Skip to main content
Erschienen in: Lasers in Medical Science 6/2016

17.05.2016 | Original Article

In vitro and in vivo brain-targeting chemo-photothermal therapy using graphene oxide conjugated with transferrin for Gliomas

verfasst von: Haixin Dong, Mei Jin, Zhiming Liu, Honglian Xiong, Xuejun Qiu, Wen Zhang, Zhouyi Guo

Erschienen in: Lasers in Medical Science | Ausgabe 6/2016

Einloggen, um Zugang zu erhalten

Abstract

Current therapies for treating malignant glioma exhibit low therapeutic efficiency because of strong systemic side effects and poor transport across the blood brain barrier (BBB). Herein, we combined targeted chemo-photothermal glioma therapy with a novel multifunctional drug delivery system to overcome these issues. Drug carrier transferrin-conjugated PEGylated nanoscale graphene oxide (TPG) was successfully synthesized and characterized. When loaded on the proposed TPG-based drug delivery (TPGD) system, the anticancer drug doxorubicin could pass through the BBB and improve drug accumulation both in vitro and in vivo. TPGD was found to perform dual functions in chemotherapy and photothermal therapy. Targeted TPGD combination therapy showed higher rates of glioma cell death and prolonged survival of glioma-bearing rats compared with single doxorubicin or PGD therapy. In conclusion, we developed a potential nanoscale drug delivery system for combined therapy of glioma that can effectively decrease side effects and improve therapeutic effects.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Wang B, Lv L, Wang Z, Zhao Y, Wu L, Fang X et al (2014) Nanoparticles functionalized with Pep-1 as potential glioma targeting delivery system via interleukin 13 receptor α2-mediated endocytosis. Biomaterials 35(22):5897–907CrossRefPubMed Wang B, Lv L, Wang Z, Zhao Y, Wu L, Fang X et al (2014) Nanoparticles functionalized with Pep-1 as potential glioma targeting delivery system via interleukin 13 receptor α2-mediated endocytosis. Biomaterials 35(22):5897–907CrossRefPubMed
2.
Zurück zum Zitat Brasnjevic I, Steinbusch HWM, Schmitz C, Martinez-Martinez P (2009) Delivery of peptide and protein drugs over the blood–brain barrier. Prog Neurobiol 87(4):212–51CrossRefPubMed Brasnjevic I, Steinbusch HWM, Schmitz C, Martinez-Martinez P (2009) Delivery of peptide and protein drugs over the blood–brain barrier. Prog Neurobiol 87(4):212–51CrossRefPubMed
3.
4.
Zurück zum Zitat Lee S-M, Park H, Yoo K-H (2010) Synergistic cancer therapeutic effects of locally delivered drug and heat using multifunctional nanoparticles. Adv Mater 22(36):4049–53CrossRefPubMed Lee S-M, Park H, Yoo K-H (2010) Synergistic cancer therapeutic effects of locally delivered drug and heat using multifunctional nanoparticles. Adv Mater 22(36):4049–53CrossRefPubMed
5.
Zurück zum Zitat Zhou QH, Fu A, Boado RJ, Hui EK, Lu JZ, Pardridge WM (2011) Receptor-mediated abeta amyloid antibody targeting to Alzheimer’s disease mouse brain. Mol Pharm 8(1):280–5CrossRefPubMed Zhou QH, Fu A, Boado RJ, Hui EK, Lu JZ, Pardridge WM (2011) Receptor-mediated abeta amyloid antibody targeting to Alzheimer’s disease mouse brain. Mol Pharm 8(1):280–5CrossRefPubMed
6.
