Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 2/2020

06.12.2019 | Original Article

The clinical feasibility of deep learning-based classification of amyloid PET images in visually equivocal cases

verfasst von: Hye Joo Son, Jungsu S. Oh, Minyoung Oh, Soo Jong Kim, Jae-Hong Lee, Jee Hoon Roh, Jae Seung Kim

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 2/2020

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Although most deep learning (DL) studies have reported excellent classification accuracy, these studies usually target typical Alzheimer’s disease (AD) and normal cognition (NC) for which conventional visual assessment performs well. A clinically relevant issue is the selection of high-risk subjects who need active surveillance among equivocal cases. We validated the clinical feasibility of DL compared with visual rating or quantitative measurement for assessing the diagnosis and prognosis of subjects with equivocal amyloid scans.

Methods

18F-florbetaben scans of 430 cases (85 NC, 233 mild cognitive impairment, and 112 AD) were assessed through visual rating-based, quantification-based, and DL-based methods. DL was trained using 280 two-dimensional PET images (80%) and tested by randomly assigning the remaining (70 cases, 20%) cases and a clinical validation set of 54 equivocal cases. In the equivocal cases, we assessed the agreement among the visual rating, quantification, and DL and compared the clinical outcome according to each modality-based amyloid status.

Results

The visual reading was positive in 175 cases, equivocal in 54 cases, and negative in 201 cases. The composite SUVR cutoff value was 1.32 (AUC 0.99). The subject-level performance of DL using the test set was 100%. Among the 54 equivocal cases, 37 cases were classified as positive (Eq(deep+)) by DL, 40 cases were classified by a second-round visual assessment, and 40 cases were classified by quantification. The DL- and quantification-based classifications showed good agreement (83%, κ = 0.59). The composite SUVRs differed between Eq(deep+) (1.47 [0.13]) and Eq(deep−) (1.29 [0.10]; P < 0.001). DL, but not the visual rating, showed a significant difference in the Mini-Mental Status Examination score change during the follow-up between Eq(deep+) (− 4.21 [0.57]) and Eq(deep−) (− 1.74 [0.76]; P = 0.023) (mean duration, 1.76 years).

