Skip to main content
Erschienen in: Lasers in Medical Science 5/2014

01.09.2014 | Original Article

Raman study of the repair of surgical bone defects grafted with biphasic synthetic microgranular HA + β-calcium triphosphate and irradiated or not with λ780 nm laser

verfasst von: Luiz Guilherme P. Soares, Aparecida Maria C. Marques, Artur Felipe S. Barbosa, Nicole R. Santos, Jouber Mateus S. Aciole, Caroline Mathias C. Souza, Antonio Luiz B. Pinheiro, Landulfo Silveira Jr.

Erschienen in: Lasers in Medical Science | Ausgabe 5/2014

Einloggen, um Zugang zu erhalten

Abstract

The treatment of bone loss due to different etiologic factors is difficult, and many techniques aim to improve repair, including a wide range of biomaterials and, recently, photobioengineering. This work aimed to assess, through Raman spectroscopy, the level of bone mineralization using the intensities of the Raman peaks of both inorganic (∼960, ∼1,070, and ∼1,077 cm−1) and organic (∼1,454 and ∼1,666 cm−1) contents of bone tissue. Forty rats were divided into four groups each subdivided into two subgroups according to the time of killing (15 and 30 days). Surgical bone defects were made on femur of each animal with a trephine drill. On animals of group Clot, the defect was filled only by blood clot; on group Laser, the defect filled with the clot was further irradiated. On animals of groups Biomaterial and Laser + Biomaterial, the defect was filled by biomaterial and the last one was further irradiated (λ780 nm, 70 mW, Φ ∼ 0.4 cm2, 20 J/cm2 session, 140 J/cm2 treatment) in four points around the defect at 48-h intervals and repeated for 2 weeks. At both 15th and 30th day following killing, samples were taken and analyzed by Raman spectroscopy. At the end of the experimental time, the intensities of both inorganic and organic contents were higher on group Laser + Biomaterial. It is concluded that the use of laser phototherapy associated to biomaterial was effective in improving bone healing on bone defects as a result of the increasing deposition of calcium hydroxyapatite measured by Raman spectroscopy.
Fußnoten
1
Protocol 08.2010.
 
2
About 2 months old, average weight 295 ± 25 g.
 
3
Labina®, Purina, São Paulo, Brazil.
 
4
INSIGHT Equipamentos Ltda—Monte Alegre, Ribeirão Preto, São Paulo, Brazil.
 
5
0.04 ml/100 g of atropine subcutaneously.
 
6
10 % ketamine (0.1 mL/100 g—Cetamin®, Syntec, São Paulo, Brazil) + 2 % xylazin (0.1 mL/100 g; Xilazin®, Syntec, São Paulo, Brazil).
 
