Skip to main content
Erschienen in: Cancer Immunology, Immunotherapy 3/2015

01.03.2015 | Original Article

Glioblastoma exosomes and IGF-1R/AS-ODN are immunogenic stimuli in a translational research immunotherapy paradigm

verfasst von: Larry A. Harshyne, Kirsten M. Hooper, Edward G. Andrews, Brian J. Nasca, Lawrence C. Kenyon, David W. Andrews, D. Craig Hooper

Erschienen in: Cancer Immunology, Immunotherapy | Ausgabe 3/2015

Einloggen, um Zugang zu erhalten

Abstract

Glioblastomas are primary intracranial tumors for which there is no cure. Patients receiving standard of care, chemotherapy and irradiation, survive approximately 15 months prompting studies of alternative therapies including vaccination. In a pilot study, a vaccine consisting of Lucite diffusion chambers containing irradiated autologous tumor cells pre-treated with an antisense oligodeoxynucleotide (AS-ODN) directed against the insulin-like growth factor type 1 receptor was found to elicit positive clinical responses in 8/12 patients when implanted in the rectus sheath for 24 h. Our preliminary observations supported an immune response, and we have since reopened a second Phase 1 trial to assess this possibility among other exploratory objectives. The current study makes use of a murine glioma model and samples from glioblastoma patients in this second Phase 1 trial to investigate this novel therapeutic intervention more thoroughly. Implantation of the chamber-based vaccine protected mice from tumor challenge, and we posit this occurred through the release of immunostimulatory AS-ODN and antigen-bearing exosomes. Exosomes secreted by glioblastoma cultures are immunogenic, eliciting and binding antibodies present in the sera of immunized mice. Similarly, exosomes released by human glioblastoma cells bear antigens recognized by the sera of 6/12 patients with recurrent glioblastomas. These results suggest that the release of AS-ODN together with selective release of exosomes from glioblastoma cells implanted in chambers may drive the therapeutic effect seen in the pilot vaccine trial.
Literatur
1.
Zurück zum Zitat Andrews DW, Resnicoff M, Flanders AE et al (2001) Results of a pilot study involving the use of an antisense oligodeoxynucleotide directed against the insulin-like growth factor type I receptor in malignant astrocytomas. J Clin Oncol 19:2189–2200PubMed Andrews DW, Resnicoff M, Flanders AE et al (2001) Results of a pilot study involving the use of an antisense oligodeoxynucleotide directed against the insulin-like growth factor type I receptor in malignant astrocytomas. J Clin Oncol 19:2189–2200PubMed
2.
Zurück zum Zitat Baserga R, Reiss K, Alder H, Pietrzkowski Z, Surmacz E (1992) Inhibition of cell cycle progression by antisense oligodeoxynucleotides. Ann N Y Acad Sci 660:64–69CrossRefPubMed Baserga R, Reiss K, Alder H, Pietrzkowski Z, Surmacz E (1992) Inhibition of cell cycle progression by antisense oligodeoxynucleotides. Ann N Y Acad Sci 660:64–69CrossRefPubMed
3.
Zurück zum Zitat Hernandez-Sanchez C, Blakesley V, Kalebic T, Helman L, LeRoith D (1995) The role of the tyrosine kinase domain of the insulin-like growth factor-I receptor in intracellular signaling, cellular proliferation, and tumorigenesis. J Biol Chem 270:29176–29181CrossRefPubMed Hernandez-Sanchez C, Blakesley V, Kalebic T, Helman L, LeRoith D (1995) The role of the tyrosine kinase domain of the insulin-like growth factor-I receptor in intracellular signaling, cellular proliferation, and tumorigenesis. J Biol Chem 270:29176–29181CrossRefPubMed
