Skip to main content
Erschienen in: Archives of Orthopaedic and Trauma Surgery 10/2009

01.10.2009 | Trauma Surgery

A new distractable implant for vertebral body replacement: biomechanical testing of four implants for the thoracolumbar spine

verfasst von: M. Reinhold, W. Schmoelz, F. Canto, D. Krappinger, M. Blauth, Christian Knop

Erschienen in: Archives of Orthopaedic and Trauma Surgery | Ausgabe 10/2009

Einloggen, um Zugang zu erhalten

Abstract

Introduction

Expandable titanium implants for vertebral body replacement in the thoracolumbar spine have been well established in the reconstruction of the anterior spinal column. Load transfer at the bone-implant interface remains a point of concern. The purpose of the study was to compare the performance in axial load transfer from the implant to the vertebral body in four different implants, all of them in clinical use to date.

Materials and methods

We tested a second generation implant (Synex II) in comparison to three different expandable titanium cages: Synex I, Obelisc and X-Tenz. Twenty-four intact fresh frozen human lumbar vertebrae (L1–L4) were distributed into four identical groups according to bone mineral density (BMD). The BMD was determined by quantitative computed tomography (qCT). Specimens were loaded in craniocaudal direction with a material testing machine (Mini Bionix II) at a constant speed of 5 mm/min. Load displacement curves were continuously recorded for each specimen until failure (diminishment of compressive force (F) and/or obvious implant migration through the vertebral body end plate). One-way analysis of variance (ANOVA) and post-hoc tests (Bonferroni) were applied to detect differences at 1, 2, 3, and 4 mm displacement (F 1–4 mm) between implant groups.

Result

No significant differences were observed with regard to maximum compression force (F max) and displacement (d max) until failure: Synex II (1,782.3 N/4.67 mm); Synex I (1,645.3 N/4.72 mm); Obelisc (1,314.0 N/4.24 mm); X-Tenz (1470.3 N/6.92 mm). However, the mean compression force at 1–4 mm displacement (F 1–4 mm: 300–1,600 N) was highest for Synex II. The difference at 2 mm displacement was significant (p = 0.028) between Synex II (F 2 mm = 879 N) and X-Tenz (F 2 mm = 339 N).