7
SIN, São Paulo, Brazil.
 
8
NSK, Tochigi, Japan.
 
9
Driller 600®, SIN, São Paulo, SP, Brazil.
 
10
Pentabiotico®, 0.2 ml; Fort Dodge Animal Health, Overland Park, KS, USA.
 
11
TwinFlex Evolution®, MMOptics, São Carlos, São Paulo, Brazil; λ780 nm, 70 mW, Φ ∼ 0.4 cm2, 20 J/cm2.
 
12
Power Meter Thorlabs PM30-121, Thorlabs GmbH, Munich, Germany.
 
13
Insight Equipamentos, model EB 248, Ribeirão Preto, SP, Brazil.
 
14
SIN-DRILLER 600 BML, São Paulo, SP, Brazil.
 
15
Andor Technology, model Shamrock SR-303i®, Belfast, Northern Ireland.
 
16
B&W TEK, model BRM-785-0.30-100-0.22.s, Newark, DE, USA.
 
17
B&W TEK, model BAC-100-785, Newark, DE, USA.
 
18
Andor Technology, model IDUs® DU401A-BR-DD, Belfast, Northern Ireland.
 
19
Andor Technology, Solis (i) software, Belfast, Northern Ireland.
 
20
Intensity correction and wavenumber calibration.
 
21
Oriel Instruments, model 63358, Strattford, CT, USA.
 
22
The Mathworks, Newark, NJ, USA.
 
23
Minitab, Belo Horizonte, MG, Brazil.
 
Literatur
1.
Zurück zum Zitat Prolo DJ (1990) Biology of bone fusion. Clin Neurosurg 36:135–146PubMed Prolo DJ (1990) Biology of bone fusion. Clin Neurosurg 36:135–146PubMed
2.
Zurück zum Zitat Recker RR (1992) Embryology, anatomy, and microstructure of bone. In: Coe FL, Favus MJ (eds) Disorders of bone and mineral metabolism. Raven, New York, pp 219–240 Recker RR (1992) Embryology, anatomy, and microstructure of bone. In: Coe FL, Favus MJ (eds) Disorders of bone and mineral metabolism. Raven, New York, pp 219–240
3.
Zurück zum Zitat Kalfas IH (2001) Principles of bone healing. Neurosurg Focus 10(4):7–10CrossRef Kalfas IH (2001) Principles of bone healing. Neurosurg Focus 10(4):7–10CrossRef
4.
Zurück zum Zitat Pinheiro ALB, Gerbi MEMM (2006) Photoengineering of bone repair processes. Photomed Laser Surg 24(2):169–178PubMedCrossRef Pinheiro ALB, Gerbi MEMM (2006) Photoengineering of bone repair processes. Photomed Laser Surg 24(2):169–178PubMedCrossRef
5.
Zurück zum Zitat Pinheiro ALB, Aciole GTS, Cangussú MCT, Pacheco MTT, Silveira L Jr (2010) Effects of laser phototherapy on bone defects grafted with mineral trioxide aggregate, bone morphogenetic proteins, and guided bone regeneration: a Raman spectroscopic study. J Biomed Mater Res A 95(4):1041–1047PubMedCrossRef Pinheiro ALB, Aciole GTS, Cangussú MCT, Pacheco MTT, Silveira L Jr (2010) Effects of laser phototherapy on bone defects grafted with mineral trioxide aggregate, bone morphogenetic proteins, and guided bone regeneration: a Raman spectroscopic study. J Biomed Mater Res A 95(4):1041–1047PubMedCrossRef
6.
Zurück zum Zitat Lopes CB, Pacheco MTT, Silveira L Jr, Cangussu MCT, Pinheiro ALB (2010) The effect of the association of near infrared laser therapy, bone morphogenetic proteins, and guided bone regeneration on tibial fractures treated with internal rigid fixation: A Raman spectroscopic study. J Biomed Mater Res A 4(4):1257–63 Lopes CB, Pacheco MTT, Silveira L Jr, Cangussu MCT, Pinheiro ALB (2010) The effect of the association of near infrared laser therapy, bone morphogenetic proteins, and guided bone regeneration on tibial fractures treated with internal rigid fixation: A Raman spectroscopic study. J Biomed Mater Res A 4(4):1257–63
7.
