Skip to main content
Erschienen in: Journal of Inherited Metabolic Disease 1/2015

01.01.2015 | Complex Lipids

Genetic bases and clinical manifestations of coenzyme Q10 (CoQ10) deficiency

verfasst von: Maria Andrea Desbats, Giada Lunardi, Mara Doimo, Eva Trevisson, Leonardo Salviati

Erschienen in: Journal of Inherited Metabolic Disease | Ausgabe 1/2015

Einloggen, um Zugang zu erhalten

Abstract

Coenzyme Q10 is a remarkable lipid involved in many cellular processes such as energy production through the mitochondrial respiratory chain (RC), beta-oxidation of fatty acids, and pyrimidine biosynthesis, but it is also one of the main cellular antioxidants. Its biosynthesis is still incompletely characterized and requires at least 15 genes. Mutations in eight of them (PDSS1, PDSS2, COQ2, COQ4, COQ6, ADCK3, ADCK4, and COQ9) cause primary CoQ10 deficiency, a heterogeneous group of disorders with variable age of onset (from birth to the seventh decade) and associated clinical phenotypes, ranging from a fatal multisystem disease to isolated steroid resistant nephrotic syndrome (SRNS) or isolated central nervous system disease. The pathogenesis is complex and related to the different functions of CoQ10. It involves defective ATP production and oxidative stress, but also an impairment of pyrimidine biosynthesis and increased apoptosis. CoQ10 deficiency can also be observed in patients with defects unrelated to CoQ10 biosynthesis, such as RC defects, multiple acyl-CoA dehydrogenase deficiency, and ataxia and oculomotor apraxia.
Patients with both primary and secondary deficiencies benefit from high-dose oral supplementation with CoQ10. In primary forms treatment can stop the progression of both SRNS and encephalopathy, hence the critical importance of a prompt diagnosis. Treatment may be beneficial also for secondary forms, although with less striking results.
In this review we will focus on CoQ10 biosynthesis in humans, on the genetic defects and the specific clinical phenotypes associated with CoQ10 deficiency, and on the diagnostic strategies for these conditions.
Literatur
Zurück zum Zitat Aeby A, Sznajer Y, Cave H et al (2007) Cardiofaciocutaneous (CFC) syndrome associated with muscular coenzyme Q10 deficiency. J Inherit Metab Dis 30:827PubMedCrossRef Aeby A, Sznajer Y, Cave H et al (2007) Cardiofaciocutaneous (CFC) syndrome associated with muscular coenzyme Q10 deficiency. J Inherit Metab Dis 30:827PubMedCrossRef
Zurück zum Zitat Anheim M, Fleury M, Monga B et al (2010) Epidemiological, clinical, paraclinical and molecular study of a cohort of 102 patients affected with autosomal recessive progressive cerebellar ataxia from Alsace, Eastern France: implications for clinical management. Neurogenetics 11:1–12PubMedCrossRef Anheim M, Fleury M, Monga B et al (2010) Epidemiological, clinical, paraclinical and molecular study of a cohort of 102 patients affected with autosomal recessive progressive cerebellar ataxia from Alsace, Eastern France: implications for clinical management. Neurogenetics 11:1–12PubMedCrossRef
Zurück zum Zitat Ashraf S, Gee HY, Woerner S et al (2013) ADCK4 mutations promote steroid-resistant nephrotic syndrome through CoQ10 biosynthesis disruption. J Clin Invest 123:5179–5189PubMedCentralPubMedCrossRef Ashraf S, Gee HY, Woerner S et al (2013) ADCK4 mutations promote steroid-resistant nephrotic syndrome through CoQ10 biosynthesis disruption. J Clin Invest 123:5179–5189PubMedCentralPubMedCrossRef