4.
Zurück zum Zitat Resnicoff M, Abraham D, Yutanawiboonchai W et al (1995) The insulin-like growth factor I receptor protects tumor cells from apoptosis in vivo. Cancer Res 55:2463–2469PubMed Resnicoff M, Abraham D, Yutanawiboonchai W et al (1995) The insulin-like growth factor I receptor protects tumor cells from apoptosis in vivo. Cancer Res 55:2463–2469PubMed
5.
Zurück zum Zitat Bauer S, Kirschning CJ, Hacker H et al (2001) Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc Natl Acad Sci U S A 98:9237–9242CrossRefPubMedCentralPubMed Bauer S, Kirschning CJ, Hacker H et al (2001) Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc Natl Acad Sci U S A 98:9237–9242CrossRefPubMedCentralPubMed
6.
Zurück zum Zitat Iho S, Yamamoto T, Takahashi T, Yamamoto S (1999) Oligodeoxynucleotides containing palindrome sequences with internal 5′-CpG-3′ act directly on human NK and activated T cells to induce IFN-gamma production in vitro. J Immunol 163:3642–3652PubMed Iho S, Yamamoto T, Takahashi T, Yamamoto S (1999) Oligodeoxynucleotides containing palindrome sequences with internal 5′-CpG-3′ act directly on human NK and activated T cells to induce IFN-gamma production in vitro. J Immunol 163:3642–3652PubMed
7.
Zurück zum Zitat Kobayashi N, Hong C, Klinman DM, Shirota H (2013) Oligodeoxynucleotides expressing polyguanosine motifs promote antitumor activity through the upregulation of IL-2. J Immunol 190:1882–1889CrossRefPubMedCentralPubMed Kobayashi N, Hong C, Klinman DM, Shirota H (2013) Oligodeoxynucleotides expressing polyguanosine motifs promote antitumor activity through the upregulation of IL-2. J Immunol 190:1882–1889CrossRefPubMedCentralPubMed
8.
Zurück zum Zitat Krieg AM, Yi AK, Matson S et al (1995) CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374:546–549CrossRefPubMed Krieg AM, Yi AK, Matson S et al (1995) CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374:546–549CrossRefPubMed
9.
Zurück zum Zitat Pasare C, Medzhitov R (2003) Toll pathway-dependent blockade of CD4+ CD25+ T cell-mediated suppression by dendritic cells. Science 299:1033–1036CrossRefPubMed Pasare C, Medzhitov R (2003) Toll pathway-dependent blockade of CD4+ CD25+ T cell-mediated suppression by dendritic cells. Science 299:1033–1036CrossRefPubMed
10.
Zurück zum Zitat Stein CA, Subasinghe C, Shinozuka K, Cohen JS (1988) Physicochemical properties of phosphorothioate oligodeoxynucleotides. Nucleic Acids Res 16:3209–3221CrossRefPubMedCentralPubMed Stein CA, Subasinghe C, Shinozuka K, Cohen JS (1988) Physicochemical properties of phosphorothioate oligodeoxynucleotides. Nucleic Acids Res 16:3209–3221CrossRefPubMedCentralPubMed
11.
Zurück zum Zitat Théry C, Zitvogel L, Amigorena S (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2:569–579PubMed Théry C, Zitvogel L, Amigorena S (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2:569–579PubMed
12.
Zurück zum Zitat Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C (1987) Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem 262:9412–9420PubMed Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C (1987) Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem 262:9412–9420PubMed
13.
Zurück zum Zitat Théry C, Boussac M, Véron P et al (2001) Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J Immunol 166:7309–7318CrossRefPubMed Théry C, Boussac M, Véron P et al (2001) Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J Immunol 166:7309–7318CrossRefPubMed