Zurück zum Zitat Torres CS, Santos JN, Monteiro JSC, Gomes PTCC, Pinheiro ALB (2008) Does the use of laser photobiomodulation, bone morphogenetic proteins, and guided bone regeneration improve the outcome of autologous bone grafts? An in vivo study in a rodent model. Photomed Laser Surg 26:371–377PubMedCrossRef Torres CS, Santos JN, Monteiro JSC, Gomes PTCC, Pinheiro ALB (2008) Does the use of laser photobiomodulation, bone morphogenetic proteins, and guided bone regeneration improve the outcome of autologous bone grafts? An in vivo study in a rodent model. Photomed Laser Surg 26:371–377PubMedCrossRef
8.
Zurück zum Zitat Lopes CB, Pinheiro ALB, Sathaiah S, Silva NS, Salgado MC (2007) Infrared laser photobiomodulation (830 nm) on bone tissue around dental implants: a Raman spectroscopy and scanning eletronic microscopy study in rabbits. Photomed Laser Surg 25:96–101PubMedCrossRef Lopes CB, Pinheiro ALB, Sathaiah S, Silva NS, Salgado MC (2007) Infrared laser photobiomodulation (830 nm) on bone tissue around dental implants: a Raman spectroscopy and scanning eletronic microscopy study in rabbits. Photomed Laser Surg 25:96–101PubMedCrossRef
9.
Zurück zum Zitat Pinheiro ALB, Oliveira MG, Martins PPM, Ramalho LMP, Oliveira MAM, Novaes A Jr, Nicolau RA (2001) Biomodulatory effects of LLLT on bone regeneration. Laser Ther 13:73–79CrossRef Pinheiro ALB, Oliveira MG, Martins PPM, Ramalho LMP, Oliveira MAM, Novaes A Jr, Nicolau RA (2001) Biomodulatory effects of LLLT on bone regeneration. Laser Ther 13:73–79CrossRef
10.
Zurück zum Zitat Weber JBB, Pinheiro ALB, Oliveira MG, Oliveira FAM, Ramalho LMP (2006) Laser therapy improves healing of bone defects submitted to autogenos bone graft. Photomed Laser Surg 24:38–44PubMedCrossRef Weber JBB, Pinheiro ALB, Oliveira MG, Oliveira FAM, Ramalho LMP (2006) Laser therapy improves healing of bone defects submitted to autogenos bone graft. Photomed Laser Surg 24:38–44PubMedCrossRef
11.
Zurück zum Zitat Pinheiro ALB, Gerbi MEMM, Limeira Junior FA, Ponzi EAC, Marques AMC, Carvalho CM, Santos RC, Oliveira PC, Nóia M, Ramalho LMP (2009) Bone repair following bone grafting hydroxyapatite guided bone regeneration and infrared laser photobiomodulation: a histological study in a rodent model. Lasers Med Sci 24:234–240PubMedCrossRef Pinheiro ALB, Gerbi MEMM, Limeira Junior FA, Ponzi EAC, Marques AMC, Carvalho CM, Santos RC, Oliveira PC, Nóia M, Ramalho LMP (2009) Bone repair following bone grafting hydroxyapatite guided bone regeneration and infrared laser photobiomodulation: a histological study in a rodent model. Lasers Med Sci 24:234–240PubMedCrossRef
12.
Zurück zum Zitat Gerbi MEMM, Marques AMC, Ramalho LMP, Ponzi EA, Carvalho CM, Santos RC, Oliveira PC, Nóia M, Pinheiro AL (2008) Infrared laser light further improves bone healing when associated with bone morphogenic proteins: an in vivo study in a rodent model. Photomed Laser Surg 26:55–60PubMedCrossRef Gerbi MEMM, Marques AMC, Ramalho LMP, Ponzi EA, Carvalho CM, Santos RC, Oliveira PC, Nóia M, Pinheiro AL (2008) Infrared laser light further improves bone healing when associated with bone morphogenic proteins: an in vivo study in a rodent model. Photomed Laser Surg 26:55–60PubMedCrossRef
13.
Zurück zum Zitat Pinheiro ALB, Gerbi MEM, Ponzi EAC, Ramalho LMP, Marques AMC, Carvalho CM, Santos RC, Oliveira PC, Nóia M (2008) Infrared laser light further improves bone healing when associated with bone morphogenetic proteins and guided bone regeneration: an in vivo study in a rodent model. Photomed Laser Surg 26:167–174PubMedCrossRef Pinheiro ALB, Gerbi MEM, Ponzi EAC, Ramalho LMP, Marques AMC, Carvalho CM, Santos RC, Oliveira PC, Nóia M (2008) Infrared laser light further improves bone healing when associated with bone morphogenetic proteins and guided bone regeneration: an in vivo study in a rodent model. Photomed Laser Surg 26:167–174PubMedCrossRef
