Skip to main content
Erschienen in: Journal of Bone and Mineral Metabolism 1/2021

20.10.2020 | Invited Review

Osteoclast differentiation by RANKL and OPG signaling pathways

verfasst von: Nobuyuki Udagawa, Masanori Koide, Midori Nakamura, Yuko Nakamichi, Teruhito Yamashita, Shunsuke Uehara, Yasuhiro Kobayashi, Yuriko Furuya, Hisataka Yasuda, Chie Fukuda, Eisuke Tsuda

Erschienen in: Journal of Bone and Mineral Metabolism | Ausgabe 1/2021

Einloggen, um Zugang zu erhalten

Abstract

Introduction

In bone tissue, bone resorption by osteoclasts and bone formation by osteoblasts are repeated continuously. Osteoclasts are multinucleated cells that derive from monocyte-/macrophage-lineage cells and resorb bone. In contrast, osteoblasts mediate osteoclastogenesis by expressing receptor activator of nuclear factor-kappa B ligand (RANKL), which is expressed as a membrane-associated cytokine. Osteoprotegerin (OPG) is a soluble RANKL decoy receptor that is predominantly produced by osteoblasts and which prevents osteoclast formation and osteoclastic bone resorption by inhibiting the RANKL–RANKL receptor interaction.

Materials and Methods

In this review, we would like to summarize our experimental results on signal transduction that regulates the expression of RANKL and OPG.

Results

Using OPG gene-deficient mice, we have demonstrated that OPG and sclerostin produced by osteocytes play an important role in the maintenance of cortical and alveolar bone. In addition, it was shown that osteoclast-derived leukemia inhibitory factor (LIF) reduces the expression of sclerostin in osteocytes and promotes bone formation. WP9QY (W9) is a peptide that was designed to be structurally similar to one of the cysteine-rich TNF-receptortype-I domains. Addition of the W9 peptide to bone marrow culture simultaneously inhibited osteoclast differentiation and stimulated osteoblastic cell proliferation. An anti-sialic acid-binding immunoglobulin-like lectin 15 (Siglec-15) antibody inhibited multinucleated osteoclast formation induced by RANKL and macrophage colony-stimulating factor (M-CSF). Pit-forming activity of osteoclasts was also inhibited by the anti-Siglec-15 antibody. In addition, anti-Siglec-15 antibody treatment stimulated the appearance of osteoblasts in cultures of mouse bone marrow cells in the presence of RANKL and M-CSF.