14.
Zurück zum Zitat Raposo G, Nijman HW, Stoorvogel W et al (1996) B lymphocytes secrete antigen-presenting vesicles. J Exp Med 183:1161–1172CrossRefPubMed Raposo G, Nijman HW, Stoorvogel W et al (1996) B lymphocytes secrete antigen-presenting vesicles. J Exp Med 183:1161–1172CrossRefPubMed
15.
Zurück zum Zitat Wolfers J, Lozier A, Raposo G et al (2001) Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med 7:297–303CrossRefPubMed Wolfers J, Lozier A, Raposo G et al (2001) Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med 7:297–303CrossRefPubMed
16.
Zurück zum Zitat Clayton A, Court J, Navabi H et al (2001) Analysis of antigen presenting cell derived exosomes, based on immuno-magnetic isolation and flow cytometry. J Immunol Methods 247:163–174CrossRefPubMed Clayton A, Court J, Navabi H et al (2001) Analysis of antigen presenting cell derived exosomes, based on immuno-magnetic isolation and flow cytometry. J Immunol Methods 247:163–174CrossRefPubMed
17.
Zurück zum Zitat Caby MP, Lankar D, Vincendeau-Scherrer C, Raposo G, Bonnerot C (2005) Exosomal-like vesicles are present in human blood plasma. Int Immunol 17:879–887CrossRefPubMed Caby MP, Lankar D, Vincendeau-Scherrer C, Raposo G, Bonnerot C (2005) Exosomal-like vesicles are present in human blood plasma. Int Immunol 17:879–887CrossRefPubMed
19.
Zurück zum Zitat Stoorvogel W, Kleijmeer MJ, Geuze HJ, Raposo G (2002) The biogenesis and functions of exosomes. Traffic 3:321–330CrossRefPubMed Stoorvogel W, Kleijmeer MJ, Geuze HJ, Raposo G (2002) The biogenesis and functions of exosomes. Traffic 3:321–330CrossRefPubMed
20.
Zurück zum Zitat Théry C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. Chapter 3: Unit 3.22. doi: 10.1002/0471143030.cb0322s30 Théry C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. Chapter 3: Unit 3.22. doi: 10.​1002/​0471143030.​cb0322s30
21.
Zurück zum Zitat Faure J, Lachenal G, Court M et al (2006) Exosomes are released by cultured cortical neurones. Mol Cell Neurosci 31:642–648CrossRefPubMed Faure J, Lachenal G, Court M et al (2006) Exosomes are released by cultured cortical neurones. Mol Cell Neurosci 31:642–648CrossRefPubMed
22.
Zurück zum Zitat Kramer-Albers EM, Bretz N, Tenzer S, Winterstein C (2007) Oligodendrocytes secrete exosomes containing major myelin and stress-protective proteins: trophic support for axons? Proteomics Clin Appl 1:1446–1461CrossRefPubMed Kramer-Albers EM, Bretz N, Tenzer S, Winterstein C (2007) Oligodendrocytes secrete exosomes containing major myelin and stress-protective proteins: trophic support for axons? Proteomics Clin Appl 1:1446–1461CrossRefPubMed
23.
Zurück zum Zitat Potolicchio I, Carven GJ, Xu X et al (2005) Proteomic analysis of microglia-derived exosomes: metabolic role of the aminopeptidase CD13 in neuropeptide catabolism. J Immunol 175:2237–2243CrossRefPubMed Potolicchio I, Carven GJ, Xu X et al (2005) Proteomic analysis of microglia-derived exosomes: metabolic role of the aminopeptidase CD13 in neuropeptide catabolism. J Immunol 175:2237–2243CrossRefPubMed
24.
Zurück zum Zitat Zitvogel L, Regnault A, Lozier A et al (1998) Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med 4:594–600CrossRefPubMed Zitvogel L, Regnault A, Lozier A et al (1998) Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med 4:594–600CrossRefPubMed
25.
Zurück zum Zitat Février B, Raposo G (2004) Exosomes: endosomal-derived vesicles shipping extracellular messages. Curr Opin Cell Biol 16:415–421CrossRefPubMed Février B, Raposo G (2004) Exosomes: endosomal-derived vesicles shipping extracellular messages. Curr Opin Cell Biol 16:415–421CrossRefPubMed