Conclusions

In visually equivocal scans, DL was more related to quantification than to visual assessment, and the negative cases selected by DL showed no decline in cognitive outcome. DL is useful for clinical diagnosis and prognosis assessment in subjects with visually equivocal amyloid scans.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Grundman M, Pontecorvo MJ, Salloway SP, Doraiswamy PM, Fleisher AS, Sadowsky CH, et al. Potential impact of amyloid imaging on diagnosis and intended management in patients with progressive cognitive decline. Alzheimer Dis Assoc Disord. 2013;27:4–15.CrossRef Grundman M, Pontecorvo MJ, Salloway SP, Doraiswamy PM, Fleisher AS, Sadowsky CH, et al. Potential impact of amyloid imaging on diagnosis and intended management in patients with progressive cognitive decline. Alzheimer Dis Assoc Disord. 2013;27:4–15.CrossRef
2.
Zurück zum Zitat Hosokawa C, Ishii K, Hyodo T, Sakaguchi K, Usami K, Shimamoto K, et al. Investigation of (11)C-PiB equivocal PET findings. Ann Nucl Med. 2015;29:164–9.CrossRef Hosokawa C, Ishii K, Hyodo T, Sakaguchi K, Usami K, Shimamoto K, et al. Investigation of (11)C-PiB equivocal PET findings. Ann Nucl Med. 2015;29:164–9.CrossRef
3.
Zurück zum Zitat Schreiber S, Landau SM, Fero A, Schreiber F, Jagust WJ. Alzheimer’s Disease Neuroimaging Initiative. Comparison of visual and quantitative florbetapir F 18 positron emission tomography analysis in predicting mild cognitive impairment outcomes. JAMA Neurol. 2015;72:1183–90.CrossRef Schreiber S, Landau SM, Fero A, Schreiber F, Jagust WJ. Alzheimer’s Disease Neuroimaging Initiative. Comparison of visual and quantitative florbetapir F 18 positron emission tomography analysis in predicting mild cognitive impairment outcomes. JAMA Neurol. 2015;72:1183–90.CrossRef
4.
Zurück zum Zitat Lecun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE. 1998;86:2278–324.CrossRef Lecun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE. 1998;86:2278–324.CrossRef
5.
Zurück zum Zitat Lecun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44.CrossRef Lecun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44.CrossRef
6.
Zurück zum Zitat Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316:2402–10.CrossRef Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316:2402–10.CrossRef
7.
Zurück zum Zitat Liu M, Zhang D, Shen D. Alzheimer’s Disease Neuroimaging Initiative. Hierarchical fusion of features and classifier decisions for Alzheimer’s disease diagnosis. Hum Brain Mapp. 2014;35:1305–19.CrossRef Liu M, Zhang D, Shen D. Alzheimer’s Disease Neuroimaging Initiative. Hierarchical fusion of features and classifier decisions for Alzheimer’s disease diagnosis. Hum Brain Mapp. 2014;35:1305–19.CrossRef
9.
Zurück zum Zitat Wen D, Wei ZH, Zhou YH, Li GL, Zhang X, Han W. Deep learning methods to process fMRI data and their application in the diagnosis of cognitive impairment: a brief overview and our opinion. Front Neuroinform. 2018;12:23.CrossRef Wen D, Wei ZH, Zhou YH, Li GL, Zhang X, Han W. Deep learning methods to process fMRI data and their application in the diagnosis of cognitive impairment: a brief overview and our opinion. Front Neuroinform. 2018;12:23.CrossRef
10.
Zurück zum Zitat Singh S, Srivastava A, Mi L, Caselli RJ, Chen K, Goradia D, Reiman EM, Wang Y. Deep-learning-based classification of FDG-PET data for Alzheimer’s disease categories. In: 13th international conference on medical information processing and analysis. San Andres Islands, Colombia: International Society for Optics and Photonics; 2017. pp. 105720J. Singh S, Srivastava A, Mi L, Caselli RJ, Chen K, Goradia D, Reiman EM, Wang Y. Deep-learning-based classification of FDG-PET data for Alzheimer’s disease categories. In: 13th international conference on medical information processing and analysis. San Andres Islands, Colombia: International Society for Optics and Photonics; 2017. pp. 105720J.
11.