Conclusions

Bone mass loss depends on the RANK–RANKL–OPG system, which is a major regulatory system of osteoclast differentiation induction, activation, and survival.
Literatur
2.
Zurück zum Zitat Udagawa N, Takahashi N, Akatsu T, Tanaka H, Sasaki T, Nishihara T, Koga T, Martin TJ, Suda T (1990) Origin of osteoclasts: mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells. Proc Natl Acid Sci 87:7260–7264. https://doi.org/10.1073/pnas.87.18.7260CrossRef Udagawa N, Takahashi N, Akatsu T, Tanaka H, Sasaki T, Nishihara T, Koga T, Martin TJ, Suda T (1990) Origin of osteoclasts: mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells. Proc Natl Acid Sci 87:7260–7264. https://​doi.​org/​10.​1073/​pnas.​87.​18.​7260CrossRef
5.
Zurück zum Zitat Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acid Sci 95:3597–3602. https://doi.org/10.1073/pnas.95.7.3597CrossRef Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acid Sci 95:3597–3602. https://​doi.​org/​10.​1073/​pnas.​95.​7.​3597CrossRef
8.
Zurück zum Zitat Yasuda H, Shima N, Nakagawa N, Mochizuki SI, Yano K, Fujise N, Sato Y, Goto M, Yamaguchi K, Kuriyama M, Kanno T, Murakami A, Tsuda E, Morinaga T, Higashio K (1998) Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology 139:1329–1337. https://doi.org/10.1210/endo.139.3.5837CrossRefPubMed Yasuda H, Shima N, Nakagawa N, Mochizuki SI, Yano K, Fujise N, Sato Y, Goto M, Yamaguchi K, Kuriyama M, Kanno T, Murakami A, Tsuda E, Morinaga T, Higashio K (1998) Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology 139:1329–1337. https://​doi.​org/​10.​1210/​endo.​139.​3.​5837CrossRefPubMed
9.
Zurück zum Zitat Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, Morony S, Oliveira-dos-Santos AJ, Van G, Itie A, Khoo W, Wakeham A, Dunstan CR, Lacey DL, Mak TW, Boyle WJ, Penninger JM (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397:315–323. https://doi.org/10.1038/16852CrossRefPubMed Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, Morony S, Oliveira-dos-Santos AJ, Van G, Itie A, Khoo W, Wakeham A, Dunstan CR, Lacey DL, Mak TW, Boyle WJ, Penninger JM (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397:315–323. https://​doi.​org/​10.​1038/​16852CrossRefPubMed
12.
Zurück zum Zitat Mizuno A, Amizuka N, Irie K, Murakami A, Fujise N, Kanno T, Sato Y, Nakagawa N, Yasuda H, Mochizuki S, Gomibuchi T, Yano K, Shim N, Washida N, Tsuda E, Morinaga T, Higashino K, Ozawa H (1998) Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochem Biophys Res Commum 247:610–625. https://doi.org/10.1006/bbrc.1998.8697CrossRef Mizuno A, Amizuka N, Irie K, Murakami A, Fujise N, Kanno T, Sato Y, Nakagawa N, Yasuda H, Mochizuki S, Gomibuchi T, Yano K, Shim N, Washida N, Tsuda E, Morinaga T, Higashino K, Ozawa H (1998) Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochem Biophys Res Commum 247:610–625. https://​doi.​org/​10.​1006/​bbrc.​1998.​8697CrossRef
13.
14.
Zurück zum Zitat Koide M, Kobayashi Y, Ninomiya T, Nakamura M, Yasuda H, Arai Y, Okahashi N, Yoshinari N, Takahashi N, Udagawa N (2013) Osteoprotegerin-deficient male mice as a model for severe alveolar bone loss. Comparison with RANKL-overexpressing transgenic male mice. Endocrinology 154:773–782. https://doi.org/10.1210/en.2012-1928CrossRefPubMed Koide M, Kobayashi Y, Ninomiya T, Nakamura M, Yasuda H, Arai Y, Okahashi N, Yoshinari N, Takahashi N, Udagawa N (2013) Osteoprotegerin-deficient male mice as a model for severe alveolar bone loss. Comparison with RANKL-overexpressing transgenic male mice. Endocrinology 154:773–782. https://​doi.​org/​10.​1210/​en.​2012-1928CrossRefPubMed
15.
Zurück zum Zitat Nakamura M, Udagawa N, Matsuura S, Mogi M, Nakamura H, Horiuchi H, Saito N, Hiraoka BY, Kobayashi Y, Takaoka K, Ozawa H, Miyazawa H, Takahashi N (2003) Osteoprotegerin regulates bone formation through a coupling mechanism with bone resorption. Endocrinology 144:5441–5449. https://doi.org/10.1210/en.2003-0717CrossRefPubMed Nakamura M, Udagawa N, Matsuura S, Mogi M, Nakamura H, Horiuchi H, Saito N, Hiraoka BY, Kobayashi Y, Takaoka K, Ozawa H, Miyazawa H, Takahashi N (2003) Osteoprotegerin regulates bone formation through a coupling mechanism with bone resorption. Endocrinology 144:5441–5449. https://​doi.​org/​10.​1210/​en.​2003-0717CrossRefPubMed
16.
