Skip to main content
Erschienen in: Journal of Orthopaedic Science 5/2011

01.09.2011 | Original Article

Comparison between loose fragment chondrocytes and condyle fibrochondrocytes in cellular proliferation and redifferentiation

verfasst von: Naoki Takata, Takayuki Furumatsu, Nobuhiro Abe, Keiji Naruse, Toshifumi Ozaki

Erschienen in: Journal of Orthopaedic Science | Ausgabe 5/2011

Einloggen, um Zugang zu erhalten

Abstract

Background

Loose fragments in spontaneous osteonecrosis of the knee (SONK) are usually removed by surgical treatment. However, the healing potential of osteonecrotic loose fragments and their clinical availability, for example as a cell source for cartilage repair and tissue engineering, have not been investigated. The objective of this study was to evaluate the cellular proliferation and redifferentiation ability of loose fragment chondrocytes for the treatment of SONK.

Methods

Cells were obtained from the remaining cartilage of chondral loose fragments or fibrocartilaginous tissue under the affected femoral condyle in SONK. The proliferation activity of loose fragment-derived chondrocytes and condyle-derived fibrochondrocytes was evaluated. In-vitro differentiation ability was assessed by PCR and histological analysis.

Results

The deposition of proteoglycans and type II collagen were maintained in loose fragments. However, loose fragment-derived chondrocytes had lower proliferating activity than condyle-derived fibrochondrocytes. Chondrogenic redifferentiation ability was lower in loose fragment chondrocytes than in condyle fibrochondrocytes. Differentiation towards adipogenic and osteogenic lineages was not observed in loose fragment chondrocytes. On the other hand, lipid vacuoles were detected in fibrochondrocytes after adipogenic treatment.