Zurück zum Zitat Li Y, He H, Jia X, Lu WL, Lou J, Wei Y (2012) A dual-targeting nanocarrier based on poly(amidoamine) dendrimers conjugated with transferrin and tamoxifen for treating brain gliomas. Biomaterials 33(15):3899–908CrossRefPubMed Li Y, He H, Jia X, Lu WL, Lou J, Wei Y (2012) A dual-targeting nanocarrier based on poly(amidoamine) dendrimers conjugated with transferrin and tamoxifen for treating brain gliomas. Biomaterials 33(15):3899–908CrossRefPubMed
7.
Zurück zum Zitat Kim JY, Choi WI, Kim YH, Tae G (2013) Brain-targeted delivery of protein using chitosan- and RVG peptide-conjugated, pluronic-based nano-carrier. Biomaterials 34(4):1170–8CrossRefPubMed Kim JY, Choi WI, Kim YH, Tae G (2013) Brain-targeted delivery of protein using chitosan- and RVG peptide-conjugated, pluronic-based nano-carrier. Biomaterials 34(4):1170–8CrossRefPubMed
8.
Zurück zum Zitat Fan CS, Ting CY, Liu HL, Huang CY, Hsieh HY, Yen TC et al (2013) Antiangiogenic-targeting drug-loaded microbubbles combined with focused ultrasound for glioma treatment. Biomaterials 34(8):2142–55CrossRefPubMed Fan CS, Ting CY, Liu HL, Huang CY, Hsieh HY, Yen TC et al (2013) Antiangiogenic-targeting drug-loaded microbubbles combined with focused ultrasound for glioma treatment. Biomaterials 34(8):2142–55CrossRefPubMed
9.
Zurück zum Zitat Li J, Zhou L, Ye D, Huang S, Shao K, Huang R et al (2011) Choline-derivate-modified nanoparticles for brain-targeting gene delivery. Adv Mater 23(39):4516–7CrossRefPubMed Li J, Zhou L, Ye D, Huang S, Shao K, Huang R et al (2011) Choline-derivate-modified nanoparticles for brain-targeting gene delivery. Adv Mater 23(39):4516–7CrossRefPubMed
10.
Zurück zum Zitat Gabathuler R (2010) Approaches to transport therapeutic drugs across the blood–brain barrier to treat brain diseases. Neurobiol Dis 37(1):48–57CrossRefPubMed Gabathuler R (2010) Approaches to transport therapeutic drugs across the blood–brain barrier to treat brain diseases. Neurobiol Dis 37(1):48–57CrossRefPubMed
11.
Zurück zum Zitat Wang Y, Wang K, Zhao J, Liu X, Bu J, Yan X et al (2013) Multifunctional mesoporous silica-coated graphene nanosheet used for chemo-photothermal synergistic targeted therapy of glioma. J Am Chem Soc 135(12):4799–804CrossRefPubMed Wang Y, Wang K, Zhao J, Liu X, Bu J, Yan X et al (2013) Multifunctional mesoporous silica-coated graphene nanosheet used for chemo-photothermal synergistic targeted therapy of glioma. J Am Chem Soc 135(12):4799–804CrossRefPubMed
12.
Zurück zum Zitat Liu H, Chen D, Li L, Liu T, Tan L, Wu X et al (2011) Multifunctional gold nanoshells on silica nanorattles: a platform for the combination of photothermal therapy and chemotherapy with low systemic toxicity. Angew Chem Int Edit 50(4):891–5CrossRef Liu H, Chen D, Li L, Liu T, Tan L, Wu X et al (2011) Multifunctional gold nanoshells on silica nanorattles: a platform for the combination of photothermal therapy and chemotherapy with low systemic toxicity. Angew Chem Int Edit 50(4):891–5CrossRef
13.
Zurück zum Zitat Qin XC, Guo ZY, Liu ZM, Zhang W, Wan MM, Yang BW (2013) Folic acid-conjugated graphene oxide for cancer targeted chemo-photothermal therapy. J Photoch Photobio B 120:156–62CrossRef Qin XC, Guo ZY, Liu ZM, Zhang W, Wan MM, Yang BW (2013) Folic acid-conjugated graphene oxide for cancer targeted chemo-photothermal therapy. J Photoch Photobio B 120:156–62CrossRef
14.
