Skip to main content

13.04.2021 | Review Article

Distributed learning: a reliable privacy-preserving strategy to change multicenter collaborations using AI

verfasst von: Margarita Kirienko, Martina Sollini, Gaia Ninatti, Daniele Loiacono, Edoardo Giacomello, Noemi Gozzi, Francesco Amigoni, Luca Mainardi, Pier Luca Lanzi, Arturo Chiti

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 12/2021

Einloggen, um Zugang zu erhalten

Abstract

Purpose

The present scoping review aims to assess the non-inferiority of distributed learning over centrally and locally trained machine learning (ML) models in medical applications.

Methods

We performed a literature search using the term “distributed learning” OR “federated learning” in the PubMed/MEDLINE and EMBASE databases. No start date limit was used, and the search was extended until July 21, 2020. We excluded articles outside the field of interest; guidelines or expert opinion, review articles and meta-analyses, editorials, letters or commentaries, and conference abstracts; articles not in the English language; and studies not using medical data. Selected studies were classified and analysed according to their aim(s).

Results

We included 26 papers aimed at predicting one or more outcomes: namely risk, diagnosis, prognosis, and treatment side effect/adverse drug reaction. Distributed learning was compared to centralized or localized training in 21/26 and 14/26 selected papers, respectively. Regardless of the aim, the type of input, the method, and the classifier, distributed learning performed close to centralized training, but two experiments focused on diagnosis. In all but 2 cases, distributed learning outperformed locally trained models.