14.
Zurück zum Zitat Gerbi MEMM, Pinheiro ALB, Ramalho LMP (2008) Effect of IR laser photobiomodulation on the repair of bone defects grafted with organic bovine bone. Lasers Med Sci 23:313–317CrossRef Gerbi MEMM, Pinheiro ALB, Ramalho LMP (2008) Effect of IR laser photobiomodulation on the repair of bone defects grafted with organic bovine bone. Lasers Med Sci 23:313–317CrossRef
15.
Zurück zum Zitat Gerbi ME, Pinheiro ALB, Marzola C, Limeira Júnior FA, Ramalho LMP, Ponzi EAC, Soares AO, Carvalho LC, Lima HV, Gonçalves TO (2005) Assessment of bone repair associated with the use of organic bovine bone and membrane irradiated at 830 nm. Photomed Laser Surg 23:382–388PubMedCrossRef Gerbi ME, Pinheiro ALB, Marzola C, Limeira Júnior FA, Ramalho LMP, Ponzi EAC, Soares AO, Carvalho LC, Lima HV, Gonçalves TO (2005) Assessment of bone repair associated with the use of organic bovine bone and membrane irradiated at 830 nm. Photomed Laser Surg 23:382–388PubMedCrossRef
16.
Zurück zum Zitat Lopes CB, Pacheco MT, Silveira Junior L, Duarte J, Cangussú MC, Pinheiro AL (2007) The effect of the association of NIR laser therapy BMPs, and guided bone regeneration on tibial fractures treated with wire osteosynthesis: Raman spectroscopy study. J Photochem Photobiol B 89(2–3):125–30PubMedCrossRef Lopes CB, Pacheco MT, Silveira Junior L, Duarte J, Cangussú MC, Pinheiro AL (2007) The effect of the association of NIR laser therapy BMPs, and guided bone regeneration on tibial fractures treated with wire osteosynthesis: Raman spectroscopy study. J Photochem Photobiol B 89(2–3):125–30PubMedCrossRef
17.
Zurück zum Zitat Karu TI, Pyatibrat LV, Afanasyeva NI (2004) A novel mitochondrial signalling pathway activated by visible-to-near infrared radiation. Photochem Photobiol 80:366–72PubMedCrossRef Karu TI, Pyatibrat LV, Afanasyeva NI (2004) A novel mitochondrial signalling pathway activated by visible-to-near infrared radiation. Photochem Photobiol 80:366–72PubMedCrossRef
18.
Zurück zum Zitat Hanlon EB, Manoharan R, Koo TW, Shafer KE, Motz JT, Fitzmaurice M, Kramer JR, Itzkan I, Dasari RR, Feld MS (2000) Prospects for in vivo Raman spectroscopy. Phys Med Biol 45:R1–R59PubMedCrossRef Hanlon EB, Manoharan R, Koo TW, Shafer KE, Motz JT, Fitzmaurice M, Kramer JR, Itzkan I, Dasari RR, Feld MS (2000) Prospects for in vivo Raman spectroscopy. Phys Med Biol 45:R1–R59PubMedCrossRef
19.
Zurück zum Zitat Kavukcuoglu NB, Patterson-Buckendahl P, Mann A (2009) Effect of osteocalcin deficiency on the nanomechanics and chemistry of mouse bones. J Mech Behav Biomed 2:254–348CrossRef Kavukcuoglu NB, Patterson-Buckendahl P, Mann A (2009) Effect of osteocalcin deficiency on the nanomechanics and chemistry of mouse bones. J Mech Behav Biomed 2:254–348CrossRef
20.
Zurück zum Zitat Penel G, Leroy G, Rey C, Bres E (1998) MicroRaman spectral study of the PO4 and CO3 vibrational modes in synthetic and biological apatites. Calcif Tissue Int 63(6):475–481PubMedCrossRef Penel G, Leroy G, Rey C, Bres E (1998) MicroRaman spectral study of the PO4 and CO3 vibrational modes in synthetic and biological apatites. Calcif Tissue Int 63(6):475–481PubMedCrossRef