Conclusions

This study demonstrated that loose fragment-derived chondrocytes in SONK had lower potential than fibrochondrocytes in cellular proliferation and redifferentiation. Our experimental results suggest that osteonecrotic loose fragments might have restricted cellular properties in the healing of SONK-related osteochondral defects.
Literatur
1.
Zurück zum Zitat Ahlback S, Bauer GC, Bohne WH. Spontaneous osteonecrosis of the knee. Arthritis Rheum. 1968;11:705–33.PubMedCrossRef Ahlback S, Bauer GC, Bohne WH. Spontaneous osteonecrosis of the knee. Arthritis Rheum. 1968;11:705–33.PubMedCrossRef
2.
Zurück zum Zitat Patel DV, Breazeale NM, Behr CT, Warren RF, Wickiewicz TL, O’Brien SJ. Osteonecrosis of the knee: current clinical concepts. Knee Surg Sports Traumatol Arthrosc. 1998;6:2–11.PubMedCrossRef Patel DV, Breazeale NM, Behr CT, Warren RF, Wickiewicz TL, O’Brien SJ. Osteonecrosis of the knee: current clinical concepts. Knee Surg Sports Traumatol Arthrosc. 1998;6:2–11.PubMedCrossRef
3.
Zurück zum Zitat Yamamoto T, Bullough PG. Spontaneous osteonecrosis of the knee: the result of subchondral insufficiency fracture. J Bone Joint Surg Am. 2000;82:858–66.PubMedCrossRef Yamamoto T, Bullough PG. Spontaneous osteonecrosis of the knee: the result of subchondral insufficiency fracture. J Bone Joint Surg Am. 2000;82:858–66.PubMedCrossRef
4.
Zurück zum Zitat Kraenzlin ME, Graf C, Meier C, Kraenzlin C, Friedrich NF. Possible beneficial effect of bisphosphonates in osteonecrosis of the knee. Knee Surg Sports Traumatol Arthrosc. 2010;18:1638–44.PubMedCrossRef Kraenzlin ME, Graf C, Meier C, Kraenzlin C, Friedrich NF. Possible beneficial effect of bisphosphonates in osteonecrosis of the knee. Knee Surg Sports Traumatol Arthrosc. 2010;18:1638–44.PubMedCrossRef
5.
Zurück zum Zitat Pape D, Filardo G, Kon E, van Dijk CN, Madry H. Disease-specific clinical problems associated with the subchondral bone. Knee Surg Sports Traumatol Arthrosc. 2010;18:448–62.PubMedCrossRef Pape D, Filardo G, Kon E, van Dijk CN, Madry H. Disease-specific clinical problems associated with the subchondral bone. Knee Surg Sports Traumatol Arthrosc. 2010;18:448–62.PubMedCrossRef
6.
Zurück zum Zitat Koshino T. The treatment of spontaneous osteonecrosis of the knee by high tibial osteotomy with and without bone-grafting or drilling of the lesion. J Bone Joint Surg Am. 1982;64:47–58.PubMed Koshino T. The treatment of spontaneous osteonecrosis of the knee by high tibial osteotomy with and without bone-grafting or drilling of the lesion. J Bone Joint Surg Am. 1982;64:47–58.PubMed
7.
Zurück zum Zitat Frisbie DD, Oxford JT, Southwood L, Trotter GW, Rodkey WG, Steadman JR, Goodnight JL, McIlwraith CW. Early events in cartilage repair after subchondral bone microfracture. Clin Orthop Relat Res. 2003;407:215–27.PubMedCrossRef Frisbie DD, Oxford JT, Southwood L, Trotter GW, Rodkey WG, Steadman JR, Goodnight JL, McIlwraith CW. Early events in cartilage repair after subchondral bone microfracture. Clin Orthop Relat Res. 2003;407:215–27.PubMedCrossRef
8.
Zurück zum Zitat de Girolamo L, Bertolini G, Cervellin M, Sozzi G, Volpi P. Treatment of chondral defects of the knee with one step matrix-assisted technique enhanced by autologous concentrated bone marrow: in vitro characterisation of mesenchymal stem cells from iliac crest and subchondral bone. Injury. 2010;41:1172–7.PubMedCrossRef de Girolamo L, Bertolini G, Cervellin M, Sozzi G, Volpi P. Treatment of chondral defects of the knee with one step matrix-assisted technique enhanced by autologous concentrated bone marrow: in vitro characterisation of mesenchymal stem cells from iliac crest and subchondral bone. Injury. 2010;41:1172–7.PubMedCrossRef
9.
Zurück zum Zitat Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994;331:889–95.PubMedCrossRef Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994;331:889–95.PubMedCrossRef
10.