Zurück zum Zitat Minoshima S, Drzezga AE, Barthel H, Bohnen N, Djekidel M, Lewis DH, et al. SNMMI procedure standard/EANM practice guideline for amyloid PET imaging of the brain 1.0. J Nucl Med. 2016;57:1316–22.CrossRef Minoshima S, Drzezga AE, Barthel H, Bohnen N, Djekidel M, Lewis DH, et al. SNMMI procedure standard/EANM practice guideline for amyloid PET imaging of the brain 1.0. J Nucl Med. 2016;57:1316–22.CrossRef
13.
Zurück zum Zitat Van Maaten LD, Hinton G. Visualizing data using t-SNE. J Mach Learn Res. 2008;9:2579–605. Van Maaten LD, Hinton G. Visualizing data using t-SNE. J Mach Learn Res. 2008;9:2579–605.
14.
Zurück zum Zitat Vandenberghe R, Nelissen N, Salmon E, Ivanoiu A, Hasselbalch S, Andersen A, et al. Binary classification of 18F-flutemetamol PET using machine learning: comparison with visual reads and structural MRI. Neuroimage. 2013;64:517–25.CrossRef Vandenberghe R, Nelissen N, Salmon E, Ivanoiu A, Hasselbalch S, Andersen A, et al. Binary classification of 18F-flutemetamol PET using machine learning: comparison with visual reads and structural MRI. Neuroimage. 2013;64:517–25.CrossRef
15.
Zurück zum Zitat Ding Y, Sohn JH, Kawczynski MG, Trivedi H, Harnish R, Jenkins NW, et al. A deep learning model to predict a diagnosis of Alzheimer disease by using (18)F-FDG PET of the brain. Radiology. 2019;290:456–64.CrossRef Ding Y, Sohn JH, Kawczynski MG, Trivedi H, Harnish R, Jenkins NW, et al. A deep learning model to predict a diagnosis of Alzheimer disease by using (18)F-FDG PET of the brain. Radiology. 2019;290:456–64.CrossRef
16.
Zurück zum Zitat Payoux P, Delrieu J, Gallini A, Adel D, Salabert AS, Hitzel A, et al. Cognitive and functional patterns of nondemented subjects with equivocal visual amyloid PET findings. Eur J Nucl Med Mol Imaging. 2015;42:1459–68.CrossRef Payoux P, Delrieu J, Gallini A, Adel D, Salabert AS, Hitzel A, et al. Cognitive and functional patterns of nondemented subjects with equivocal visual amyloid PET findings. Eur J Nucl Med Mol Imaging. 2015;42:1459–68.CrossRef
17.
Zurück zum Zitat Cattell L, Platsch G, Pfeiffer R, Declerck J, Schnabel JA, Hutton C. Alzheimer’s Disease Neuroimaging Initiative. Classification of amyloid status using machine learning with histograms of oriented 3D gradients. Neuroimage Clin. 2016;12:990–1003.CrossRef Cattell L, Platsch G, Pfeiffer R, Declerck J, Schnabel JA, Hutton C. Alzheimer’s Disease Neuroimaging Initiative. Classification of amyloid status using machine learning with histograms of oriented 3D gradients. Neuroimage Clin. 2016;12:990–1003.CrossRef
18.
Zurück zum Zitat Cohen AD, Mowrey W, Weissfeld LA, Aizenstein HJ, McDade E, Mountz JM, et al. Classification of amyloid-positivity in controls: comparison of visual read and quantitative approaches. Neuroimage. 2013;71:207–15.CrossRef Cohen AD, Mowrey W, Weissfeld LA, Aizenstein HJ, McDade E, Mountz JM, et al. Classification of amyloid-positivity in controls: comparison of visual read and quantitative approaches. Neuroimage. 2013;71:207–15.CrossRef
19.
Zurück zum Zitat Yuan Y, Wang Z, Lee W, VanGilder P, Chen Y, Reiman EM, et al. Quantification of amyloid burden from florbetapir pet images without using target and reference regions: preliminary findings based on the deep learning 3D convolutional neural network approach. Alzheimers Dement. 2018;14:P315–6.CrossRef Yuan Y, Wang Z, Lee W, VanGilder P, Chen Y, Reiman EM, et al. Quantification of amyloid burden from florbetapir pet images without using target and reference regions: preliminary findings based on the deep learning 3D convolutional neural network approach. Alzheimers Dement. 2018;14:P315–6.CrossRef
20.
Zurück zum Zitat Landau SM, Horng A, Jagust WJ. Initiative AsDN. Memory decline accompanies subthreshold amyloid accumulation. Neurology. 2018;90(17):e1452–e60.CrossRef Landau SM, Horng A, Jagust WJ. Initiative AsDN. Memory decline accompanies subthreshold amyloid accumulation. Neurology. 2018;90(17):e1452–e60.CrossRef
21.