Conclusion

The modified end plate design of Synex II was found to perform comparably at least with regard to the compressive performance at the implant-bone interface. The risk of the new implant for collapse into the vertebral body might be reduced when compared to the competitors.
Literatur
1.
Zurück zum Zitat Andersson GB, Örtengren R, Nachemson A (1977) Intradiscal pressure, intraabdominal pressure and myoelectric back muscle activity related to posture and loading. Clin Orthop Relat Res 129:156–164PubMed Andersson GB, Örtengren R, Nachemson A (1977) Intradiscal pressure, intraabdominal pressure and myoelectric back muscle activity related to posture and loading. Clin Orthop Relat Res 129:156–164PubMed
3.
Zurück zum Zitat Beisse R, Potulski M, Beger J, Buhren V (2002) Development and clinical application of a thoracoscopy implantable plate frame for treatment of thoracolumbar fractures and instabilities. Orthopade 31(4):413–422. doi:10.1007/s00132-001-0285-6 PubMedCrossRef Beisse R, Potulski M, Beger J, Buhren V (2002) Development and clinical application of a thoracoscopy implantable plate frame for treatment of thoracolumbar fractures and instabilities. Orthopade 31(4):413–422. doi:10.​1007/​s00132-001-0285-6 PubMedCrossRef
4.
Zurück zum Zitat Beisse R, Potulski M, Temme C, Buhren V (1998) Endoscopically controlled division of the diaphragm: a minimally invasive approach to ventral management of thoracolumbar fractures of the spine. Unfallchirurg 101(8):619–627. doi:10.1007/s001130050315 PubMedCrossRef Beisse R, Potulski M, Temme C, Buhren V (1998) Endoscopically controlled division of the diaphragm: a minimally invasive approach to ventral management of thoracolumbar fractures of the spine. Unfallchirurg 101(8):619–627. doi:10.​1007/​s001130050315 PubMedCrossRef
5.
Zurück zum Zitat Bergot C, Laval-Jeantet AM, Hutchinson K, Dautraix I, Caulin F, Genant HK (2001) A comparison of spinal quantitative computed tomography with dual energy X-ray absorptiometry in European women with vertebral and nonvertebral fractures. Calcif Tissue Int 68(2):74–82. doi:10.1007/BF02678144 PubMedCrossRef Bergot C, Laval-Jeantet AM, Hutchinson K, Dautraix I, Caulin F, Genant HK (2001) A comparison of spinal quantitative computed tomography with dual energy X-ray absorptiometry in European women with vertebral and nonvertebral fractures. Calcif Tissue Int 68(2):74–82. doi:10.​1007/​BF02678144 PubMedCrossRef
6.
Zurück zum Zitat Blauth M, Knop C, Bastian L, Lobenhoffer P (1997) New developments in surgery of the injured spine. Orthopade 26(5):437–449PubMed Blauth M, Knop C, Bastian L, Lobenhoffer P (1997) New developments in surgery of the injured spine. Orthopade 26(5):437–449PubMed
9.
Zurück zum Zitat Goldhahn J, Reinhold M, Stauber M, Frei R, Schneider E, Linke B (2006) Improved anchorage in osteoporotic vertebrae with new implant designs. J Orthop Res (in press) Goldhahn J, Reinhold M, Stauber M, Frei R, Schneider E, Linke B (2006) Improved anchorage in osteoporotic vertebrae with new implant designs. J Orthop Res (in press)
10.
16.
Zurück zum Zitat Jost B, Cripton PA, Lund T, Oxland TR et al (1998) Compressive strength of interbody cages in the lumbar spine: the effect of cage shape, posterior instrumentation and bone density. Eur Spine J 7(2):132–141. doi:10.1007/s005860050043 PubMedCrossRef Jost B, Cripton PA, Lund T, Oxland TR et al (1998) Compressive strength of interbody cages in the lumbar spine: the effect of cage shape, posterior instrumentation and bone density. Eur Spine J 7(2):132–141. doi:10.​1007/​s005860050043 PubMedCrossRef
17.
Zurück zum Zitat Junghanns H (1955) Wirbelsäule. In: Buerkle de la Camp H, Rostock P (eds) Handbuch der gesamten Unfallchirurgie, Band Bd. II. Enke, Stuttgart, pp 520–564 Junghanns H (1955) Wirbelsäule. In: Buerkle de la Camp H, Rostock P (eds) Handbuch der gesamten Unfallchirurgie, Band Bd. II. Enke, Stuttgart, pp 520–564
18.
