET. J Nucl Med. 2017;58:1314–7.CrossRef
40.
Zurück zum Zitat Verger A, Klesse E, Chawki MB, Witjas T, Azulay J-P, Eusebio A, et al. Brain PET substrate of impulse control disorders in Parkinson’s disease: a metabolic connectivity study. Hum Brain Mapp. 2018;39:3178–86.CrossRefPubMedCentral Verger A, Klesse E, Chawki MB, Witjas T, Azulay J-P, Eusebio A, et al. Brain PET substrate of impulse control disorders in Parkinson’s disease: a metabolic connectivity study. Hum Brain Mapp. 2018;39:3178–86.CrossRefPubMedCentral
41.
Zurück zum Zitat Siebner HR, Strafella AP, Rowe JB. The white elephant revived: a new marriage between PET and MRI: comment to Cumming: “PET neuroimaging: the white elephant packs his trunk?”. NeuroImage. 2014;84:1104–6.CrossRefPubMedCentral Siebner HR, Strafella AP, Rowe JB. The white elephant revived: a new marriage between PET and MRI: comment to Cumming: “PET neuroimaging: the white elephant packs his trunk?”. NeuroImage. 2014;84:1104–6.CrossRefPubMedCentral
43.
Zurück zum Zitat Passow S, Specht K, Adamsen TC, Biermann M, Brekke N, Craven AR, et al. Default-mode network functional connectivity is closely related to metabolic activity: metabolic activity and DMN connectivity. Hum Brain Mapp. 2015;36:2027–38.CrossRefPubMedCentral Passow S, Specht K, Adamsen TC, Biermann M, Brekke N, Craven AR, et al. Default-mode network functional connectivity is closely related to metabolic activity: metabolic activity and DMN connectivity. Hum Brain Mapp. 2015;36:2027–38.CrossRefPubMedCentral
44.
Zurück zum Zitat Tomasi DG, Shokri-Kojori E, Wiers CE, Kim SW, Demiral ŞB, Cabrera EA, et al. Dynamic brain glucose metabolism identifies anti-correlated cortical-cerebellar networks at rest. J Cereb Blood Flow Metab. 2017;37:3659–70.CrossRefPubMedCentral Tomasi DG, Shokri-Kojori E, Wiers CE, Kim SW, Demiral ŞB, Cabrera EA, et al. Dynamic brain glucose metabolism identifies anti-correlated cortical-cerebellar networks at rest. J Cereb Blood Flow Metab. 2017;37:3659–70.CrossRefPubMedCentral
45.
Zurück zum Zitat Riedl V, Utz L, Castrillón G, Grimmer T, Rauschecker JP, Ploner M, et al. Metabolic connectivity mapping reveals effective connectivity in the resting human brain. Proc Natl Acad Sci. 2016;113:428–33.CrossRefPubMedCentral Riedl V, Utz L, Castrillón G, Grimmer T, Rauschecker JP, Ploner M, et al. Metabolic connectivity mapping reveals effective connectivity in the resting human brain. Proc Natl Acad Sci. 2016;113:428–33.CrossRefPubMedCentral
46.
Zurück zum Zitat The Alzheimer’s Disease Neuroimaging Initiative, Scherr M, Pasquini L, Benson G, Nuttall R, Gruber M, et al. Decoupling of local metabolic activity and functional connectivity links to amyloid in Alzheimer’s disease. J Alzheimers Dis. 2018;64:405–15. The Alzheimer’s Disease Neuroimaging Initiative, Scherr M, Pasquini L, Benson G, Nuttall R, Gruber M, et al. Decoupling of local metabolic activity and functional connectivity links to amyloid in Alzheimer’s disease. J Alzheimers Dis. 2018;64:405–15.
47.
Zurück zum Zitat Chen Z, Jamadar SD, Li S, Sforazzini F, Baran J, Ferris N, et al. From simultaneous to synergistic MR-PET brain imaging: A review of hybrid MR-PET imaging methodologies. Hum Brain Mapp [Internet]. 2018 [cited 2018 Aug 29]; Available from: http://doi.wiley.com/10.1002/hbm.24314. Chen Z, Jamadar SD, Li S, Sforazzini F, Baran J, Ferris N, et al. From simultaneous to synergistic MR-PET brain imaging: A review of hybrid MR-PET imaging methodologies. Hum Brain Mapp [Internet]. 2018 [cited 2018 Aug 29]; Available from: http://​doi.​wiley.​com/​10.​1002/​hbm.​24314.
Metadaten
Titel
The renaissance of functional 18F-FDG PET brain activation imaging
verfasst von
Antoine Verger
Eric Guedj
Publikationsdatum
29.09.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 13/2018
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-018-4165-2

Weitere Artikel der Ausgabe 13/2018

European Journal of Nuclear Medicine and Molecular Imaging 13/2018 Zur Ausgabe