Skip to main content
Erschienen in: International Orthopaedics 4/2012

01.04.2012 | Review Article

Optimal mechanical environment of the healing bone fracture/osteotomy

verfasst von: Blaž Mavčič, Vane Antolič

Erschienen in: International Orthopaedics | Ausgabe 4/2012

Einloggen, um Zugang zu erhalten

Abstract

The aim of this paper is to review recent experimental and clinical publications on bone biology with respect to the optimal mechanical environment in the healing process of fractures and osteotomies. The basic postulates of bone fracture healing include static bone compression and immobilisation/fixation for three weeks and intermittent dynamic loading treatment afterwards. The optimal mechanical strain should be in the range of 100–2,000 microstrain, depending on the frequency of the strain application, type of bone and location in the bone, age and hormonal status. Higher frequency of mechanical strain application or larger number of repetition cycles result in increased bone mass at the healing fracture site, but only up to a certain limit, values beyond which no additional benefit is observed. Strain application and transition period from non-load-bearing to full load-bearing can be modified by implants allowing dynamisation of compression and generating strains at the fracture healing site in a controlled manner.
Literatur
1.
Zurück zum Zitat Wood GW (2007) Fractures and dislocation, general principles of fracture treatment. In: Canale ST, Beaty JH (eds) Campbell’s operative orthopaedics, 11th edn. Mosby, Philadelphia, pp 3018–3085 Wood GW (2007) Fractures and dislocation, general principles of fracture treatment. In: Canale ST, Beaty JH (eds) Campbell’s operative orthopaedics, 11th edn. Mosby, Philadelphia, pp 3018–3085
2.
Zurück zum Zitat Rüedi TP, Buckley RE, Moran CG (2007) AO principles of fracture management. Thieme, New York Rüedi TP, Buckley RE, Moran CG (2007) AO principles of fracture management. Thieme, New York
3.
4.
Zurück zum Zitat Lanyon LE (1974) Experimental support for the trajectorial theory of bone structure. J Bone Joint Surg Br 56:160–166PubMed Lanyon LE (1974) Experimental support for the trajectorial theory of bone structure. J Bone Joint Surg Br 56:160–166PubMed
5.
Zurück zum Zitat Lanyon LE, Baggott DG (1976) Mechanical function as an influence on the structure and form of bone. J Bone Joint Surg Br 58-B:436–443PubMed Lanyon LE, Baggott DG (1976) Mechanical function as an influence on the structure and form of bone. J Bone Joint Surg Br 58-B:436–443PubMed
6.
Zurück zum Zitat Woo SL, Kuei SC, Amiel D, Gomez MA, Hayes WC, White FC, Akeson WH (1981) The effect of prolonged physical training on the properties of long bone: a study of Wolff’s Law. J Bone Joint Surg Am 63:780–787PubMed Woo SL, Kuei SC, Amiel D, Gomez MA, Hayes WC, White FC, Akeson WH (1981) The effect of prolonged physical training on the properties of long bone: a study of Wolff’s Law. J Bone Joint Surg Am 63:780–787PubMed
7.
Zurück zum Zitat McKibbin B (1978) The biology of fracture healing in long bones. J Bone Joint Surg Br 60-B:150–162PubMed McKibbin B (1978) The biology of fracture healing in long bones. J Bone Joint Surg Br 60-B:150–162PubMed
8.
Zurück zum Zitat Baggott DG, Goodship AE, Lanyon LE (1981) A quantitative assessment of compression plate fixation in vivo: an experimental study using the sheep radius. J Biomech 14:701–711PubMedCrossRef Baggott DG, Goodship AE, Lanyon LE (1981) A quantitative assessment of compression plate fixation in vivo: an experimental study using the sheep radius. J Biomech 14:701–711PubMedCrossRef
9.
Zurück zum Zitat Chao EY, Kasman RA, An KN (1982) Rigidity and stress analyses of external fracture fixation devices–a theoretical approach. J Biomech 15:971–983PubMedCrossRef Chao EY, Kasman RA, An KN (1982) Rigidity and stress analyses of external fracture fixation devices–a theoretical approach. J Biomech 15:971–983PubMedCrossRef