Zurück zum Zitat Avis HJ, Hargreaves IP, Ruiter JP et al (2011) Rosuvastatin lowers coenzyme Q10 levels, but not mitochondrial adenosine triphosphate synthesis, in children with familial hypercholesterolemia. J Pediatr 158:458–462PubMedCrossRef Avis HJ, Hargreaves IP, Ruiter JP et al (2011) Rosuvastatin lowers coenzyme Q10 levels, but not mitochondrial adenosine triphosphate synthesis, in children with familial hypercholesterolemia. J Pediatr 158:458–462PubMedCrossRef
Zurück zum Zitat Barros MH, Johnson A, Gin P, Marbois BN, Clarke CF, Tzagoloff A (2005) The Saccharomyces cerevisiae COQ10 gene encodes a START domain protein required for function of coenzyme Q in respiration. J Biol Chem 280:42627–42635PubMedCrossRef Barros MH, Johnson A, Gin P, Marbois BN, Clarke CF, Tzagoloff A (2005) The Saccharomyces cerevisiae COQ10 gene encodes a START domain protein required for function of coenzyme Q in respiration. J Biol Chem 280:42627–42635PubMedCrossRef
Zurück zum Zitat Bhagavan HN, Chopra RK (2007) Plasma coenzyme Q10 response to oral ingestion of coenzyme Q10 formulations. Mitochondrion 7S:S78–S88CrossRef Bhagavan HN, Chopra RK (2007) Plasma coenzyme Q10 response to oral ingestion of coenzyme Q10 formulations. Mitochondrion 7S:S78–S88CrossRef
Zurück zum Zitat Bianchi GP, Fiorella PL, Bargossi AM, Grossi G, Marchesini G (1994) Reduced ubiquinone plasma levels in patients with liver cirrhosis and in chronic alcoholics. Liver 3:138–140 Bianchi GP, Fiorella PL, Bargossi AM, Grossi G, Marchesini G (1994) Reduced ubiquinone plasma levels in patients with liver cirrhosis and in chronic alcoholics. Liver 3:138–140
Zurück zum Zitat Blumkin L, Leshinsky-Silver E, Zerem A, Yosovich K, Lerman-Sagie T, Lev D (2014) Heterozygous mutations in the ADCK3 gene in siblings with cerebellar atrophy and extreme phenotypic variability. JIMD 12:103–107CrossRef Blumkin L, Leshinsky-Silver E, Zerem A, Yosovich K, Lerman-Sagie T, Lev D (2014) Heterozygous mutations in the ADCK3 gene in siblings with cerebellar atrophy and extreme phenotypic variability. JIMD 12:103–107CrossRef
Zurück zum Zitat Buján N, Arias A, Montero R et al (2014) Characterization of CoQ10 biosynthesis in fibroblasts of patients with primary and secondary CoQ10 deficiency. J Inherit Metab Dis 37:53–62PubMedCrossRef Buján N, Arias A, Montero R et al (2014) Characterization of CoQ10 biosynthesis in fibroblasts of patients with primary and secondary CoQ10 deficiency. J Inherit Metab Dis 37:53–62PubMedCrossRef
Zurück zum Zitat Casarin A, Jimenez-Ortega JC, Trevisson E et al (2008) Functional characterization of human COQ4, a gene required for Coenzyme Q10 biosynthesis. Biochem Biophys Res Commun 372:35–39PubMedCrossRef Casarin A, Jimenez-Ortega JC, Trevisson E et al (2008) Functional characterization of human COQ4, a gene required for Coenzyme Q10 biosynthesis. Biochem Biophys Res Commun 372:35–39PubMedCrossRef