26.
Zurück zum Zitat Al-Nedawi K, Meehan B, Micallef J et al (2008) Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 10:619–624CrossRefPubMed Al-Nedawi K, Meehan B, Micallef J et al (2008) Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 10:619–624CrossRefPubMed
27.
Zurück zum Zitat Skog J, Wurdinger T, van Rijn S et al (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–1476CrossRefPubMedCentralPubMed Skog J, Wurdinger T, van Rijn S et al (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–1476CrossRefPubMedCentralPubMed
28.
Zurück zum Zitat Wieckowski E, Whiteside TL (2006) Human tumor-derived vs dendritic cell-derived exosomes have distinct biologic roles and molecular profiles. Immunol Res 36:247–254CrossRefPubMed Wieckowski E, Whiteside TL (2006) Human tumor-derived vs dendritic cell-derived exosomes have distinct biologic roles and molecular profiles. Immunol Res 36:247–254CrossRefPubMed
29.
30.
Zurück zum Zitat Andre F, Schartz NE, Movassagh M et al (2002) Malignant effusions and immunogenic tumour-derived exosomes. Lancet 360:295–305CrossRefPubMed Andre F, Schartz NE, Movassagh M et al (2002) Malignant effusions and immunogenic tumour-derived exosomes. Lancet 360:295–305CrossRefPubMed
31.
Zurück zum Zitat Chaput N, Schartz NE, André F et al (2004) Exosomes as potent cell-free peptide-based vaccine. II. Exosomes in CpG adjuvants efficiently prime naive Tc1 lymphocytes leading to tumor rejection. J Immunol 172:2137–2146CrossRefPubMed Chaput N, Schartz NE, André F et al (2004) Exosomes as potent cell-free peptide-based vaccine. II. Exosomes in CpG adjuvants efficiently prime naive Tc1 lymphocytes leading to tumor rejection. J Immunol 172:2137–2146CrossRefPubMed
32.
Zurück zum Zitat Creagh EM, O’Neill LA (2006) TLRs, NLRs and RLRs: a trinity of pathogen sensors that co-operate in innate immunity. Trends Immunol 27:352–357CrossRefPubMed Creagh EM, O’Neill LA (2006) TLRs, NLRs and RLRs: a trinity of pathogen sensors that co-operate in innate immunity. Trends Immunol 27:352–357CrossRefPubMed
33.
Zurück zum Zitat Mignot G, Roux S, Thery C, Ségura E, Zitvogel L (2006) Prospects for exosomes in immunotherapy of cancer. J Cell Mol Med 10:376–388CrossRefPubMed Mignot G, Roux S, Thery C, Ségura E, Zitvogel L (2006) Prospects for exosomes in immunotherapy of cancer. J Cell Mol Med 10:376–388CrossRefPubMed
34.
Zurück zum Zitat Morelli AE (2006) The immune regulatory effect of apoptotic cells and exosomes on dendritic cells: its impact on transplantation. Am J Transplant 6:254–261CrossRefPubMed Morelli AE (2006) The immune regulatory effect of apoptotic cells and exosomes on dendritic cells: its impact on transplantation. Am J Transplant 6:254–261CrossRefPubMed
35.
Zurück zum Zitat Peche H, Renaudin K, Beriou G, Merieau E, Amigorena S, Cuturi MC (2006) Induction of tolerance by exosomes and short-term immunosuppression in a fully MHC-mismatched rat cardiac allograft model. Am J Transpl 6:1541–1550CrossRef Peche H, Renaudin K, Beriou G, Merieau E, Amigorena S, Cuturi MC (2006) Induction of tolerance by exosomes and short-term immunosuppression in a fully MHC-mismatched rat cardiac allograft model. Am J Transpl 6:1541–1550CrossRef
36.
Zurück zum Zitat Tang J, Flomenberg P, Harshyne L, Kenyon L, Andrews DW (2005) Glioblastoma patients exhibit circulating tumor-specific CD8+ T cells. Clin Cancer Res 11:5292–5299CrossRefPubMed Tang J, Flomenberg P, Harshyne L, Kenyon L, Andrews DW (2005) Glioblastoma patients exhibit circulating tumor-specific CD8+ T cells. Clin Cancer Res 11:5292–5299CrossRefPubMed