Zurück zum Zitat Marcacci M, Berruto M, Brocchetta D, Delcogliano A, Ghinelli D, Gobbi A, Kon E, Pederzini L, Rosa D, Sacchetti GL, Stefani G, Zanasi S. Articular cartilage engineering with Hyalograft C: 3-year clinical results. Clin Orthop Relat Res. 2005 (435):96–105. Marcacci M, Berruto M, Brocchetta D, Delcogliano A, Ghinelli D, Gobbi A, Kon E, Pederzini L, Rosa D, Sacchetti GL, Stefani G, Zanasi S. Articular cartilage engineering with Hyalograft C: 3-year clinical results. Clin Orthop Relat Res. 2005 (435):96–105.
11.
Zurück zum Zitat Jakobsen RB, Shahdadfar A, Reinholt FP, Brinchmann JE. Chondrogenesis in a hyaluronic acid scaffold: comparison between chondrocytes and MSC from bone marrow and adipose tissue. Knee Surg Sports Traumatol Arthrosc. 2010;18:1407–16.PubMedCrossRef Jakobsen RB, Shahdadfar A, Reinholt FP, Brinchmann JE. Chondrogenesis in a hyaluronic acid scaffold: comparison between chondrocytes and MSC from bone marrow and adipose tissue. Knee Surg Sports Traumatol Arthrosc. 2010;18:1407–16.PubMedCrossRef
12.
Zurück zum Zitat Marti CB, Rodriguez M, Zanetti M, Romero J. Spontaneous osteonecrosis of the medial compartment of the knee: a MRI follow-up after conservative and operative treatment, preliminary results. Knee Surg Sports Traumatol Arthrosc. 2000;8:83–8.PubMedCrossRef Marti CB, Rodriguez M, Zanetti M, Romero J. Spontaneous osteonecrosis of the medial compartment of the knee: a MRI follow-up after conservative and operative treatment, preliminary results. Knee Surg Sports Traumatol Arthrosc. 2000;8:83–8.PubMedCrossRef
13.
Zurück zum Zitat Furumatsu T, Hachioji M, Saiga K, Takata N, Yokoyama Y, Ozaki T. Anterior cruciate ligament-derived cells have high chondrogenic potential. Biochem Biophys Res Commun. 2010;391:1142–7.PubMedCrossRef Furumatsu T, Hachioji M, Saiga K, Takata N, Yokoyama Y, Ozaki T. Anterior cruciate ligament-derived cells have high chondrogenic potential. Biochem Biophys Res Commun. 2010;391:1142–7.PubMedCrossRef
14.
Zurück zum Zitat Furumatsu T, Tsuda M, Taniguchi N, Tajima Y, Asahara H. Smad3 induces chondrogenesis through the activation of SOX9 via CREB-binding protein/p300 recruitment. J Biol Chem. 2005;280:8343–50.PubMedCrossRef Furumatsu T, Tsuda M, Taniguchi N, Tajima Y, Asahara H. Smad3 induces chondrogenesis through the activation of SOX9 via CREB-binding protein/p300 recruitment. J Biol Chem. 2005;280:8343–50.PubMedCrossRef
15.
Zurück zum Zitat Furumatsu T, Shukunami C, Amemiya-Kudo M, Shimano H, Ozaki T. Scleraxis and E47 cooperatively regulate the Sox9-dependent transcription. Int J Biochem Cell Biol. 2010;42:148–56.PubMedCrossRef Furumatsu T, Shukunami C, Amemiya-Kudo M, Shimano H, Ozaki T. Scleraxis and E47 cooperatively regulate the Sox9-dependent transcription. Int J Biochem Cell Biol. 2010;42:148–56.PubMedCrossRef
16.
Zurück zum Zitat Tetsunaga T, Furumatsu T, Abe N, Nishida K, Naruse K, Ozaki T. Mechanical stretch stimulates integrin alphaVbeta3-mediated collagen expression in human anterior cruciate ligament cells. J Biomech. 2009;42:2097–103.PubMedCrossRef Tetsunaga T, Furumatsu T, Abe N, Nishida K, Naruse K, Ozaki T. Mechanical stretch stimulates integrin alphaVbeta3-mediated collagen expression in human anterior cruciate ligament cells. J Biomech. 2009;42:2097–103.PubMedCrossRef
17.
Zurück zum Zitat Date H, Furumatsu T, Sakoma Y, Yoshida A, Hayashi Y, Abe N, Ozaki T. GDF-5/7 and bFGF activate integrin alpha2-mediated cellular migration in rabbit ligament fibroblasts. J Orthop Res. 2010;28:225–31.PubMed Date H, Furumatsu T, Sakoma Y, Yoshida A, Hayashi Y, Abe N, Ozaki T. GDF-5/7 and bFGF activate integrin alpha2-mediated cellular migration in rabbit ligament fibroblasts. J Orthop Res. 2010;28:225–31.PubMed
18.
Zurück zum Zitat Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.PubMedCrossRef Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.PubMedCrossRef
19.