21.
Zurück zum Zitat Timlin JA, Carden A, Morris MD (1999) Chemical microstructure of cortical bone probed by Raman transects. Appl Spectrosc 53(11):1429–1435CrossRef Timlin JA, Carden A, Morris MD (1999) Chemical microstructure of cortical bone probed by Raman transects. Appl Spectrosc 53(11):1429–1435CrossRef
22.
Zurück zum Zitat Penel G, Cau E, Delfosse C, Rey C, Hardouin JJ, Delecourt C, Lemaitre J, Leroy G (2003) Raman microspectrometry studies of calcified tissues and related biomaterials. Raman studies of calcium phosphate biomaterials. Dent Med Probl 40(1):37–43 Penel G, Cau E, Delfosse C, Rey C, Hardouin JJ, Delecourt C, Lemaitre J, Leroy G (2003) Raman microspectrometry studies of calcified tissues and related biomaterials. Raman studies of calcium phosphate biomaterials. Dent Med Probl 40(1):37–43
24.
Zurück zum Zitat Okagbare PI, Begun D, Tecklenburg M, Awonusi A, Goldstein SA, Morris MD (2012) Noninvasive Raman spectroscopy of rat tibiae: approach to in vivo assessment of bone quality. J Biomed Opt 17(9):1–3, 090502CrossRef Okagbare PI, Begun D, Tecklenburg M, Awonusi A, Goldstein SA, Morris MD (2012) Noninvasive Raman spectroscopy of rat tibiae: approach to in vivo assessment of bone quality. J Biomed Opt 17(9):1–3, 090502CrossRef
25.
Zurück zum Zitat Awonusi A, Morris MD, Tecklenburg MMJ (2007) Carbonate assignment and calibration in the Raman spectrum of apatite. Calcif Tissue Int 81:46–52PubMedCrossRef Awonusi A, Morris MD, Tecklenburg MMJ (2007) Carbonate assignment and calibration in the Raman spectrum of apatite. Calcif Tissue Int 81:46–52PubMedCrossRef
26.
Zurück zum Zitat Movasaghi Z, Rehman S, Rehman IU (2007) Raman spectroscopy of biological tissues. Appl Spectros Rev 42(5):493–541CrossRef Movasaghi Z, Rehman S, Rehman IU (2007) Raman spectroscopy of biological tissues. Appl Spectros Rev 42(5):493–541CrossRef
27.
Zurück zum Zitat Lin SY, Li MJ, Cheng WT (2007) FT-IR and Raman vibrational microspectroscopies used for spectral biodiagnosis of human tissues. Spectros 21:1–30CrossRef Lin SY, Li MJ, Cheng WT (2007) FT-IR and Raman vibrational microspectroscopies used for spectral biodiagnosis of human tissues. Spectros 21:1–30CrossRef
28.
Zurück zum Zitat Silveira L Jr, Silveira FL, Bodanese B, Zângaro RA, Pacheco MTT (2012) Discriminating model for diagnosis of basal cell carcinoma and melanoma in vitro based on the Raman spectra of selected biochemicals. J Biomed Opt 17(7):077003PubMedCrossRef Silveira L Jr, Silveira FL, Bodanese B, Zângaro RA, Pacheco MTT (2012) Discriminating model for diagnosis of basal cell carcinoma and melanoma in vitro based on the Raman spectra of selected biochemicals. J Biomed Opt 17(7):077003PubMedCrossRef
29.
Zurück zum Zitat Barth A, Zscherp C (2002) What vibrations tell us about proteins. Q Rev Biophys 35(4):369–430PubMedCrossRef Barth A, Zscherp C (2002) What vibrations tell us about proteins. Q Rev Biophys 35(4):369–430PubMedCrossRef
30.
Zurück zum Zitat Pinheiro ALB, Santos NRS, Oliveira PC, Aciole GTS, Ramos TA, Gonzalez TA, Silva LN, Barbosa AFS, Silveira-Junior L (2012) The efficacy of the use of IR laser phototherapy associated to biphasic ceramic graft and guided bone regeneration on surgical fractures treated with miniplates: a Raman spectral study on rabbits. Lasers Med Sci. doi:10.1007/s10103-012-1096-1 Pinheiro ALB, Santos NRS, Oliveira PC, Aciole GTS, Ramos TA, Gonzalez TA, Silva LN, Barbosa AFS, Silveira-Junior L (2012) The efficacy of the use of IR laser phototherapy associated to biphasic ceramic graft and guided bone regeneration on surgical fractures treated with miniplates: a Raman spectral study on rabbits. Lasers Med Sci. doi:10.​1007/​s10103-012-1096-1