Zurück zum Zitat Casarin A, Giorgi G, Pertegato V et al (2012) Copper and bezafibrate cooperate to rescue cytochrome c oxidase deficiency in cells of patients with SCO2 mutations. Orphanet J Rare Dis 7:21PubMedCentralPubMedCrossRef Casarin A, Giorgi G, Pertegato V et al (2012) Copper and bezafibrate cooperate to rescue cytochrome c oxidase deficiency in cells of patients with SCO2 mutations. Orphanet J Rare Dis 7:21PubMedCentralPubMedCrossRef
Zurück zum Zitat Cordero MD, Moreno-Fernández AM, deMiguel M et al (2009) Coenzyme Q10 distribution in blood is altered in patients with fibromyalgia. Clin Biochem 42:732–735PubMedCrossRef Cordero MD, Moreno-Fernández AM, deMiguel M et al (2009) Coenzyme Q10 distribution in blood is altered in patients with fibromyalgia. Clin Biochem 42:732–735PubMedCrossRef
Zurück zum Zitat Cornelius N, Byron C, Hargreaves I et al (2013) Secondary coenzyme Q10 deficiency 0and oxidative stress in cultured fibroblasts from patients with riboflavin responsive multiple Acyl-CoA dehydrogenation deficiency. Hum Mol Genet 22:3819–3827PubMedCrossRef Cornelius N, Byron C, Hargreaves I et al (2013) Secondary coenzyme Q10 deficiency 0and oxidative stress in cultured fibroblasts from patients with riboflavin responsive multiple Acyl-CoA dehydrogenation deficiency. Hum Mol Genet 22:3819–3827PubMedCrossRef
Zurück zum Zitat Cotán D, Cordero MD, Garrido-Maraver J et al (2011) Secondary coenzyme Q10 deficiency triggers mitochondria degradation by mitophagy in MELAS fibroblasts. FASEB J 25:2669–2687PubMedCrossRef Cotán D, Cordero MD, Garrido-Maraver J et al (2011) Secondary coenzyme Q10 deficiency triggers mitochondria degradation by mitophagy in MELAS fibroblasts. FASEB J 25:2669–2687PubMedCrossRef
Zurück zum Zitat Crane FL, Navas P (1997) The diversity of coenzyme Q function. Mol Asp Med 18(Suppl):S1–S6CrossRef Crane FL, Navas P (1997) The diversity of coenzyme Q function. Mol Asp Med 18(Suppl):S1–S6CrossRef
Zurück zum Zitat Deichmann R, Lavie C, Andrews S (2010) Coenzyme q10 and statin-induced mitochondrial dysfunction. Ochsner J 10:16–21PubMedCentralPubMed Deichmann R, Lavie C, Andrews S (2010) Coenzyme q10 and statin-induced mitochondrial dysfunction. Ochsner J 10:16–21PubMedCentralPubMed
Zurück zum Zitat Dhanasekaran M, Ren J (2005) The emerging role of coenzyme Q-10 in aging, neurodegeneration, cardiovascular disease, cancer and diabetes mellitus. Curr Neurovasc Res 2:447–459PubMedCrossRef Dhanasekaran M, Ren J (2005) The emerging role of coenzyme Q-10 in aging, neurodegeneration, cardiovascular disease, cancer and diabetes mellitus. Curr Neurovasc Res 2:447–459PubMedCrossRef
Zurück zum Zitat Dinwiddie DL, Smith LD, Miller NA et al (2013) Diagnosis of mitochondrial disorders by concomitant next-generation sequencing of the exome and mitochondrial genome. Genomics 102:148–156PubMedCrossRef Dinwiddie DL, Smith LD, Miller NA et al (2013) Diagnosis of mitochondrial disorders by concomitant next-generation sequencing of the exome and mitochondrial genome. Genomics 102:148–156PubMedCrossRef
Zurück zum Zitat Diomedi-Camassei F, Di Giandomenico S, Santorelli FM et al (2007) COQ2 nephropathy: a newly described inherited mitochondriopathy with primary renal involvement. J Am Soc Nephrol 18:2773–2780PubMedCrossRef Diomedi-Camassei F, Di Giandomenico S, Santorelli FM et al (2007) COQ2 nephropathy: a newly described inherited mitochondriopathy with primary renal involvement. J Am Soc Nephrol 18:2773–2780PubMedCrossRef