Conclusion

Distributed learning resulted in a reliable strategy for model development; indeed, it performed equally to models trained on centralized datasets. Sensitive data can get preserved since they are not shared for model development. Distributed learning constitutes a promising solution for ML-based research and practice since large, diverse datasets are crucial for success.
Literatur
1.
Zurück zum Zitat Sollini M, Antunovic L, Chiti A, Kirienko M. Towards clinical application of image mining: a systematic review on artificial intelligence and radiomics. Eur J Nucl Med Mol Imaging. 2019;46:2656–72.CrossRef Sollini M, Antunovic L, Chiti A, Kirienko M. Towards clinical application of image mining: a systematic review on artificial intelligence and radiomics. Eur J Nucl Med Mol Imaging. 2019;46:2656–72.CrossRef
2.
Zurück zum Zitat Park JE, Kim D, Kim HS, Park SY, Kim JY, Cho SJ, et al. Quality of science and reporting of radiomics in oncologic studies: room for improvement according to radiomics quality score and TRIPOD statement. Eur Radiol. 2020;30:523–36.CrossRef Park JE, Kim D, Kim HS, Park SY, Kim JY, Cho SJ, et al. Quality of science and reporting of radiomics in oncologic studies: room for improvement according to radiomics quality score and TRIPOD statement. Eur Radiol. 2020;30:523–36.CrossRef
3.
Zurück zum Zitat Sollini M, Berchiolli R, Delgado Bolton RC, Rossi A, Kirienko M, Boni R, et al. The “3M” approach to cardiovascular infections: multimodality, multitracers, and multidisciplinary. Semin Nucl Med. 2018;48:199–224.CrossRef Sollini M, Berchiolli R, Delgado Bolton RC, Rossi A, Kirienko M, Boni R, et al. The “3M” approach to cardiovascular infections: multimodality, multitracers, and multidisciplinary. Semin Nucl Med. 2018;48:199–224.CrossRef
4.
Zurück zum Zitat Kirienko M, Ninatti G, Cozzi L, Voulaz E, Gennaro N, Barajon I, et al. Computed tomography (CT)-derived radiomic features differentiate prevascular mediastinum masses as thymic neoplasms versus lymphomas. Radiol Med. 2020;125:951–60.CrossRef Kirienko M, Ninatti G, Cozzi L, Voulaz E, Gennaro N, Barajon I, et al. Computed tomography (CT)-derived radiomic features differentiate prevascular mediastinum masses as thymic neoplasms versus lymphomas. Radiol Med. 2020;125:951–60.CrossRef
5.
Zurück zum Zitat Sollini M, Cozzi L, Ninatti G, Antunovic L, Cavinato L, Chiti A, et al. PET/CT radiomics in breast cancer: mind the step. Methods. 2020;S1046–2023:30263–4. Sollini M, Cozzi L, Ninatti G, Antunovic L, Cavinato L, Chiti A, et al. PET/CT radiomics in breast cancer: mind the step. Methods. 2020;S1046–2023:30263–4.
6.
Zurück zum Zitat Sollini M, Bartoli F, Marciano A, Zanca R, Slart RHJA, Erba PA. Artificial intelligence and hybrid imaging: the best match for personalized medicine in oncology. Eur J Hybrid Imaging. 2020;4:24.CrossRef Sollini M, Bartoli F, Marciano A, Zanca R, Slart RHJA, Erba PA. Artificial intelligence and hybrid imaging: the best match for personalized medicine in oncology. Eur J Hybrid Imaging. 2020;4:24.CrossRef
7.
Zurück zum Zitat Kaissis GA, Makowski MR, Rückert D, Braren RF. Secure, privacy-preserving and federated machine learning in medical imaging. Nat Mach Intell. 2020. Kaissis GA, Makowski MR, Rückert D, Braren RF. Secure, privacy-preserving and federated machine learning in medical imaging. Nat Mach Intell. 2020.
8.
Zurück zum Zitat Konečný J, McMahan B, Ramage D. Federated optimization:distributed optimization beyond the datacenter. 2015; Konečný J, McMahan B, Ramage D. Federated optimization:distributed optimization beyond the datacenter. 2015;
9.
Zurück zum Zitat Zerka F, Barakat S, Walsh S, Bogowicz M, Leijenaar RTH, Jochems A, et al. Systematic review of privacy-preserving distributed machine learning from federated databases in health care. JCO Clin Cancer Informatics. 2020;4:184–200.CrossRef Zerka F, Barakat S, Walsh S, Bogowicz M, Leijenaar RTH, Jochems A, et al. Systematic review of privacy-preserving distributed machine learning from federated databases in health care. JCO Clin Cancer Informatics. 2020;4:184–200.CrossRef