31.
Zurück zum Zitat Carvalho FB, Aciole GTS, Aciole JMS, Silveira-Junior L, Santos JN, Pinheiro ALB (2011) Assessment of bone healing on tibial fractures treated with wire osteosynthesis associated or not with infrared laser light and biphasic ceramic bone graft (HATCP) and guided bone regeneration (GBR): Raman spectroscopic study. Proceedings – SPIE 7887:7887OT-1–7887OT-6 Carvalho FB, Aciole GTS, Aciole JMS, Silveira-Junior L, Santos JN, Pinheiro ALB (2011) Assessment of bone healing on tibial fractures treated with wire osteosynthesis associated or not with infrared laser light and biphasic ceramic bone graft (HATCP) and guided bone regeneration (GBR): Raman spectroscopic study. Proceedings – SPIE 7887:7887OT-1–7887OT-6
32.
Zurück zum Zitat Pinheiro ALB, Lopes CB, Pacheco MTT, Brugnera A, Zanin FAA, Cangussú MCT, Silveira-Junior L (2010) Raman spectroscopy validation of DIAGNOdent-assisted fluorescence readings on tibial fractures treated with laser phototherapy, BMPs, guided bone regeneration and miniplates. Photomed Laser Surg 28:89–97CrossRef Pinheiro ALB, Lopes CB, Pacheco MTT, Brugnera A, Zanin FAA, Cangussú MCT, Silveira-Junior L (2010) Raman spectroscopy validation of DIAGNOdent-assisted fluorescence readings on tibial fractures treated with laser phototherapy, BMPs, guided bone regeneration and miniplates. Photomed Laser Surg 28:89–97CrossRef
33.
Zurück zum Zitat Pinheiro ALB, Soares LGP, Aciole GTS, Correia NA, Barbosa AFS, Ramalho LMP, Santos JN (2011) Light microscopic description of the effects of Laser phototherapy on bone defects grafted with mineral trioxide aggregate, bone morphogenetic proteins, and guided bone regeneration in a rodent model. J Biomed Mater Res A 98(2):212–21PubMedCrossRef Pinheiro ALB, Soares LGP, Aciole GTS, Correia NA, Barbosa AFS, Ramalho LMP, Santos JN (2011) Light microscopic description of the effects of Laser phototherapy on bone defects grafted with mineral trioxide aggregate, bone morphogenetic proteins, and guided bone regeneration in a rodent model. J Biomed Mater Res A 98(2):212–21PubMedCrossRef
34.
Zurück zum Zitat Lopes CB, Pinheiro ALB, Sathaiah S, Martins MC (2005) Infrared laser light reduces loading time of dental implants: a Raman Spectroscopic study. Photomed Laser Surg 23:27–31PubMedCrossRef Lopes CB, Pinheiro ALB, Sathaiah S, Martins MC (2005) Infrared laser light reduces loading time of dental implants: a Raman Spectroscopic study. Photomed Laser Surg 23:27–31PubMedCrossRef
35.
Zurück zum Zitat Penel G, Delfosse C, Descamps M, Leroy G (2005) Composition of bone and apatitic biomaterials as revealed by intravital Raman microspectroscopy. Bone 36:893–901PubMedCrossRef Penel G, Delfosse C, Descamps M, Leroy G (2005) Composition of bone and apatitic biomaterials as revealed by intravital Raman microspectroscopy. Bone 36:893–901PubMedCrossRef
36.
Zurück zum Zitat Carden A, Morris MD (2000) Application of vibrational spectroscopy to the study of mineralized tissues (review). J Biomed Opt 5:259–268PubMedCrossRef Carden A, Morris MD (2000) Application of vibrational spectroscopy to the study of mineralized tissues (review). J Biomed Opt 5:259–268PubMedCrossRef