10.
Zurück zum Zitat Lewallen DG, Chao EY, Kasman RA, Kelly PJ (1984) Comparison of the effects of compression plates and external fixators on early bone-healing. J Bone Joint Surg Am 66:1084–1091PubMed Lewallen DG, Chao EY, Kasman RA, Kelly PJ (1984) Comparison of the effects of compression plates and external fixators on early bone-healing. J Bone Joint Surg Am 66:1084–1091PubMed
11.
Zurück zum Zitat Terjesen T (1984) Bone healing after metal plate fixation and external fixation of the osteotomized rabbit tibia. Acta Orthop Scand 55:69–77PubMedCrossRef Terjesen T (1984) Bone healing after metal plate fixation and external fixation of the osteotomized rabbit tibia. Acta Orthop Scand 55:69–77PubMedCrossRef
12.
Zurück zum Zitat Cheal EJ, Hayes WC, White AA 3rd, Perren SM (1985) Stress analysis of compression plate fixation and its effects on long bone remodeling. J Biomech 18:141–150PubMedCrossRef Cheal EJ, Hayes WC, White AA 3rd, Perren SM (1985) Stress analysis of compression plate fixation and its effects on long bone remodeling. J Biomech 18:141–150PubMedCrossRef
13.
Zurück zum Zitat Court-Brown CM (1985) The effect of external skeletal fixation on bone healing and bone blood supply. An experimental study. Clin Orthop Relat Res 201:278–289PubMed Court-Brown CM (1985) The effect of external skeletal fixation on bone healing and bone blood supply. An experimental study. Clin Orthop Relat Res 201:278–289PubMed
14.
Zurück zum Zitat Hart MB, Wu JJ, Chao EY, Kelly PJ (1985) External skeletal fixation of canine tibial osteotomies. Compression compared with no compression. J Bone Joint Surg Am 67:598–605PubMed Hart MB, Wu JJ, Chao EY, Kelly PJ (1985) External skeletal fixation of canine tibial osteotomies. Compression compared with no compression. J Bone Joint Surg Am 67:598–605PubMed
15.
Zurück zum Zitat Holmström T, Paavolainen P, Slätis P, Karaharju E (1986) Effect of compression on fracture healing. Plate fixation studied in rabbits. Acta Orthop Scand 57:368–372PubMedCrossRef Holmström T, Paavolainen P, Slätis P, Karaharju E (1986) Effect of compression on fracture healing. Plate fixation studied in rabbits. Acta Orthop Scand 57:368–372PubMedCrossRef
16.
Zurück zum Zitat De Bastiani G, Aldegheri R, Renzi Brivio L (1986) Dynamic axial fixation. A rational alternative for the external fixation of fractures. Int Orthop 10:95–99PubMedCrossRef De Bastiani G, Aldegheri R, Renzi Brivio L (1986) Dynamic axial fixation. A rational alternative for the external fixation of fractures. Int Orthop 10:95–99PubMedCrossRef
17.
Zurück zum Zitat Aalto K, Holmström T, Karaharju E, Joukainen J, Paavolainen P, Slätis P (1987) Fracture repair during external fixation. Torsion tests of rabbit osteotomies. Acta Orthop Scand 58:66–70PubMedCrossRef Aalto K, Holmström T, Karaharju E, Joukainen J, Paavolainen P, Slätis P (1987) Fracture repair during external fixation. Torsion tests of rabbit osteotomies. Acta Orthop Scand 58:66–70PubMedCrossRef
18.
Zurück zum Zitat Kunnamo I (2005) Evidence-based medicine guidelines. Wiley, ChichesterCrossRef Kunnamo I (2005) Evidence-based medicine guidelines. Wiley, ChichesterCrossRef
19.
Zurück zum Zitat Handoll HH, Parker MJ, Sherrington C (2003) Mobilisation strategies after hip fracture surgery in adults. Cochrane Database Syst Rev 1:CD001704 Handoll HH, Parker MJ, Sherrington C (2003) Mobilisation strategies after hip fracture surgery in adults. Cochrane Database Syst Rev 1:CD001704
20.