10.
Zurück zum Zitat Verbraeken J, Wolting M, Katzy J, Kloppenburg J, Verbelen T, Rellermeyer JS. A survey on distributed machine learning. ACM Comput Surv. 2020;53:1–33.CrossRef Verbraeken J, Wolting M, Katzy J, Kloppenburg J, Verbelen T, Rellermeyer JS. A survey on distributed machine learning. ACM Comput Surv. 2020;53:1–33.CrossRef
11.
Zurück zum Zitat Dean J, Corrado GS, Monga R, Chen K, Devin M, Le QV, et al. Large scale distributed deep networks. Adv Neural Inf Proces Syst. 2012. Dean J, Corrado GS, Monga R, Chen K, Devin M, Le QV, et al. Large scale distributed deep networks. Adv Neural Inf Proces Syst. 2012.
12.
Zurück zum Zitat Chang K, Balachandar N, Lam C, Yi D, Brown J, Beers A, et al. Distributed deep learning networks among institutions for medical imaging. J Am Med Inform Assoc. 2018;25:945–54.CrossRef Chang K, Balachandar N, Lam C, Yi D, Brown J, Beers A, et al. Distributed deep learning networks among institutions for medical imaging. J Am Med Inform Assoc. 2018;25:945–54.CrossRef
13.
Zurück zum Zitat Vepakomma P, Gupta O, Swedish T, Raskar R. Split learning for health: distributed deep learning without sharing raw patient data. 2018; Vepakomma P, Gupta O, Swedish T, Raskar R. Split learning for health: distributed deep learning without sharing raw patient data. 2018;
14.
Zurück zum Zitat Polikar R. Ensemble based systems in decision making. IEEE Circuits Syst Mag. 2006;6:21–45.CrossRef Polikar R. Ensemble based systems in decision making. IEEE Circuits Syst Mag. 2006;6:21–45.CrossRef
15.
16.
Zurück zum Zitat Gupta O, Raskar R. Distributed learning of deep neural network over multiple agents. J Netw Comput Appl. 2018. Gupta O, Raskar R. Distributed learning of deep neural network over multiple agents. J Netw Comput Appl. 2018.
17.
Zurück zum Zitat Rieke N, Hancox J, Li W, Milletarì F, Roth HR, Albarqouni S, et al. The future of digital health with federated learning. npj Digit Med. 2020. Rieke N, Hancox J, Li W, Milletarì F, Roth HR, Albarqouni S, et al. The future of digital health with federated learning. npj Digit Med. 2020.
18.
Zurück zum Zitat Brendan McMahan H, Moore E, Ramage D, Hampson S, Agüera y Arcas B. Communication-efficient learning of deep networks from decentralized data. Proc 20th Int Conf Artif Intell Stat AISTATS 2017. 2017. Brendan McMahan H, Moore E, Ramage D, Hampson S, Agüera y Arcas B. Communication-efficient learning of deep networks from decentralized data. Proc 20th Int Conf Artif Intell Stat AISTATS 2017. 2017.
19.
Zurück zum Zitat Huang L, Shea AL, Qian H, Masurkar A, Deng H, Liu D. Patient clustering improves efficiency of federated machine learning to predict mortality and hospital stay time using distributed electronic medical records. J Biomed Inform. 2019;99:103291.CrossRef Huang L, Shea AL, Qian H, Masurkar A, Deng H, Liu D. Patient clustering improves efficiency of federated machine learning to predict mortality and hospital stay time using distributed electronic medical records. J Biomed Inform. 2019;99:103291.CrossRef
20.
Zurück zum Zitat Sheller MJ, Reina GA, Edwards B, Martin J, Bakas S. Multi-institutional deep learning modeling without sharing patient data: a feasibility study on brain tumor segmentation. Brainlesion. 2019;11383:92–104.PubMedPubMedCentral Sheller MJ, Reina GA, Edwards B, Martin J, Bakas S. Multi-institutional deep learning modeling without sharing patient data: a feasibility study on brain tumor segmentation. Brainlesion. 2019;11383:92–104.PubMedPubMedCentral
21.