Zurück zum Zitat Yamamoto Y, Udagawa N, Matsuura S, Nakamichi Y, Horiuchi H, Hosoya A, Nakamura M, Ozawa H, Takaoka K, Penninger JM, Noguchi T, Takahashi N (2006) Osteoblasts provide a suitable microenvironment for the action of receptor activator of nuclear factor-κB ligand. Endocrinology 147:3366–3374. https://doi.org/10.1210/en.2006-0216CrossRefPubMed Yamamoto Y, Udagawa N, Matsuura S, Nakamichi Y, Horiuchi H, Hosoya A, Nakamura M, Ozawa H, Takaoka K, Penninger JM, Noguchi T, Takahashi N (2006) Osteoblasts provide a suitable microenvironment for the action of receptor activator of nuclear factor-κB ligand. Endocrinology 147:3366–3374. https://​doi.​org/​10.​1210/​en.​2006-0216CrossRefPubMed
28.
Zurück zum Zitat Furuya Y, Inagaki A, Khan M, Mori K, Penninger JM, Nakamura M, Udagawa N, Aoki K, Ohya K, Uchida K, Yasuda H (2013) Stimulation of bone formation in cortical bone of mice treated with a preceptor activator of nuclear factor-κB ligand (RANKL)-binding peptide that possesses osteoclastogenesis inhibitory activity. J Biol Chem 288:5562–5571. https://doi.org/10.1074/jbc.M112.426080CrossRefPubMedPubMedCentral Furuya Y, Inagaki A, Khan M, Mori K, Penninger JM, Nakamura M, Udagawa N, Aoki K, Ohya K, Uchida K, Yasuda H (2013) Stimulation of bone formation in cortical bone of mice treated with a preceptor activator of nuclear factor-κB ligand (RANKL)-binding peptide that possesses osteoclastogenesis inhibitory activity. J Biol Chem 288:5562–5571. https://​doi.​org/​10.​1074/​jbc.​M112.​426080CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Li X, Ominsky MS, Niu QT, Sun N, Daugherty B et al (2008) Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res 23:860–869CrossRef Li X, Ominsky MS, Niu QT, Sun N, Daugherty B et al (2008) Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res 23:860–869CrossRef
38.
Zurück zum Zitat Walker EC, McGregor NE, Poulton IJ, Solano M, Pompolo S, Fernandes TJ, Constable MJ, Nicholson GC, Zhang JG, Nicola NA, Gillespie MT, Martin TJ, Sims NA (2010) Oncostatin M promotes bone formation independently of resorption when signaling through leukemia inhibitory factor receptor in mice. J Clin Invest 120:582–592. https://doi.org/10.1172/JCI40568CrossRefPubMedPubMedCentral Walker EC, McGregor NE, Poulton IJ, Solano M, Pompolo S, Fernandes TJ, Constable MJ, Nicholson GC, Zhang JG, Nicola NA, Gillespie MT, Martin TJ, Sims NA (2010) Oncostatin M promotes bone formation independently of resorption when signaling through leukemia inhibitory factor receptor in mice. J Clin Invest 120:582–592. https://​doi.​org/​10.​1172/​JCI40568CrossRefPubMedPubMedCentral
44.
47.
Zurück zum Zitat Aoki K, Saito H, Itzstein C, Ishiguro M, Shibata T, Blanque R, Mian AH, Takahashi M, Suzuki Y, Yoshimatsu M, Yamaguchi A, Deprez P, Mollat P, Murali R, Ohya K, Horne WC, Baron R (2006) A TNF receptor loop peptide mimic blocks RANK ligand-induced signaling, bone resorption, and bone loss. J Clin Invest 116:1525–1534. https://doi.org/10.1172/JCI22513CrossRefPubMedPubMedCentral Aoki K, Saito H, Itzstein C, Ishiguro M, Shibata T, Blanque R, Mian AH, Takahashi M, Suzuki Y, Yoshimatsu M, Yamaguchi A, Deprez P, Mollat P, Murali R, Ohya K, Horne WC, Baron R (2006) A TNF receptor loop peptide mimic blocks RANK ligand-induced signaling, bone resorption, and bone loss. J Clin Invest 116:1525–1534. https://​doi.​org/​10.​1172/​JCI22513CrossRefPubMedPubMedCentral
48.
Zurück zum Zitat Nakamura M, Nakamichi Y, Mizoguchi T, Koide M, Yamashita T, Ara T, Nakamura H, Penninger JM, Furuya Y, Yasuda H, Udagawa N (2017) The W9 peptide directly stimulates osteoblast differentiation via RANKL signaling. J Oral Biosci 59:146–151CrossRef Nakamura M, Nakamichi Y, Mizoguchi T, Koide M, Yamashita T, Ara T, Nakamura H, Penninger JM, Furuya Y, Yasuda H, Udagawa N (2017) The W9 peptide directly stimulates osteoblast differentiation via RANKL signaling. J Oral Biosci 59:146–151CrossRef
50.
Zurück zum Zitat Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue J, Wagner EF, Mak TW, Kodama T, Taniguchi T (2002) Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 3:889–901. https://doi.org/10.1016/s1534-5807(02)00369-6CrossRefPubMed Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue J, Wagner EF, Mak TW, Kodama T, Taniguchi T (2002) Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 3:889–901. https://​doi.​org/​10.​1016/​s1534-5807(02)00369-6CrossRefPubMed
53.
54.