37.
Zurück zum Zitat Abraham D, Rotman HL, Haberstroh HF et al (1995) Strongyloides stercoralis: protective immunity to third-stage larvae inBALB/cByJ mice. Exp Parasitol 80:297–307CrossRefPubMed Abraham D, Rotman HL, Haberstroh HF et al (1995) Strongyloides stercoralis: protective immunity to third-stage larvae inBALB/cByJ mice. Exp Parasitol 80:297–307CrossRefPubMed
38.
Zurück zum Zitat Tavernier J, Tuypens T, Verhee A et al (1995) Identification of receptor-binding domains on human interleukin 5 and design of an interleukin 5-derived receptor antagonist. Proc Natl Acad Sci USA 92:5194–5198CrossRefPubMedCentralPubMed Tavernier J, Tuypens T, Verhee A et al (1995) Identification of receptor-binding domains on human interleukin 5 and design of an interleukin 5-derived receptor antagonist. Proc Natl Acad Sci USA 92:5194–5198CrossRefPubMedCentralPubMed
39.
Zurück zum Zitat Lee GR, Fields PE, Griffin TJ, Flavell RA (2003) Regulation of the Th2 cytokine locus by a locus control region. Immunity 19:145–153CrossRefPubMed Lee GR, Fields PE, Griffin TJ, Flavell RA (2003) Regulation of the Th2 cytokine locus by a locus control region. Immunity 19:145–153CrossRefPubMed
40.
Zurück zum Zitat Rolink AG, Thalmann P, Kikuchi Y, Erdei A (1990) Characterization of the interleukin 5-reactive splenic B cell population. Eur J Immunol 20:1949–1956CrossRefPubMed Rolink AG, Thalmann P, Kikuchi Y, Erdei A (1990) Characterization of the interleukin 5-reactive splenic B cell population. Eur J Immunol 20:1949–1956CrossRefPubMed
41.
Zurück zum Zitat McHeyzer-Williams MG (1989) Combinations of interleukins 2, 4 and 5 regulate the secretion of murine immunoglobulin isotypes. Eur J Immunol 19:2025–2030CrossRefPubMed McHeyzer-Williams MG (1989) Combinations of interleukins 2, 4 and 5 regulate the secretion of murine immunoglobulin isotypes. Eur J Immunol 19:2025–2030CrossRefPubMed
42.
Zurück zum Zitat Valenti R, Huber V, Iero M, Filipazzi P, Parmiani G, Rivoltini L (2007) Tumor-released microvesicles as vehicles of immunosuppression. Cancer Res 67:2912–2915CrossRefPubMed Valenti R, Huber V, Iero M, Filipazzi P, Parmiani G, Rivoltini L (2007) Tumor-released microvesicles as vehicles of immunosuppression. Cancer Res 67:2912–2915CrossRefPubMed
43.
Zurück zum Zitat Murphy KA, Erickson JR, Johnson CS et al (2014) CD8+ T cell-independent tumor regression induced by Fc-OX40L and therapeutic vaccination in a mouse model of glioma. J Immunol 192:224–233CrossRefPubMedCentralPubMed Murphy KA, Erickson JR, Johnson CS et al (2014) CD8+ T cell-independent tumor regression induced by Fc-OX40L and therapeutic vaccination in a mouse model of glioma. J Immunol 192:224–233CrossRefPubMedCentralPubMed
Metadaten
Titel
Glioblastoma exosomes and IGF-1R/AS-ODN are immunogenic stimuli in a translational research immunotherapy paradigm
verfasst von
Larry A. Harshyne
Kirsten M. Hooper
Edward G. Andrews
Brian J. Nasca
Lawrence C. Kenyon
David W. Andrews
D. Craig Hooper
Publikationsdatum
01.03.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Cancer Immunology, Immunotherapy / Ausgabe 3/2015
Print ISSN: 0340-7004
Elektronische ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-014-1622-z

Weitere Artikel der Ausgabe 3/2015

Cancer Immunology, Immunotherapy 3/2015 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.