Zurück zum Zitat Li X, Gu Y, Dvornek N, Staib LH, Ventola P, Duncan JS. Multi-site fMRI analysis using privacy-preserving federated learning and domain adaptation: ABIDE results. Med Image Anal. 2020;65:101765.CrossRef Li X, Gu Y, Dvornek N, Staib LH, Ventola P, Duncan JS. Multi-site fMRI analysis using privacy-preserving federated learning and domain adaptation: ABIDE results. Med Image Anal. 2020;65:101765.CrossRef
22.
Zurück zum Zitat Jochems A, Deist TM, van Soest J, Eble M, Bulens P, Coucke P, et al. Distributed learning: developing a predictive model based on data from multiple hospitals without data leaving the hospital – a real life proof of concept. Radiother Oncol. 2016;121:459–67.CrossRef Jochems A, Deist TM, van Soest J, Eble M, Bulens P, Coucke P, et al. Distributed learning: developing a predictive model based on data from multiple hospitals without data leaving the hospital – a real life proof of concept. Radiother Oncol. 2016;121:459–67.CrossRef
23.
Zurück zum Zitat Deist TM, Jochems A, van Soest J, Nalbantov G, Oberije C, Walsh S, et al. Infrastructure and distributed learning methodology for privacy-preserving multi-centric rapid learning health care: euroCAT. Clin Transl Radiat Oncol. 2017;4:24–31.CrossRef Deist TM, Jochems A, van Soest J, Nalbantov G, Oberije C, Walsh S, et al. Infrastructure and distributed learning methodology for privacy-preserving multi-centric rapid learning health care: euroCAT. Clin Transl Radiat Oncol. 2017;4:24–31.CrossRef
24.
Zurück zum Zitat Jochems A, Deist TM, El Naqa I, Kessler M, Mayo C, Reeves J, et al. Developing and validating a survival prediction model for NSCLC patients through distributed learning across 3 countries. Int J Radiat Oncol. 2017;99:344–52.CrossRef Jochems A, Deist TM, El Naqa I, Kessler M, Mayo C, Reeves J, et al. Developing and validating a survival prediction model for NSCLC patients through distributed learning across 3 countries. Int J Radiat Oncol. 2017;99:344–52.CrossRef
25.
Zurück zum Zitat Deist TM, Dankers FJWM, Ojha P, Scott Marshall M, Janssen T, Faivre-Finn C, et al. Distributed learning on 20 000+ lung cancer patients – the personal health train. Radiother Oncol. 2020;144:189–200.CrossRef Deist TM, Dankers FJWM, Ojha P, Scott Marshall M, Janssen T, Faivre-Finn C, et al. Distributed learning on 20 000+ lung cancer patients – the personal health train. Radiother Oncol. 2020;144:189–200.CrossRef
26.
Zurück zum Zitat Dankar FK, Madathil N, Dankar SK, Boughorbel S. Privacy-preserving analysis of distributed biomedical data: designing efficient and secure multiparty computations using distributed statistical learning theory. JMIR Med Inf. 2019;7:e12702.CrossRef Dankar FK, Madathil N, Dankar SK, Boughorbel S. Privacy-preserving analysis of distributed biomedical data: designing efficient and secure multiparty computations using distributed statistical learning theory. JMIR Med Inf. 2019;7:e12702.CrossRef
27.
Zurück zum Zitat Li Z, Roberts K, Jiang X, Long Q. Distributed learning from multiple EHR databases: contextual embedding models for medical events. J Biomed Inform. 2019. Li Z, Roberts K, Jiang X, Long Q. Distributed learning from multiple EHR databases: contextual embedding models for medical events. J Biomed Inform. 2019.
28.
Zurück zum Zitat Lee J, Sun J, Wang F, Wang S, Jun C-H, Jiang X. Privacy-preserving patient similarity learning in a federated environment: development and analysis. JMIR Med Inf. 2018;6:e20.CrossRef Lee J, Sun J, Wang F, Wang S, Jun C-H, Jiang X. Privacy-preserving patient similarity learning in a federated environment: development and analysis. JMIR Med Inf. 2018;6:e20.CrossRef
29.
Zurück zum Zitat Brisimi TS, Chen R, Mela T, Olshevsky A, Paschalidis IC, Shi W. Federated learning of predictive models from federated electronic health records. Int J Med Inform. 2018;112:59–67.CrossRef Brisimi TS, Chen R, Mela T, Olshevsky A, Paschalidis IC, Shi W. Federated learning of predictive models from federated electronic health records. Int J Med Inform. 2018;112:59–67.CrossRef
30.