Zurück zum Zitat Kaifu T, Nakahara J, Inui M, Mishima K, Momiyama T, Kaji M, Sugahara A, Koito H, Ujike-Asai A, Nakamura A, Kanazawa K, Tan-Takeuchi K, Iwasaki K, Yokoyama W, Kudo A, Fujiwara M, Asou H, Takai T (2003) Osteopetrosis and thalamic hypomyelinosis with synaptic degeneration in DAP12-deficient mice. J Clin Invest 111:323–332. https://doi.org/10.1172/JCI16923CrossRefPubMedPubMedCentral Kaifu T, Nakahara J, Inui M, Mishima K, Momiyama T, Kaji M, Sugahara A, Koito H, Ujike-Asai A, Nakamura A, Kanazawa K, Tan-Takeuchi K, Iwasaki K, Yokoyama W, Kudo A, Fujiwara M, Asou H, Takai T (2003) Osteopetrosis and thalamic hypomyelinosis with synaptic degeneration in DAP12-deficient mice. J Clin Invest 111:323–332. https://​doi.​org/​10.​1172/​JCI16923CrossRefPubMedPubMedCentral
57.
Zurück zum Zitat Kameda Y, Takahata M, Komatsu M, Mikuni S, Hatakeyama S, Shimizu T, Angata T, Kinjo M, Minami A, Iwasaki N (2013) Siglec-15 regulaters osteoclast differentiation by modulating RANKL-induced phosphatidylinositol 3-kinase/Akt and Erk pathways in association with signaling adaptor DAP12. J Bone Miner Res 28:2463–2475. https://doi.org/10.1002/jbmr.1989CrossRefPubMed Kameda Y, Takahata M, Komatsu M, Mikuni S, Hatakeyama S, Shimizu T, Angata T, Kinjo M, Minami A, Iwasaki N (2013) Siglec-15 regulaters osteoclast differentiation by modulating RANKL-induced phosphatidylinositol 3-kinase/Akt and Erk pathways in association with signaling adaptor DAP12. J Bone Miner Res 28:2463–2475. https://​doi.​org/​10.​1002/​jbmr.​1989CrossRefPubMed
60.
Zurück zum Zitat Udagawa N, Uehara S, Koide M, Arai A, Mizoguchi T, Nakamura M, Kobayashi Y, Takahashi N, Fukuda C, Tsuda E (2017) Anti-Siglec-15 antibody inhibits bone-resorbing activity of osteoclasts and stimulates osteoblast differentiation. J Bone Miner Res Suppl 32:349 Udagawa N, Uehara S, Koide M, Arai A, Mizoguchi T, Nakamura M, Kobayashi Y, Takahashi N, Fukuda C, Tsuda E (2017) Anti-Siglec-15 antibody inhibits bone-resorbing activity of osteoclasts and stimulates osteoblast differentiation. J Bone Miner Res Suppl 32:349
61.
Zurück zum Zitat Fukuda C, Okada A, Karibe T, Hinuma Y, Kumakura S, Tsuda E (2017) A novel bone formation-sparing anti-resorptive agent, DS-1501a, increased BMD and bone biomechanical properties of cortical bone in ovariectomized cynomolgus monkeys. J Bone Miner Res 32:112 Fukuda C, Okada A, Karibe T, Hinuma Y, Kumakura S, Tsuda E (2017) A novel bone formation-sparing anti-resorptive agent, DS-1501a, increased BMD and bone biomechanical properties of cortical bone in ovariectomized cynomolgus monkeys. J Bone Miner Res 32:112
62.
Zurück zum Zitat Fukuda C, Tsuda E, Okada A, Amizuka N, Hasegawa T, Karibe T, Hinuma Y, Takagi N, Kumakura S (2017) Anti-Siglec-15 antibody reduced bone resorption while maintaining bone formation in ovariectomized (OVX) rats and monkeys. J Bone Miner Res 32:112 Fukuda C, Tsuda E, Okada A, Amizuka N, Hasegawa T, Karibe T, Hinuma Y, Takagi N, Kumakura S (2017) Anti-Siglec-15 antibody reduced bone resorption while maintaining bone formation in ovariectomized (OVX) rats and monkeys. J Bone Miner Res 32:112
63.
Zurück zum Zitat Dishy V, Kang D, Warren V, Maxwell W, Levinson B, Kochan J, He L, Baz-Hecht M, Fukuda C, Koga J, Tsuda E, Watanabe K (2017) A phase 1, subject and investigator blinded, sponsor unblended, placebocontrolled, radamized, 2 part, sequential, single ascending dose study to assess the safety, tolerability, pharmacokinetics, and pharmacodynamics of DS-1501a in healthy young subjects and healthy postmenopausal woman. J Bone Miner Res 32:107–108 Dishy V, Kang D, Warren V, Maxwell W, Levinson B, Kochan J, He L, Baz-Hecht M, Fukuda C, Koga J, Tsuda E, Watanabe K (2017) A phase 1, subject and investigator blinded, sponsor unblended, placebocontrolled, radamized, 2 part, sequential, single ascending dose study to assess the safety, tolerability, pharmacokinetics, and pharmacodynamics of DS-1501a in healthy young subjects and healthy postmenopausal woman. J Bone Miner Res 32:107–108
Metadaten
Titel
Osteoclast differentiation by RANKL and OPG signaling pathways
verfasst von
Nobuyuki Udagawa
Masanori Koide
Midori Nakamura
Yuko Nakamichi
Teruhito Yamashita
Shunsuke Uehara
Yasuhiro Kobayashi
Yuriko Furuya
Hisataka Yasuda
Chie Fukuda
Eisuke Tsuda
Publikationsdatum
20.10.2020
Verlag
Springer Singapore
Erschienen in
Journal of Bone and Mineral Metabolism / Ausgabe 1/2021
Print ISSN: 0914-8779
Elektronische ISSN: 1435-5604
DOI
https://doi.org/10.1007/s00774-020-01162-6

Weitere Artikel der Ausgabe 1/2021

Journal of Bone and Mineral Metabolism 1/2021 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.