Zurück zum Zitat Furumatsu T, Ozaki T. Epigenetic regulation in chondrogenesis. Acta Med Okayama. 2010;64:155–61.PubMed Furumatsu T, Ozaki T. Epigenetic regulation in chondrogenesis. Acta Med Okayama. 2010;64:155–61.PubMed
20.
Zurück zum Zitat Segawa Y, Muneta T, Makino H, Nimura A, Mochizuki T, Ju YJ, Ezura Y, Umezawa A, Sekiya I. Mesenchymal stem cells derived from synovium, meniscus, anterior cruciate ligament, and articular chondrocytes share similar gene expression profiles. J Orthop Res. 2009;27:435–41.PubMedCrossRef Segawa Y, Muneta T, Makino H, Nimura A, Mochizuki T, Ju YJ, Ezura Y, Umezawa A, Sekiya I. Mesenchymal stem cells derived from synovium, meniscus, anterior cruciate ligament, and articular chondrocytes share similar gene expression profiles. J Orthop Res. 2009;27:435–41.PubMedCrossRef
21.
Zurück zum Zitat Han HS, Lee S, Kim JH, Seong SC, Lee MC. Changes in chondrogenic phenotype and gene expression profiles associated with the in vitro expansion of human synovium-derived cells. J Orthop Res. 2010;28:1283–91.PubMedCrossRef Han HS, Lee S, Kim JH, Seong SC, Lee MC. Changes in chondrogenic phenotype and gene expression profiles associated with the in vitro expansion of human synovium-derived cells. J Orthop Res. 2010;28:1283–91.PubMedCrossRef
22.
Zurück zum Zitat Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006;98:1076–84.PubMedCrossRef Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006;98:1076–84.PubMedCrossRef
23.
Zurück zum Zitat Pei M, Yu C, Qu M. Expression of collagen type I, II and III in loose body of osteoarthritis. J Orthop Sci. 2000;5:288–93.PubMedCrossRef Pei M, Yu C, Qu M. Expression of collagen type I, II and III in loose body of osteoarthritis. J Orthop Sci. 2000;5:288–93.PubMedCrossRef
24.
Zurück zum Zitat Furumatsu T, Tsuda M, Yoshida K, Taniguchi N, Ito T, Hashimoto M, Ito T, Asahara H. Sox9 and p300 cooperatively regulate chromatin-mediated transcription. J Biol Chem. 2005;280:35203–8.PubMedCrossRef Furumatsu T, Tsuda M, Yoshida K, Taniguchi N, Ito T, Hashimoto M, Ito T, Asahara H. Sox9 and p300 cooperatively regulate chromatin-mediated transcription. J Biol Chem. 2005;280:35203–8.PubMedCrossRef
25.
Zurück zum Zitat Furumatsu T, Asahara H. Histone acetylation influences the activity of Sox9-related transcriptional complex. Acta Med Okayama. 2010;64:351–7.PubMed Furumatsu T, Asahara H. Histone acetylation influences the activity of Sox9-related transcriptional complex. Acta Med Okayama. 2010;64:351–7.PubMed
26.
Zurück zum Zitat Furumatsu T, Kanazawa T, Yokoyama Y, Abe N, Ozaki T. Inner meniscus cells maintain higher chondrogenic phenotype compared with outer meniscus cells. Connect Tissue Res. 2011 (Epub PMID21591928). Furumatsu T, Kanazawa T, Yokoyama Y, Abe N, Ozaki T. Inner meniscus cells maintain higher chondrogenic phenotype compared with outer meniscus cells. Connect Tissue Res. 2011 (Epub PMID21591928).
27.
Zurück zum Zitat Miyake Y, Furumatsu T, Kubota S, Kawata K, Ozaki T, Takigawa M. Mechanical stretch increases CCN2/CTGF expression in anterior cruciate ligament-derived cells. Biochem Biophys Res Commun. 2011;409:247–52.PubMedCrossRef Miyake Y, Furumatsu T, Kubota S, Kawata K, Ozaki T, Takigawa M. Mechanical stretch increases CCN2/CTGF expression in anterior cruciate ligament-derived cells. Biochem Biophys Res Commun. 2011;409:247–52.PubMedCrossRef
Metadaten
Titel
Comparison between loose fragment chondrocytes and condyle fibrochondrocytes in cellular proliferation and redifferentiation
verfasst von
Naoki Takata
Takayuki Furumatsu
Nobuhiro Abe
Keiji Naruse
Toshifumi Ozaki
Publikationsdatum
01.09.2011
Verlag
Springer Japan
Erschienen in
Journal of Orthopaedic Science / Ausgabe 5/2011
Print ISSN: 0949-2658
Elektronische ISSN: 1436-2023
DOI
https://doi.org/10.1007/s00776-011-0128-1

Weitere Artikel der Ausgabe 5/2011

Journal of Orthopaedic Science 5/2011 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.