Zurück zum Zitat Duan R, Boland MR, Liu Z, Liu Y, Chang HH, Xu H, et al. Learning from electronic health records across multiple sites: a communication-efficient and privacy-preserving distributed algorithm. J Am Med Inform Assoc. 2020;27:376–85.CrossRef Duan R, Boland MR, Liu Z, Liu Y, Chang HH, Xu H, et al. Learning from electronic health records across multiple sites: a communication-efficient and privacy-preserving distributed algorithm. J Am Med Inform Assoc. 2020;27:376–85.CrossRef
31.
Zurück zum Zitat Silva S, Gutman BA, Romero E, Thompson PM, Altmann A, Lorenzi M. Federated learning in distributed medical databases: meta-analysis of large-scale subcortical brain data. 2019 IEEE 16th Int Symp biomed imaging (ISBI 2019). IEEE; 2019. p. 270–4. Silva S, Gutman BA, Romero E, Thompson PM, Altmann A, Lorenzi M. Federated learning in distributed medical databases: meta-analysis of large-scale subcortical brain data. 2019 IEEE 16th Int Symp biomed imaging (ISBI 2019). IEEE; 2019. p. 270–4.
32.
Zurück zum Zitat Remedios SW, Roy S, Bermudez C, Patel MB, Butman JA, Landman BA, et al. Distributed deep learning across multisite datasets for generalized CT hemorrhage segmentation. Med Phys. 2020;47:89–98.CrossRef Remedios SW, Roy S, Bermudez C, Patel MB, Butman JA, Landman BA, et al. Distributed deep learning across multisite datasets for generalized CT hemorrhage segmentation. Med Phys. 2020;47:89–98.CrossRef
33.
Zurück zum Zitat Remedios S, Roy S, Blaber J, Bermudez C, Nath V, Patel MB, et al. Distributed deep learning for robust multi-site segmentation of CT imaging after traumatic brain injury. In: Angelini ED, Landman BA, editors. Med Imaging 2019 Image process. SPIE; 2019. p. 9. Remedios S, Roy S, Blaber J, Bermudez C, Nath V, Patel MB, et al. Distributed deep learning for robust multi-site segmentation of CT imaging after traumatic brain injury. In: Angelini ED, Landman BA, editors. Med Imaging 2019 Image process. SPIE; 2019. p. 9.
34.
Zurück zum Zitat Balachandar N, Chang K, Kalpathy-Cramer J, Rubin DL. Accounting for data variability in multi-institutional distributed deep learning for medical imaging. J Am Med Inform Assoc. 2020;27:700–8.CrossRef Balachandar N, Chang K, Kalpathy-Cramer J, Rubin DL. Accounting for data variability in multi-institutional distributed deep learning for medical imaging. J Am Med Inform Assoc. 2020;27:700–8.CrossRef
35.
Zurück zum Zitat Wu X, Zheng H, Dou Z, Chen F, Deng J, Chen X, et al. A novel privacy-preserving federated genome-wide association study framework and its application in identifying potential risk variants in ankylosing spondylitis. Brief Bioinform. 2020; Wu X, Zheng H, Dou Z, Chen F, Deng J, Chen X, et al. A novel privacy-preserving federated genome-wide association study framework and its application in identifying potential risk variants in ankylosing spondylitis. Brief Bioinform. 2020;
36.
Zurück zum Zitat Xu Y, Ma L, Yang F, Chen Y, Ma K, Yang J, et al. A collaborative online AI engine for CT-based COVID-19 diagnosis. medRxiv Prepr Serv Heal Sci. 2020. Xu Y, Ma L, Yang F, Chen Y, Ma K, Yang J, et al. A collaborative online AI engine for CT-based COVID-19 diagnosis. medRxiv Prepr Serv Heal Sci. 2020.
37.
Zurück zum Zitat Choudhury O, Park Y, Salonidis T, Gkoulalas-Divanis A, Sylla I, Das AK. Predicting adverse drug reactions on distributed health data using federated learning. AMIA Annu Symp Proc AMIA Symp. 2019;2019:313–22.PubMed Choudhury O, Park Y, Salonidis T, Gkoulalas-Divanis A, Sylla I, Das AK. Predicting adverse drug reactions on distributed health data using federated learning. AMIA Annu Symp Proc AMIA Symp. 2019;2019:313–22.PubMed
38.
Zurück zum Zitat Wang Y, Hong C, Palmer N, Di Q, Schwartz J, Kohane I, et al. A fast divide-and-conquer sparse Cox regression. Biostatistics. 2019. Wang Y, Hong C, Palmer N, Di Q, Schwartz J, Kohane I, et al. A fast divide-and-conquer sparse Cox regression. Biostatistics. 2019.