Zurück zum Zitat Doimo M, Desbats MA, Cerqua C, Cassina M, Trevisson E, Salviati L (2014a) Genetics of Coenzyme Q10 deficiency. Mol Syndromol 5:156–162PubMedCentralPubMed Doimo M, Desbats MA, Cerqua C, Cassina M, Trevisson E, Salviati L (2014a) Genetics of Coenzyme Q10 deficiency. Mol Syndromol 5:156–162PubMedCentralPubMed
Zurück zum Zitat Doimo M, Trevisson E, Airik R et al (2014b) Effect of vanillic acid on COQ6 mutants identified in patients with coenzyme Q10 deficiency. Biochim Biophys Acta 1842:1–6PubMedCentralPubMedCrossRef Doimo M, Trevisson E, Airik R et al (2014b) Effect of vanillic acid on COQ6 mutants identified in patients with coenzyme Q10 deficiency. Biochim Biophys Acta 1842:1–6PubMedCentralPubMedCrossRef
Zurück zum Zitat Duncan AJ, Heales SJ, Mills K et al (2005) Determination of coenzyme Q10 status in blood mononuclear cells, skeletal muscle and plasma by HPLC with di-propoxy-coenzyme Q10 as an internal standard. Clin Chem 51:2380–2382PubMedCrossRef Duncan AJ, Heales SJ, Mills K et al (2005) Determination of coenzyme Q10 status in blood mononuclear cells, skeletal muscle and plasma by HPLC with di-propoxy-coenzyme Q10 as an internal standard. Clin Chem 51:2380–2382PubMedCrossRef
Zurück zum Zitat Duncan AJ, Bitner-Glindzicz M, Meunier B et al (2009) A nonsense mutation in COQ9 causes autosomal-recessive neonatal-onset primary coenzyme Q10 deficiency: a potentially treatable form of mitochondrial disease. Am J Hum Genet 84:558–566PubMedCentralPubMedCrossRef Duncan AJ, Bitner-Glindzicz M, Meunier B et al (2009) A nonsense mutation in COQ9 causes autosomal-recessive neonatal-onset primary coenzyme Q10 deficiency: a potentially treatable form of mitochondrial disease. Am J Hum Genet 84:558–566PubMedCentralPubMedCrossRef
Zurück zum Zitat Echtay KS, Winkler E, Klingenberg M (2000) Coenzyme Q is an obligatory cofactor for uncoupling protein function. Nature 408:609–613PubMedCrossRef Echtay KS, Winkler E, Klingenberg M (2000) Coenzyme Q is an obligatory cofactor for uncoupling protein function. Nature 408:609–613PubMedCrossRef
Zurück zum Zitat Emmanuele V, López LC, Berardo A et al (2012) Heterogeneity of coenzyme Q10 deficiency: patient study and literature review. Arch Neurol 69:978–983PubMedCentralPubMedCrossRef Emmanuele V, López LC, Berardo A et al (2012) Heterogeneity of coenzyme Q10 deficiency: patient study and literature review. Arch Neurol 69:978–983PubMedCentralPubMedCrossRef
Zurück zum Zitat Ernster L, Dallner G (1995) Biochemical, physiological and medical aspects of ubiquinone function. Biochim Biophys Acta 1271:195–204PubMedCrossRef Ernster L, Dallner G (1995) Biochemical, physiological and medical aspects of ubiquinone function. Biochim Biophys Acta 1271:195–204PubMedCrossRef
Zurück zum Zitat Falk MJ, Polyak E, Zhang Z et al (2011) Probucol ameliorates renal and metabolic sequelae of primary CoQ deficiency in Pdss2 mutant mice. EMBO Mol Med 3:410–427PubMedCentralPubMedCrossRef Falk MJ, Polyak E, Zhang Z et al (2011) Probucol ameliorates renal and metabolic sequelae of primary CoQ deficiency in Pdss2 mutant mice. EMBO Mol Med 3:410–427PubMedCentralPubMedCrossRef