Zurück zum Zitat Kandziora F, Pflugmacher R, Schaefer J, Scholz M et al (2003) Biomechanical comparison of expandable cages for vertebral body replacement in the cervical spine. J Neurosurg 99(1 Suppl):91–97PubMed Kandziora F, Pflugmacher R, Schaefer J, Scholz M et al (2003) Biomechanical comparison of expandable cages for vertebral body replacement in the cervical spine. J Neurosurg 99(1 Suppl):91–97PubMed
20.
21.
22.
Zurück zum Zitat Knop C, Lange U, Bastian L, Blauth M (2000) Three-dimensional motion analysis with Synex: comparative biomechanical test series with a new vertebral body replacement for the thoracolumbar spine. Eur Spine J 9(6):472–485. doi:10.1007/s005860000185 PubMedCrossRef Knop C, Lange U, Bastian L, Blauth M (2000) Three-dimensional motion analysis with Synex: comparative biomechanical test series with a new vertebral body replacement for the thoracolumbar spine. Eur Spine J 9(6):472–485. doi:10.​1007/​s005860000185 PubMedCrossRef
23.
24.
25.
Zurück zum Zitat Lange U, Knop C, Bastian L, Blauth M (2003) Prospective multicenter study with a new implant for thoracolumbar vertebral body replacement. Arch Orthop Trauma Surg 123(5):203–208PubMed Lange U, Knop C, Bastian L, Blauth M (2003) Prospective multicenter study with a new implant for thoracolumbar vertebral body replacement. Arch Orthop Trauma Surg 123(5):203–208PubMed
26.
Zurück zum Zitat Lowery GL, Harms J (1996) Titanium surgical mesh for vertebral defect replacement and intervertebral spacers. In: Thalgott J, Aebi M (eds) Manual of internal fixation of the spine. Lippincott & Raven, Philadelphia, pp 127–146 Lowery GL, Harms J (1996) Titanium surgical mesh for vertebral defect replacement and intervertebral spacers. In: Thalgott J, Aebi M (eds) Manual of internal fixation of the spine. Lippincott & Raven, Philadelphia, pp 127–146
27.
Zurück zum Zitat Lund T, Oxland TR, Jost B, Cripton P et al (1998) Interbody cage stabilisation in the lumbar spine: biomechanical evaluation of cage design, posterior instrumentation and bone density. J Bone Joint Surg Br 80(2):351–359. doi:10.1302/0301-620X.80B2.7693 PubMedCrossRef Lund T, Oxland TR, Jost B, Cripton P et al (1998) Interbody cage stabilisation in the lumbar spine: biomechanical evaluation of cage design, posterior instrumentation and bone density. J Bone Joint Surg Br 80(2):351–359. doi:10.​1302/​0301-620X.​80B2.​7693 PubMedCrossRef
28.
Zurück zum Zitat McBroom RJ, Hayes WC, Edwards WT, Goldberg RP, White AAIII (1985) Prediction of vertebral body compressive fracture using quantitative computed tomography. J Bone Joint Surg Am 67(8):1206–1214PubMed McBroom RJ, Hayes WC, Edwards WT, Goldberg RP, White AAIII (1985) Prediction of vertebral body compressive fracture using quantitative computed tomography. J Bone Joint Surg Am 67(8):1206–1214PubMed
30.
Zurück zum Zitat Panjabi MM (1988) Biomechanical evaluation of spinal fixation devices: I. A conceptual framework. Spine 13(10):1129–1134PubMed Panjabi MM (1988) Biomechanical evaluation of spinal fixation devices: I. A conceptual framework. Spine 13(10):1129–1134PubMed
32.
Zurück zum Zitat Plaue R (1972) Behavior of thoracic and lumbar vertebral fractures: 1. Compression experiments on macerated vertebral bodies. Z Orthop Ihre Grenzgeb 110(2):159–166PubMed Plaue R (1972) Behavior of thoracic and lumbar vertebral fractures: 1. Compression experiments on macerated vertebral bodies. Z Orthop Ihre Grenzgeb 110(2):159–166PubMed
33.
Zurück zum Zitat Reinhold M, Schmid R, Knop C, Blauth M (2004) Komplikationsspektrum operativ versorgter Wirbelsäulenverletzungen—Eine Analyse der Multicenterstdien I und II der AG Wirbelsäule [Spectrum of complications involved in surgical management of spinal injuries—analysis of two multicenter studies]. Trauma und Berufskrankheit Reinhold M, Schmid R, Knop C, Blauth M (2004) Komplikationsspektrum operativ versorgter Wirbelsäulenverletzungen—Eine Analyse der Multicenterstdien I und II der AG Wirbelsäule [Spectrum of complications involved in surgical management of spinal injuries—analysis of two multicenter studies]. Trauma und Berufskrankheit