39.
Zurück zum Zitat Xie J, Liu S, Dai H. Manifold regularization based distributed semi-supervised learning algorithm using extreme learning machine over time-varying network. Neurocomputing. 2019. Xie J, Liu S, Dai H. Manifold regularization based distributed semi-supervised learning algorithm using extreme learning machine over time-varying network. Neurocomputing. 2019.
40.
Zurück zum Zitat Dluhoš P, Schwarz D, Cahn W, van Haren N, Kahn R, Španiel F, et al. Multi-center machine learning in imaging psychiatry: a meta-model approach. Neuroimage. 2017. Dluhoš P, Schwarz D, Cahn W, van Haren N, Kahn R, Španiel F, et al. Multi-center machine learning in imaging psychiatry: a meta-model approach. Neuroimage. 2017.
41.
Zurück zum Zitat Scardapane S, Di Lorenzo P. A framework for parallel and distributed training of neural networks. Neural Netw. 2017. Scardapane S, Di Lorenzo P. A framework for parallel and distributed training of neural networks. Neural Netw. 2017.
42.
Zurück zum Zitat Tuladhar A, Gill S, Ismail Z, Forkert ND. Building machine learning models without sharing patient data: a simulation-based analysis of distributed learning by ensembling. J Biomed Inform. 2020. Tuladhar A, Gill S, Ismail Z, Forkert ND. Building machine learning models without sharing patient data: a simulation-based analysis of distributed learning by ensembling. J Biomed Inform. 2020.
43.
Zurück zum Zitat Bogowicz M, Jochems A, Deist TM, Tanadini-Lang S, Huang SH, Chan B, et al. Privacy-preserving distributed learning of radiomics to predict overall survival and HPV status in head and neck cancer. Sci Rep. 2020. Bogowicz M, Jochems A, Deist TM, Tanadini-Lang S, Huang SH, Chan B, et al. Privacy-preserving distributed learning of radiomics to predict overall survival and HPV status in head and neck cancer. Sci Rep. 2020.
44.
Zurück zum Zitat Sheller MJ, Edwards B, Reina GA, Martin J, Pati S, Kotrotsou A, et al. Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data. Sci Rep. 2020;10:12598.CrossRef Sheller MJ, Edwards B, Reina GA, Martin J, Pati S, Kotrotsou A, et al. Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data. Sci Rep. 2020;10:12598.CrossRef
45.
Zurück zum Zitat Bhaskar H, Hoyle DC, Singh S. Machine learning in bioinformatics: a brief survey and recommendations for practitioners. Comput Biol Med. 2006;36:1104–25.CrossRef Bhaskar H, Hoyle DC, Singh S. Machine learning in bioinformatics: a brief survey and recommendations for practitioners. Comput Biol Med. 2006;36:1104–25.CrossRef
46.
Zurück zum Zitat Sollini M, Gelardi F, Matassa G, Delgado Bolton RC, Chiti A, Kirienko M. Interdisciplinarity: an essential requirement for translation of radiomics research into clinical practice – a systematic review focused on thoracic oncology. Rev Española med Nucl e Imagen Mol (English Ed) SEMNIM. 2020;39:146–56. Sollini M, Gelardi F, Matassa G, Delgado Bolton RC, Chiti A, Kirienko M. Interdisciplinarity: an essential requirement for translation of radiomics research into clinical practice – a systematic review focused on thoracic oncology. Rev Española med Nucl e Imagen Mol (English Ed) SEMNIM. 2020;39:146–56.
47.
Zurück zum Zitat Bruynseels K, Santoni de Sio F, van den Hoven J. Digital twins in health care: ethical implications of an emerging engineering paradigm. Front Genet. 2018;9. Bruynseels K, Santoni de Sio F, van den Hoven J. Digital twins in health care: ethical implications of an emerging engineering paradigm. Front Genet. 2018;9.
48.
Zurück zum Zitat Björnsson B, Borrebaeck C, Elander N, Gasslander T, Gawel DR, Gustafsson M, et al. Digital twins to personalize medicine. Genome Med. 2019. Björnsson B, Borrebaeck C, Elander N, Gasslander T, Gawel DR, Gustafsson M, et al. Digital twins to personalize medicine. Genome Med. 2019.
52.