Zurück zum Zitat Fernández-Ayala DJ, Guerra I, Jiménez-Gancedo S et al (2013) Survival transcriptome in the coenzyme Q10 deficiency syndrome is acquired by epigenetic modifications: a modelling study for human coenzyme Q10 deficiencies. BMJ Open 3(3) doi:10.1136/bmjopen-2012-002524 Fernández-Ayala DJ, Guerra I, Jiménez-Gancedo S et al (2013) Survival transcriptome in the coenzyme Q10 deficiency syndrome is acquired by epigenetic modifications: a modelling study for human coenzyme Q10 deficiencies. BMJ Open 3(3) doi:10.​1136/​bmjopen-2012-002524
Zurück zum Zitat Fontaine E, Ichas F, Bernardi P (1998) A ubiquinone-binding site regulates the mitochondrial permeability transition pore. J Biol Chem 273:25734–25740PubMedCrossRef Fontaine E, Ichas F, Bernardi P (1998) A ubiquinone-binding site regulates the mitochondrial permeability transition pore. J Biol Chem 273:25734–25740PubMedCrossRef
Zurück zum Zitat Forsgren M, Attersand A, Lake S et al (2004) Isolation and functional expression of human COQ2, a gene encoding a polyprenyl transferase involved in the synthesis of CoQ. Biochem J 382:519–526PubMedCentralPubMedCrossRef Forsgren M, Attersand A, Lake S et al (2004) Isolation and functional expression of human COQ2, a gene encoding a polyprenyl transferase involved in the synthesis of CoQ. Biochem J 382:519–526PubMedCentralPubMedCrossRef
Zurück zum Zitat Franke AA, Morrison CM, Bakke JL, Custer LJ, Li X, Cooney RV (2010) Coenzyme Q10 in human blood: native levels and determinants of oxidation during processing and storage. Free Radic Biol Med 48:1610–1617PubMedCentralPubMedCrossRef Franke AA, Morrison CM, Bakke JL, Custer LJ, Li X, Cooney RV (2010) Coenzyme Q10 in human blood: native levels and determinants of oxidation during processing and storage. Free Radic Biol Med 48:1610–1617PubMedCentralPubMedCrossRef
Zurück zum Zitat García-Corzo L, Luna-Sánchez M, Doerrier C et al (2013) Dysfunctional Coq9 protein causes predominant encephalomyopathy associated with CoQ deficiency. Hum Mol Genet 22:1233–1248PubMedCrossRef García-Corzo L, Luna-Sánchez M, Doerrier C et al (2013) Dysfunctional Coq9 protein causes predominant encephalomyopathy associated with CoQ deficiency. Hum Mol Genet 22:1233–1248PubMedCrossRef
Zurück zum Zitat García-Corzo L, Luna-Sánchez M, Doerrier C et al (2014) Ubiquinol-10 ameliorates mitochondrial encephalopathy associated with CoQ deficiency. Biochim Biophys Acta 1842:893–901PubMedCrossRef García-Corzo L, Luna-Sánchez M, Doerrier C et al (2014) Ubiquinol-10 ameliorates mitochondrial encephalopathy associated with CoQ deficiency. Biochim Biophys Acta 1842:893–901PubMedCrossRef
Zurück zum Zitat Gasser DL, Winkler CA, Peng M et al (2013) Focal segmental glomerulosclerosis is associated with a PDSS2 haplotype and, independently, with a decreased content of coenzyme Q10. Am J Physiol Renal Physiol 305:F1228–F1238PubMedCentralPubMedCrossRef Gasser DL, Winkler CA, Peng M et al (2013) Focal segmental glomerulosclerosis is associated with a PDSS2 haplotype and, independently, with a decreased content of coenzyme Q10. Am J Physiol Renal Physiol 305:F1228–F1238PubMedCentralPubMedCrossRef
Zurück zum Zitat Gempel K, Topaloglu H, Talim B et al (2007) The myopathic form of coenzyme Q10 deficiency is caused by mutations in the electron-transferring-flavoprotein dehydrogenase (ETFDH) gene. Brain 130:2037–2044PubMedCrossRef Gempel K, Topaloglu H, Talim B et al (2007) The myopathic form of coenzyme Q10 deficiency is caused by mutations in the electron-transferring-flavoprotein dehydrogenase (ETFDH) gene. Brain 130:2037–2044PubMedCrossRef