Zurück zum Zitat Skerry TM (2008) The response of bone to mechanical loading and disuse: fundamental principles and influences on osteoblast/osteocyte homeostasis. Arch Biochem Biophys 473:117–123PubMedCrossRef Skerry TM (2008) The response of bone to mechanical loading and disuse: fundamental principles and influences on osteoblast/osteocyte homeostasis. Arch Biochem Biophys 473:117–123PubMedCrossRef
22.
Zurück zum Zitat Ciombor DM, Aaron RK (2005) The role of electrical stimulation in bone repair. Foot Ankle Clin 10:579–593PubMedCrossRef Ciombor DM, Aaron RK (2005) The role of electrical stimulation in bone repair. Foot Ankle Clin 10:579–593PubMedCrossRef
23.
Zurück zum Zitat Frost HM (2004) A 2003 update of bone physiology and Wolff’s Law for clinicians. Angle Orthod 74:3–15PubMed Frost HM (2004) A 2003 update of bone physiology and Wolff’s Law for clinicians. Angle Orthod 74:3–15PubMed
24.
Zurück zum Zitat Ehrlich PJ, Lanyon LE (2002) Mechanical strain and bone cell function: a review. Osteoporos Int 13:688–700PubMedCrossRef Ehrlich PJ, Lanyon LE (2002) Mechanical strain and bone cell function: a review. Osteoporos Int 13:688–700PubMedCrossRef
25.
Zurück zum Zitat Liedert A, Kaspar D, Augat P, Ignatius A, Claes L (2005) Mechanobiology of bone tissue and bone cells. In: Kamkin A, Kiseleva I (eds) Mechanosensitivity in cells and tissues. Academia, Moscow Liedert A, Kaspar D, Augat P, Ignatius A, Claes L (2005) Mechanobiology of bone tissue and bone cells. In: Kamkin A, Kiseleva I (eds) Mechanosensitivity in cells and tissues. Academia, Moscow
26.
Zurück zum Zitat Lee K, Jessop H, Suswillo R, Zaman G, Lanyon L (2003) Bone adaptation requires oestrogen receptor-alpha. Nature 424:389PubMedCrossRef Lee K, Jessop H, Suswillo R, Zaman G, Lanyon L (2003) Bone adaptation requires oestrogen receptor-alpha. Nature 424:389PubMedCrossRef
27.
Zurück zum Zitat Sutherland MK, Hui DU, Rao LG, Wylie JN, Murray TM (1996) Immunohistochemical localization of the estrogen receptor in human osteoblastic SaOS-2 cells: association of receptor levels with alkaline phosphatase activity. Bone 18:361–369PubMedCrossRef Sutherland MK, Hui DU, Rao LG, Wylie JN, Murray TM (1996) Immunohistochemical localization of the estrogen receptor in human osteoblastic SaOS-2 cells: association of receptor levels with alkaline phosphatase activity. Bone 18:361–369PubMedCrossRef
28.
Zurück zum Zitat Sawakami K, Robling AG, Ai M, Pitner ND, Liu D, Warden SJ, Li J, Maye P, Rowe DW, Duncan RL, Warman ML, Turner CH (2006) The Wnt co-receptor LRP5 is essential for skeletal mechanotransduction but not for the anabolic bone response to parathyroid hormone treatment. J Biol Chem 281:23698–23711PubMedCrossRef Sawakami K, Robling AG, Ai M, Pitner ND, Liu D, Warden SJ, Li J, Maye P, Rowe DW, Duncan RL, Warman ML, Turner CH (2006) The Wnt co-receptor LRP5 is essential for skeletal mechanotransduction but not for the anabolic bone response to parathyroid hormone treatment. J Biol Chem 281:23698–23711PubMedCrossRef
29.
Zurück zum Zitat Saxon LK, Jackson BF, Sugiyama T, Lanyon LE, Price JS (2011) Analysis of multiple bone responses to graded strains above functional levels, and to disuse, in mice in vivo show that the human Lrp5 G171V high bone mass mutation increases the osteogenic response to loading but that lack of Lrp5 activity reduces it. Bone 49:184–193PubMedCrossRef Saxon LK, Jackson BF, Sugiyama T, Lanyon LE, Price JS (2011) Analysis of multiple bone responses to graded strains above functional levels, and to disuse, in mice in vivo show that the human Lrp5 G171V high bone mass mutation increases the osteogenic response to loading but that lack of Lrp5 activity reduces it. Bone 49:184–193PubMedCrossRef
30.
Zurück zum Zitat Jee WSS (2001) Integrated bone tissue physiology: anatomy and physiology. In: Cowin SC (ed) Bone mechanics handbook, 2nd edn. CRC, Boca Raton, pp 1–68 Jee WSS (2001) Integrated bone tissue physiology: anatomy and physiology. In: Cowin SC (ed) Bone mechanics handbook, 2nd edn. CRC, Boca Raton, pp 1–68