Zurück zum Zitat Mandl KD, Glauser T, Krantz ID, Avillach P, Bartels A, Beggs AH, et al. The genomics research and innovation network: creating an interoperable, federated, genomics learning system. Genet Med. 2020;22:371–80.CrossRef Mandl KD, Glauser T, Krantz ID, Avillach P, Bartels A, Beggs AH, et al. The genomics research and innovation network: creating an interoperable, federated, genomics learning system. Genet Med. 2020;22:371–80.CrossRef
53.
Zurück zum Zitat Kirienko M, Biroli M, Gelardi F, Seregni E, Chiti A, Sollini M. Deep learning in nuclear medicine—focus on CNN-based approaches for PET/CT and PET/MR: where do we stand? Clin Transl Imaging. Springer. 2021:1–19. Kirienko M, Biroli M, Gelardi F, Seregni E, Chiti A, Sollini M. Deep learning in nuclear medicine—focus on CNN-based approaches for PET/CT and PET/MR: where do we stand? Clin Transl Imaging. Springer. 2021:1–19.
54.
Zurück zum Zitat Barredo Arrieta A, Díaz-Rodríguez N, Del Ser J, Bennetot A, Tabik S, Barbado A, et al. Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf Fusion Elsevier. 2020;58:82–115.CrossRef Barredo Arrieta A, Díaz-Rodríguez N, Del Ser J, Bennetot A, Tabik S, Barbado A, et al. Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf Fusion Elsevier. 2020;58:82–115.CrossRef
55.
Zurück zum Zitat Weeks J, Pardee R. Learning to share health care data: a brief timeline of influential common data models and distributed health data networks in U.S. Health Care Research. eGEMs (Generating Evid Methods to Improv patient outcomes). 2019;7:4. Weeks J, Pardee R. Learning to share health care data: a brief timeline of influential common data models and distributed health data networks in U.S. Health Care Research. eGEMs (Generating Evid Methods to Improv patient outcomes). 2019;7:4.
56.
Zurück zum Zitat Bilimoria KY, Stewart AK, Winchester DP, Ko CY. The national cancer data base: a powerful initiative to improve cancer care in the United States. Ann Surg Oncol. 2008;15:683–90.CrossRef Bilimoria KY, Stewart AK, Winchester DP, Ko CY. The national cancer data base: a powerful initiative to improve cancer care in the United States. Ann Surg Oncol. 2008;15:683–90.CrossRef
57.
Zurück zum Zitat Shah A, Stewart AK, Kolacevski A, Michels D, Miller R. Building a rapid learning health care system for oncology: why CancerLinQ collects identifiable health information to achieve its vision. J Clin Oncol. 2016;34:756–63.CrossRef Shah A, Stewart AK, Kolacevski A, Michels D, Miller R. Building a rapid learning health care system for oncology: why CancerLinQ collects identifiable health information to achieve its vision. J Clin Oncol. 2016;34:756–63.CrossRef
58.
Zurück zum Zitat D’Amour A, Heller K, Moldovan D, Adlam B, Alipanahi B, Beutel A, et al. Underspecification presents challenges for credibility in modern machine learning. 2020; D’Amour A, Heller K, Moldovan D, Adlam B, Alipanahi B, Beutel A, et al. Underspecification presents challenges for credibility in modern machine learning. 2020;
59.
Zurück zum Zitat Claerhout B, Kalra D, Mueller C, Singh G, Ammour N, Meloni L, et al. Federated electronic health records research technology to support clinical trial protocol optimization: evidence from EHR4CR and the InSite platform. J Biomed Inform. 2019;90:103090.CrossRef Claerhout B, Kalra D, Mueller C, Singh G, Ammour N, Meloni L, et al. Federated electronic health records research technology to support clinical trial protocol optimization: evidence from EHR4CR and the InSite platform. J Biomed Inform. 2019;90:103090.CrossRef
Metadaten
Titel
Distributed learning: a reliable privacy-preserving strategy to change multicenter collaborations using AI
verfasst von
Margarita Kirienko
Martina Sollini
Gaia Ninatti
Daniele Loiacono
Edoardo Giacomello
Noemi Gozzi
Francesco Amigoni
Luca Mainardi
Pier Luca Lanzi
Arturo Chiti
Publikationsdatum
13.04.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 12/2021
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-021-05339-7