Zurück zum Zitat La Joie R, Ayakta N, Seeley WW, Borys E, Boxer AL, DeCarli C, et al. Multisite study of the relationships between antemortem [11C] PIB-PET centiloid values and postmortem measures of Alzheimer’s disease neuropathology. Alzheimers Dement. 2019;15(2):205–16.CrossRef La Joie R, Ayakta N, Seeley WW, Borys E, Boxer AL, DeCarli C, et al. Multisite study of the relationships between antemortem [11C] PIB-PET centiloid values and postmortem measures of Alzheimer’s disease neuropathology. Alzheimers Dement. 2019;15(2):205–16.CrossRef
22.
Zurück zum Zitat Choi H, Jin KH. Alzheimer’s Disease Neuroimaging Initiative. Predicting cognitive decline with deep learning of brain metabolism and amyloid imaging. Behav Brain Res. 2018;344:103–9.CrossRef Choi H, Jin KH. Alzheimer’s Disease Neuroimaging Initiative. Predicting cognitive decline with deep learning of brain metabolism and amyloid imaging. Behav Brain Res. 2018;344:103–9.CrossRef
23.
Zurück zum Zitat Gamberger D, Lavrač N, Srivatsa S, Tanzi RE, Doraiswamy PM. Identification of clusters of rapid and slow decliners among subjects at risk for Alzheimer’s disease. Sci Rep. 2017;7:6763.CrossRef Gamberger D, Lavrač N, Srivatsa S, Tanzi RE, Doraiswamy PM. Identification of clusters of rapid and slow decliners among subjects at risk for Alzheimer’s disease. Sci Rep. 2017;7:6763.CrossRef
24.
Zurück zum Zitat Mangialasche F, Solomon A, Winblad B, Mecocci P, Kivipelto M. Alzheimer’s disease: clinical trials and drug development. Lancet Neurol. 2010;9:702–16.CrossRef Mangialasche F, Solomon A, Winblad B, Mecocci P, Kivipelto M. Alzheimer’s disease: clinical trials and drug development. Lancet Neurol. 2010;9:702–16.CrossRef
25.
Zurück zum Zitat Spiegel R, Berres M, Miserez AR, Monsch AU, Alzheimer’s Disease Neuroimaging Initiative. For debate: substituting placebo controls in long-term Alzheimer’s prevention trials. Alzheimers Res Ther. 2011;3:9.CrossRef Spiegel R, Berres M, Miserez AR, Monsch AU, Alzheimer’s Disease Neuroimaging Initiative. For debate: substituting placebo controls in long-term Alzheimer’s prevention trials. Alzheimers Res Ther. 2011;3:9.CrossRef
27.
Zurück zum Zitat Yan K, Bagheri M, Summers RM. 3D context enhanced region-based convolutional neural network for end-to-end lesion detection. In: 21th international conference on medical image computing and computer assisted intervention. Granada, Spain: Springer; 2018. pp. 511–9.CrossRef Yan K, Bagheri M, Summers RM. 3D context enhanced region-based convolutional neural network for end-to-end lesion detection. In: 21th international conference on medical image computing and computer assisted intervention. Granada, Spain: Springer; 2018. pp. 511–9.CrossRef
28.
Zurück zum Zitat Zhao G, Liu F, Oler JA, Meyerand ME, Kalin NH, Birn RM. Bayesian convolutional neural network based MRI brain extraction on nonhuman primates. Neuroimage. 2018;175:32–44.CrossRef Zhao G, Liu F, Oler JA, Meyerand ME, Kalin NH, Birn RM. Bayesian convolutional neural network based MRI brain extraction on nonhuman primates. Neuroimage. 2018;175:32–44.CrossRef
29.
Zurück zum Zitat Patterson BW, Elbert DL, Mawuenyega KG, Kasten T, Ovod V, Ma S, et al. Age and amyloid effects on human central nervous system amyloid-beta kinetics. Ann Neurol. 2015;78:439–53.CrossRef Patterson BW, Elbert DL, Mawuenyega KG, Kasten T, Ovod V, Ma S, et al. Age and amyloid effects on human central nervous system amyloid-beta kinetics. Ann Neurol. 2015;78:439–53.CrossRef
Metadaten
Titel
The clinical feasibility of deep learning-based classification of amyloid PET images in visually equivocal cases
verfasst von
Hye Joo Son
Jungsu S. Oh
Minyoung Oh
Soo Jong Kim
Jae-Hong Lee
Jee Hoon Roh
Jae Seung Kim
Publikationsdatum
06.12.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 2/2020
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-019-04595-y

Weitere Artikel der Ausgabe 2/2020

European Journal of Nuclear Medicine and Molecular Imaging 2/2020 Zur Ausgabe