31.
Zurück zum Zitat Meyer U, Meyer T, Wiesmann HP (1999) The effect of magnitude and frequency of interfragmentary strain on the tissue response to distraction osteogenesis. J Oral Maxillofac Surg 57:1331–1339PubMedCrossRef Meyer U, Meyer T, Wiesmann HP (1999) The effect of magnitude and frequency of interfragmentary strain on the tissue response to distraction osteogenesis. J Oral Maxillofac Surg 57:1331–1339PubMedCrossRef
32.
Zurück zum Zitat Frost HM, Meyer U, Joos U, Jensen OT (2002) Dental alveolar distraction osteogenesis and the Utah paradigm. In: Jensen OT (ed) Alveolar distraction osteogenesis. Quintessence, Carol Stream, pp 1–16 Frost HM, Meyer U, Joos U, Jensen OT (2002) Dental alveolar distraction osteogenesis and the Utah paradigm. In: Jensen OT (ed) Alveolar distraction osteogenesis. Quintessence, Carol Stream, pp 1–16
33.
Zurück zum Zitat Fritton SP, Rubin CT (2001) In vivo measurement of bone deformations using strain gauges. In: Cowin SC (ed) Bone mechanics handbook, 2nd edn. CRC, Boca Raton, pp 8–34 Fritton SP, Rubin CT (2001) In vivo measurement of bone deformations using strain gauges. In: Cowin SC (ed) Bone mechanics handbook, 2nd edn. CRC, Boca Raton, pp 8–34
34.
Zurück zum Zitat Rubin CT, Turner AS, Bain S, Mallinckrodt C, McLeod K (2001) Anabolism. Low mechanical signals strengthen long bones. Nature 412:603–604PubMedCrossRef Rubin CT, Turner AS, Bain S, Mallinckrodt C, McLeod K (2001) Anabolism. Low mechanical signals strengthen long bones. Nature 412:603–604PubMedCrossRef
35.
Zurück zum Zitat Rubin CT, Xu G, Judex S (2001) The anabolic activity of bone tissue, suppressed by disuse, is normalized by brief exposure to extremely low-magnitude mechanical stimuli. FASEB J 15:2225–2229PubMedCrossRef Rubin CT, Xu G, Judex S (2001) The anabolic activity of bone tissue, suppressed by disuse, is normalized by brief exposure to extremely low-magnitude mechanical stimuli. FASEB J 15:2225–2229PubMedCrossRef
36.
Zurück zum Zitat Rubin CT, Turner AS, Müller R, Mittra E, McLeod K, Lin W, Qin YX (2002) Quantity and quality of trabecular bone in the femur are enhanced by a strongly anabolic, noninvasive mechanical intervention. J Bone Miner Res 17:349–357PubMedCrossRef Rubin CT, Turner AS, Müller R, Mittra E, McLeod K, Lin W, Qin YX (2002) Quantity and quality of trabecular bone in the femur are enhanced by a strongly anabolic, noninvasive mechanical intervention. J Bone Miner Res 17:349–357PubMedCrossRef
37.
Zurück zum Zitat Churches AE, Howlett CR, Waldron KJ, Ward GW (1979) The response of living bone to controlled time-varying loading: method and preliminary results. J Biomech 12:35–45PubMedCrossRef Churches AE, Howlett CR, Waldron KJ, Ward GW (1979) The response of living bone to controlled time-varying loading: method and preliminary results. J Biomech 12:35–45PubMedCrossRef
38.
Zurück zum Zitat Lanyon LE, Paul IL, Rubin CT, Thrasher EL, DeLaura R, Rose RM, Radin EL (1981) In vivo strain measurements from bone and prosthesis following total hip replacement. An experimental study in sheep. J Bone Joint Surg Am 63:989–1001PubMed Lanyon LE, Paul IL, Rubin CT, Thrasher EL, DeLaura R, Rose RM, Radin EL (1981) In vivo strain measurements from bone and prosthesis following total hip replacement. An experimental study in sheep. J Bone Joint Surg Am 63:989–1001PubMed
39.
Zurück zum Zitat Churches AE, Howlett CR (1982) Functional adaptation of bone in response to sinusoidally varying controlled compressive loading of the ovine metacarpus. Clin Orthop Relat Res 168:265–280PubMed Churches AE, Howlett CR (1982) Functional adaptation of bone in response to sinusoidally varying controlled compressive loading of the ovine metacarpus. Clin Orthop Relat Res 168:265–280PubMed