Zurück zum Zitat Liu Z, Robinson JT, Sun X, Dai H (2008) PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 130(33):10876–7CrossRefPubMedPubMedCentral Liu Z, Robinson JT, Sun X, Dai H (2008) PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 130(33):10876–7CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Zhang L, Xia J, Zhao Q, Liu L, Zhang Z (2010) Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small 6(4):537–44CrossRefPubMed Zhang L, Xia J, Zhao Q, Liu L, Zhang Z (2010) Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small 6(4):537–44CrossRefPubMed
16.
Zurück zum Zitat Markovic ZM, Harhaji-Trajkovic LM, Todorovic-Markovic BM, Kepic DP, Arsikin KM, Jovanovic SP et al (2011) In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes. Biomaterials 32(4):1121–9CrossRefPubMed Markovic ZM, Harhaji-Trajkovic LM, Todorovic-Markovic BM, Kepic DP, Arsikin KM, Jovanovic SP et al (2011) In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes. Biomaterials 32(4):1121–9CrossRefPubMed
17.
Zurück zum Zitat Guo W, Li A, Jia Z, Yi Y, Dai H, Li H (2013) Transferrin modified PEG-PLA-resveratrol conjugates: in vitro and in vivo studies for glioma. Eur J Pharmacol 718(s 1–3):41–7CrossRefPubMed Guo W, Li A, Jia Z, Yi Y, Dai H, Li H (2013) Transferrin modified PEG-PLA-resveratrol conjugates: in vitro and in vivo studies for glioma. Eur J Pharmacol 718(s 1–3):41–7CrossRefPubMed
18.
Zurück zum Zitat Akhavan O, Ghaderi E (2013) Graphene nanomesh promises extremely efficient in vivo photothermal therapy. Small 9(21):3593–601CrossRefPubMed Akhavan O, Ghaderi E (2013) Graphene nanomesh promises extremely efficient in vivo photothermal therapy. Small 9(21):3593–601CrossRefPubMed
19.
Zurück zum Zitat Li M, Yang X, Ren J, Qu K, Qu X (2012) Using graphene oxide high near-infrared absorbance for photothermal treatment of Alzheimer’s disease. Adv Mater 24(13):1722–8CrossRefPubMed Li M, Yang X, Ren J, Qu K, Qu X (2012) Using graphene oxide high near-infrared absorbance for photothermal treatment of Alzheimer’s disease. Adv Mater 24(13):1722–8CrossRefPubMed
20.
Zurück zum Zitat Robinson JT, Tabakman SM, Liang Y, Wang H, Casalongue HS, Daniel V et al (2011) Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J Am Chem Soc 133(17):6825–31CrossRefPubMed Robinson JT, Tabakman SM, Liang Y, Wang H, Casalongue HS, Daniel V et al (2011) Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J Am Chem Soc 133(17):6825–31CrossRefPubMed
21.
Zurück zum Zitat Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S et al (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1(3):203–12CrossRefPubMedPubMedCentral Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S et al (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1(3):203–12CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Yang K, Zhang S, Zhang G, Sun X, Lee S-T, Liu Z (2010) Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett 10(9):3318–23CrossRefPubMed Yang K, Zhang S, Zhang G, Sun X, Lee S-T, Liu Z (2010) Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett 10(9):3318–23CrossRefPubMed
23.
Zurück zum Zitat Ying X, Wen H, Lu WL, Du J, Guo J, Tian W et al (2010) Dual-targeting daunorubicin liposomes improve the therapeutic efficacy of brain glioma in animals. J Control Release 141(2):183–92CrossRefPubMed Ying X, Wen H, Lu WL, Du J, Guo J, Tian W et al (2010) Dual-targeting daunorubicin liposomes improve the therapeutic efficacy of brain glioma in animals. J Control Release 141(2):183–92CrossRefPubMed