Zurück zum Zitat Gerards M, van den Bosch B, Calis C et al (2010) Nonsense mutations in CABC1/ADCK3 cause progressive cerebellar ataxia and atrophy. Mitochondrion 10:510–515PubMedCrossRef Gerards M, van den Bosch B, Calis C et al (2010) Nonsense mutations in CABC1/ADCK3 cause progressive cerebellar ataxia and atrophy. Mitochondrion 10:510–515PubMedCrossRef
Zurück zum Zitat Haas D, Niklowitz P, Horster F et al (2009) Coenzyme Q(10) is decreased in fibroblasts of patients with methylmalonic aciduria but not in mevalonic aciduria. J Inherit Metab Dis 32:570–575PubMedCrossRef Haas D, Niklowitz P, Horster F et al (2009) Coenzyme Q(10) is decreased in fibroblasts of patients with methylmalonic aciduria but not in mevalonic aciduria. J Inherit Metab Dis 32:570–575PubMedCrossRef
Zurück zum Zitat Hargreaves IP (2007) Coenzyme Q10 in phenylketonuria and mevalonic aciduria. Mitochondrion 7:S175–S180PubMedCrossRef Hargreaves IP (2007) Coenzyme Q10 in phenylketonuria and mevalonic aciduria. Mitochondrion 7:S175–S180PubMedCrossRef
Zurück zum Zitat Heeringa SF, Chernin G, Chaki M et al (2011) COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness. J Clin Invest 121:2013–2024PubMedCentralPubMedCrossRef Heeringa SF, Chernin G, Chaki M et al (2011) COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness. J Clin Invest 121:2013–2024PubMedCentralPubMedCrossRef
Zurück zum Zitat Horvath R, Czermin B, Gulati S et al (2012) Adult-onset cerebellar ataxia due to mutations in CABC1/ADCK3. J Neurol Neurosurg Psychiatry 83:174–178PubMedCrossRef Horvath R, Czermin B, Gulati S et al (2012) Adult-onset cerebellar ataxia due to mutations in CABC1/ADCK3. J Neurol Neurosurg Psychiatry 83:174–178PubMedCrossRef
Zurück zum Zitat Jakobs BS, van den Heuvel LP, Smeets RJ et al (2013) A novel mutation in COQ2 leading to fatal infantile multisystem disease. J Neurol Sci 326:24–28PubMedCrossRef Jakobs BS, van den Heuvel LP, Smeets RJ et al (2013) A novel mutation in COQ2 leading to fatal infantile multisystem disease. J Neurol Sci 326:24–28PubMedCrossRef
Zurück zum Zitat Jeon BS, Farrer MJ, Bortnick SF; Korean Canadian Alliance on Parkinson’s Disease and Related Disorders (2014) Mutant COQ2 in multiple-system atrophy. N Engl J Med 371:80PubMedCrossRef Jeon BS, Farrer MJ, Bortnick SF; Korean Canadian Alliance on Parkinson’s Disease and Related Disorders (2014) Mutant COQ2 in multiple-system atrophy. N Engl J Med 371:80PubMedCrossRef
Zurück zum Zitat Lagier-Tourenne C, Tazir M, López LC et al (2008) ADCK3, an ancestral kinase, is mutated in a form of recessive ataxia associated with coenzyme Q10 deficiency. Am J Hum Genet 82:661–672PubMedCentralPubMedCrossRef Lagier-Tourenne C, Tazir M, López LC et al (2008) ADCK3, an ancestral kinase, is mutated in a form of recessive ataxia associated with coenzyme Q10 deficiency. Am J Hum Genet 82:661–672PubMedCentralPubMedCrossRef
Zurück zum Zitat Littarru GP, Tiano L (2010) Clinical aspects of coenzyme Q10: an update. Nutrition 26:250–254PubMedCrossRef Littarru GP, Tiano L (2010) Clinical aspects of coenzyme Q10: an update. Nutrition 26:250–254PubMedCrossRef