40.
Zurück zum Zitat O’Connor JA, Lanyon LE, MacFie H (1982) The influence of strain rate on adaptive bone remodelling. J Biomech 15:767–781PubMedCrossRef O’Connor JA, Lanyon LE, MacFie H (1982) The influence of strain rate on adaptive bone remodelling. J Biomech 15:767–781PubMedCrossRef
41.
Zurück zum Zitat Rubin CT, Lanyon LE (1984) Regulation of bone formation by applied dynamic loads. J Bone Joint Surg Am 66:397–402PubMed Rubin CT, Lanyon LE (1984) Regulation of bone formation by applied dynamic loads. J Bone Joint Surg Am 66:397–402PubMed
42.
Zurück zum Zitat Lanyon LE, Rubin CT (1984) Static vs dynamic loads as an influence on bone remodelling. J Biomech 17:897–905PubMedCrossRef Lanyon LE, Rubin CT (1984) Static vs dynamic loads as an influence on bone remodelling. J Biomech 17:897–905PubMedCrossRef
43.
Zurück zum Zitat Rubin CT, Lanyon LE (1985) Regulation of bone mass by mechanical strain magnitude. Calcif Tissue Int 37:411–417PubMedCrossRef Rubin CT, Lanyon LE (1985) Regulation of bone mass by mechanical strain magnitude. Calcif Tissue Int 37:411–417PubMedCrossRef
44.
Zurück zum Zitat Lanyon LE, Rubin CT, Baust G (1986) Modulation of bone loss during calcium insufficiency by controlled dynamic loading. Calcif Tissue Int 38:209–216PubMedCrossRef Lanyon LE, Rubin CT, Baust G (1986) Modulation of bone loss during calcium insufficiency by controlled dynamic loading. Calcif Tissue Int 38:209–216PubMedCrossRef
45.
Zurück zum Zitat Panjabi MM, White AA 3rd, Wolf JW Jr (1979) A biomechanical comparison of the effects of constant and cyclic compression on fracture healing in rabbit long bones. Acta Orthop Scand 50:653–661PubMedCrossRef Panjabi MM, White AA 3rd, Wolf JW Jr (1979) A biomechanical comparison of the effects of constant and cyclic compression on fracture healing in rabbit long bones. Acta Orthop Scand 50:653–661PubMedCrossRef
46.
Zurück zum Zitat Wolf JW Jr, White AA 3rd, Panjabi MM, Southwick WO (1981) Comparison of cyclic loading versus constant compression in the treatment of long-bone fractures in rabbits. J Bone Joint Surg Am 63:805–810PubMed Wolf JW Jr, White AA 3rd, Panjabi MM, Southwick WO (1981) Comparison of cyclic loading versus constant compression in the treatment of long-bone fractures in rabbits. J Bone Joint Surg Am 63:805–810PubMed
47.
Zurück zum Zitat Carter DR (1984) Mechanical loading histories and cortical bone remodeling. Calcif Tissue Int 36(Suppl):S19–S24PubMedCrossRef Carter DR (1984) Mechanical loading histories and cortical bone remodeling. Calcif Tissue Int 36(Suppl):S19–S24PubMedCrossRef
48.
Zurück zum Zitat Kempf I, Leung K, Grosse A (2002) Practice of intramedullary locked nails: scientific basis and standard techniques. Springer, Berlin, pp 47–48CrossRef Kempf I, Leung K, Grosse A (2002) Practice of intramedullary locked nails: scientific basis and standard techniques. Springer, Berlin, pp 47–48CrossRef
49.
Zurück zum Zitat Judex S, Rubin CT (2010) Is bone formation induced by high-frequency mechanical signals modulated by muscle activity? J Musculoskelet Neuronal Interact 10:3–11PubMed Judex S, Rubin CT (2010) Is bone formation induced by high-frequency mechanical signals modulated by muscle activity? J Musculoskelet Neuronal Interact 10:3–11PubMed
Metadaten
Titel
Optimal mechanical environment of the healing bone fracture/osteotomy
verfasst von
Blaž Mavčič
Vane Antolič
Publikationsdatum
01.04.2012
Verlag
Springer-Verlag
Erschienen in
International Orthopaedics / Ausgabe 4/2012
Print ISSN: 0341-2695
Elektronische ISSN: 1432-5195
DOI
https://doi.org/10.1007/s00264-012-1487-8

Weitere Artikel der Ausgabe 4/2012

International Orthopaedics 4/2012 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.