37.
Zurück zum Zitat Cameron MH, Perez D, Otano Lata S (1999) Electromagnetic radiation in physical agents. In: Cameron MH (ed) Rehabilitation, from research to practice. WB Saunders, Philadelphia, pp 303–344 Cameron MH, Perez D, Otano Lata S (1999) Electromagnetic radiation in physical agents. In: Cameron MH (ed) Rehabilitation, from research to practice. WB Saunders, Philadelphia, pp 303–344
38.
Zurück zum Zitat Karu TI (1989) Molecular mechanisms of the therapeutic effects low intensity Laser radiation. Lasers Life Sci 2:53–74 Karu TI (1989) Molecular mechanisms of the therapeutic effects low intensity Laser radiation. Lasers Life Sci 2:53–74
39.
Zurück zum Zitat Young S, Bolton P, Dyson M, Harvey W, Diamantopoulos C (1989) Macrophage responsiveness to light therapy. Lasers Surg Med 9:497–505PubMedCrossRef Young S, Bolton P, Dyson M, Harvey W, Diamantopoulos C (1989) Macrophage responsiveness to light therapy. Lasers Surg Med 9:497–505PubMedCrossRef
40.
Zurück zum Zitat Passarella S, Casamassima E, Quagliariello E, Caretto G, Jirillo E (1985) Quantitative analysis of lymphocyte–Salmonella interaction and effects of lymphocyte irradiation by He–Ne Laser. Biochem Biophys Res Commun 130:546–552PubMedCrossRef Passarella S, Casamassima E, Quagliariello E, Caretto G, Jirillo E (1985) Quantitative analysis of lymphocyte–Salmonella interaction and effects of lymphocyte irradiation by He–Ne Laser. Biochem Biophys Res Commun 130:546–552PubMedCrossRef
41.
Zurück zum Zitat Yamada K (1991) Biological effects of low power laser irradiation on clonal osteoblastic cells (MC3T3-E1). J Jpn Orthop Assoc 65:101–114 Yamada K (1991) Biological effects of low power laser irradiation on clonal osteoblastic cells (MC3T3-E1). J Jpn Orthop Assoc 65:101–114
42.
Zurück zum Zitat Tang XM, Chai BP (1986) Effect of CO2 laser irradiation on experimental fracture healing: a transmission electron microscopic study. Lasers Surg Med 6(3):346–352PubMedCrossRef Tang XM, Chai BP (1986) Effect of CO2 laser irradiation on experimental fracture healing: a transmission electron microscopic study. Lasers Surg Med 6(3):346–352PubMedCrossRef
43.
Zurück zum Zitat Motomura K (1984) Effects of various laser irradiation on callus formation after osteotomy. Nippon Reza Igakkai Shi (J Japan Soc for Laser Med) 4(1):195–196 Motomura K (1984) Effects of various laser irradiation on callus formation after osteotomy. Nippon Reza Igakkai Shi (J Japan Soc for Laser Med) 4(1):195–196
44.
Zurück zum Zitat Trelles MA, Mayayo E (1987) Bone fracture consolidate faster with low power Laser. Lasers Surg Med 7:36–45PubMedCrossRef Trelles MA, Mayayo E (1987) Bone fracture consolidate faster with low power Laser. Lasers Surg Med 7:36–45PubMedCrossRef
Metadaten
Titel
Raman study of the repair of surgical bone defects grafted with biphasic synthetic microgranular HA + β-calcium triphosphate and irradiated or not with λ780 nm laser
verfasst von
Luiz Guilherme P. Soares
Aparecida Maria C. Marques
Artur Felipe S. Barbosa
Nicole R. Santos
Jouber Mateus S. Aciole
Caroline Mathias C. Souza
Antonio Luiz B. Pinheiro
Landulfo Silveira Jr.
Publikationsdatum
01.09.2014
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 5/2014
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-013-1297-2

Weitere Artikel der Ausgabe 5/2014

Lasers in Medical Science 5/2014 Zur Ausgabe