35.
Zurück zum Zitat Rockoff SD, Sweet E, Bleustein J (1969) The relative contribution of trabecular and cortical bone to the strength of human lumbar vertebrae. Calcif Tissue Res 3(2):163–175. doi:10.1007/BF02058659 PubMedCrossRef Rockoff SD, Sweet E, Bleustein J (1969) The relative contribution of trabecular and cortical bone to the strength of human lumbar vertebrae. Calcif Tissue Res 3(2):163–175. doi:10.​1007/​BF02058659 PubMedCrossRef
36.
Zurück zum Zitat Rohlmann A, Claes LE, Bergmannt G, Graichen F, Neef P, Wilke HJ (2001) Comparison of intradiscal pressures and spinal fixator loads for different body positions and exercises. Ergonomics 44(8):781–794. doi:10.1080/00140130110047657 CrossRef Rohlmann A, Claes LE, Bergmannt G, Graichen F, Neef P, Wilke HJ (2001) Comparison of intradiscal pressures and spinal fixator loads for different body positions and exercises. Ergonomics 44(8):781–794. doi:10.​1080/​0014013011004765​7 CrossRef
39.
Zurück zum Zitat Schultz AB, Andersson GB, Örtengren R, Haderspeck K, Nachemson A (1982) Loads on the lumbar spine: validation of a biomechanical analysis by measurements of intradiscal pressure and myoelectric signals. J Bone Joint Surg Am 64:713–720PubMed Schultz AB, Andersson GB, Örtengren R, Haderspeck K, Nachemson A (1982) Loads on the lumbar spine: validation of a biomechanical analysis by measurements of intradiscal pressure and myoelectric signals. J Bone Joint Surg Am 64:713–720PubMed
40.
Zurück zum Zitat Stoltze D, Harms J (1999) Correction of posttraumatic deformities: principles and methods. Orthopade 28(8):731–745PubMedCrossRef Stoltze D, Harms J (1999) Correction of posttraumatic deformities: principles and methods. Orthopade 28(8):731–745PubMedCrossRef
41.
Zurück zum Zitat von Gumppenberg S, Vieweg J, Claudi B, Harms J (1991) Primary management of fresh injuries of the thoracic and lumbar vertebrae. Aktuelle Traumatol 21(6):265–273 von Gumppenberg S, Vieweg J, Claudi B, Harms J (1991) Primary management of fresh injuries of the thoracic and lumbar vertebrae. Aktuelle Traumatol 21(6):265–273
42.
Zurück zum Zitat Whitesides TE (1977) Traumatic kyphosis of the thoracolumbar spine. Clin Orthop Relat Res 128:78–92 Whitesides TE (1977) Traumatic kyphosis of the thoracolumbar spine. Clin Orthop Relat Res 128:78–92
45.
Zurück zum Zitat Wilke HJ, Wenger K, Claes L (1998) Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J 7(2):148–154. doi:10.1007/s005860050045 PubMedCrossRef Wilke HJ, Wenger K, Claes L (1998) Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J 7(2):148–154. doi:10.​1007/​s005860050045 PubMedCrossRef
46.
49.
Zurück zum Zitat Wolfinbarger L Jr, Zhang Y, Adam BL, Sutherland V, Gates K, Brame B (1994) A comprehensive study of physical parameters, biomechanical properties, and statistical correlations of iliac crest bone wedges used in spinal fusion surgery: II. Mechanical properties and correlation with physical parameters. Spine 19(3):284–295PubMedCrossRef Wolfinbarger L Jr, Zhang Y, Adam BL, Sutherland V, Gates K, Brame B (1994) A comprehensive study of physical parameters, biomechanical properties, and statistical correlations of iliac crest bone wedges used in spinal fusion surgery: II. Mechanical properties and correlation with physical parameters. Spine 19(3):284–295PubMedCrossRef
Metadaten
Titel
A new distractable implant for vertebral body replacement: biomechanical testing of four implants for the thoracolumbar spine
verfasst von
M. Reinhold
W. Schmoelz
F. Canto
D. Krappinger
M. Blauth
Christian Knop
Publikationsdatum
01.10.2009
Verlag
Springer-Verlag
Erschienen in
Archives of Orthopaedic and Trauma Surgery / Ausgabe 10/2009
Print ISSN: 0936-8051
Elektronische ISSN: 1434-3916
DOI
https://doi.org/10.1007/s00402-009-0823-y

Weitere Artikel der Ausgabe 10/2009

Archives of Orthopaedic and Trauma Surgery 10/2009 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.