24.
Zurück zum Zitat Zhang W, Guo Z, Huang D, Liu Z, Guo X, Zhong H (2011) Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide. Biomaterials 32(33):8555–61CrossRefPubMed Zhang W, Guo Z, Huang D, Liu Z, Guo X, Zhong H (2011) Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide. Biomaterials 32(33):8555–61CrossRefPubMed
25.
Zurück zum Zitat Ulbrich K, Hekmatara T, Herbert E, Kreuter J (2009) Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood-brain barrier (BBB). Eur J Pharm Biopharm 71(2):251–6CrossRefPubMed Ulbrich K, Hekmatara T, Herbert E, Kreuter J (2009) Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood-brain barrier (BBB). Eur J Pharm Biopharm 71(2):251–6CrossRefPubMed
26.
Zurück zum Zitat Mishra V, Mahor S, Rawat A, Gupta PN, Dubey P, Khatri K et al (2006) Targeted brain delivery of AZT via transferrin anchored pegylated albumin nanoparticles. J Drug Target 14(1):45–53CrossRefPubMed Mishra V, Mahor S, Rawat A, Gupta PN, Dubey P, Khatri K et al (2006) Targeted brain delivery of AZT via transferrin anchored pegylated albumin nanoparticles. J Drug Target 14(1):45–53CrossRefPubMed
27.
Zurück zum Zitat Liu G, Shen H, Mao J, Zhang L, Jiang Z, Sun T et al (2013) Transferrin modified graphene oxide for glioma-targeted drug delivery: in vitro and in vivo evaluations. ACS Appl Mater Interfaces 5(15):6909–14CrossRefPubMed Liu G, Shen H, Mao J, Zhang L, Jiang Z, Sun T et al (2013) Transferrin modified graphene oxide for glioma-targeted drug delivery: in vitro and in vivo evaluations. ACS Appl Mater Interfaces 5(15):6909–14CrossRefPubMed
28.
Zurück zum Zitat Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339CrossRef Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339CrossRef
29.
Zurück zum Zitat Akhavan O, Ghaderi E, Emamy H, Akhavan F (2013) Genotoxicity of graphene nanoribbons in human mesenchymal stem cells. Carbon 54:419–31CrossRef Akhavan O, Ghaderi E, Emamy H, Akhavan F (2013) Genotoxicity of graphene nanoribbons in human mesenchymal stem cells. Carbon 54:419–31CrossRef
30.
Zurück zum Zitat Kudin KN, Ozbas B, Schniepp HC, Prud’homme RK, Aksay IA, Car R (2008) Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett 8(1):36–41CrossRefPubMed Kudin KN, Ozbas B, Schniepp HC, Prud’homme RK, Aksay IA, Car R (2008) Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett 8(1):36–41CrossRefPubMed
31.
Zurück zum Zitat Ma HS, Jiang C, Zhai D, Luo YX, Chen Y, Lv F (2016) A bifunctional biomaterial with photothermal effect for tumor therapy and bone regeneration. Adv Funct Mate 26(8):1197–208CrossRef Ma HS, Jiang C, Zhai D, Luo YX, Chen Y, Lv F (2016) A bifunctional biomaterial with photothermal effect for tumor therapy and bone regeneration. Adv Funct Mate 26(8):1197–208CrossRef
Metadaten
Titel
In vitro and in vivo brain-targeting chemo-photothermal therapy using graphene oxide conjugated with transferrin for Gliomas
verfasst von
Haixin Dong
Mei Jin
Zhiming Liu
Honglian Xiong
Xuejun Qiu
Wen Zhang
Zhouyi Guo
Publikationsdatum
17.05.2016
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 6/2016
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-016-1955-2

Weitere Artikel der Ausgabe 6/2016

Lasers in Medical Science 6/2016 Zur Ausgabe