Zurück zum Zitat Liu YT, Hersheson J, Plagnol V et al (2014) Autosomal-recessive cerebellar ataxia caused by a novel ADCK3 mutation that elongates the protein: clinical, genetic and biochemical characterisation. J Neurol Neurosurg Psychiatry 85:493–498PubMedCentralPubMedCrossRef Liu YT, Hersheson J, Plagnol V et al (2014) Autosomal-recessive cerebellar ataxia caused by a novel ADCK3 mutation that elongates the protein: clinical, genetic and biochemical characterisation. J Neurol Neurosurg Psychiatry 85:493–498PubMedCentralPubMedCrossRef
Zurück zum Zitat López LC, Quinzii CM, Area E et al (2010) Treatment of CoQ(10) deficient fibroblasts with ubiquinone, CoQ analogs, and vitamin C: time- and compound-dependent effects. PLoS One 5(7) López LC, Quinzii CM, Area E et al (2010) Treatment of CoQ(10) deficient fibroblasts with ubiquinone, CoQ analogs, and vitamin C: time- and compound-dependent effects. PLoS One 5(7)
Zurück zum Zitat López-Martín JM, Salviati L, Trevisson E et al (2007) Missense mutation of the COQ2 gene causes defects of bioenergetics and de novo pyrimidine synthesis. Hum Mol Genet 16:1091–1097PubMedCrossRef López-Martín JM, Salviati L, Trevisson E et al (2007) Missense mutation of the COQ2 gene causes defects of bioenergetics and de novo pyrimidine synthesis. Hum Mol Genet 16:1091–1097PubMedCrossRef
Zurück zum Zitat Lu S, Lu LY, Liu MF et al (2012) Cerebellar defects in Pdss2 conditional knockout mice during embryonic development and in adulthood. Neurobiol Dis 45:219–233PubMedCrossRef Lu S, Lu LY, Liu MF et al (2012) Cerebellar defects in Pdss2 conditional knockout mice during embryonic development and in adulthood. Neurobiol Dis 45:219–233PubMedCrossRef
Zurück zum Zitat Marbois B, Gin P, Faull KF et al (2005) Coq3 and Coq4 define a polypeptide complex in yeast mitochondria for the biosynthesis of coenzyme Q. J Biol Chem 280:20231–20238PubMedCrossRef Marbois B, Gin P, Faull KF et al (2005) Coq3 and Coq4 define a polypeptide complex in yeast mitochondria for the biosynthesis of coenzyme Q. J Biol Chem 280:20231–20238PubMedCrossRef
Zurück zum Zitat Marbois B, Gin P, Gulmezian M, Clarke CF (2009) The yeast Coq4 polypeptide organizes a mitochondrial protein complex essential for coenzyme Q biosynthesis. Biochim Biophys Acta 1791:69–75PubMedCentralPubMedCrossRef Marbois B, Gin P, Gulmezian M, Clarke CF (2009) The yeast Coq4 polypeptide organizes a mitochondrial protein complex essential for coenzyme Q biosynthesis. Biochim Biophys Acta 1791:69–75PubMedCentralPubMedCrossRef
Zurück zum Zitat Marbois B, Xie LX, Choi S, Hirano K, Hyman K, Clarke CF (2010) para-Aminobenzoic acid is a precursor in coenzyme Q6 biosynthesis in Saccharomyces cerevisiae. J Biol Chem 285:27827–27838PubMedCentralPubMedCrossRef Marbois B, Xie LX, Choi S, Hirano K, Hyman K, Clarke CF (2010) para-Aminobenzoic acid is a precursor in coenzyme Q6 biosynthesis in Saccharomyces cerevisiae. J Biol Chem 285:27827–27838PubMedCentralPubMedCrossRef
Zurück zum Zitat McCarthy HJ, Bierzynska A, Wherlock M et al (2013) Simultaneous sequencing of 24 genes associated with steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol 8:637–648PubMedCentralPubMedCrossRef McCarthy HJ, Bierzynska A, Wherlock M et al (2013) Simultaneous sequencing of 24 genes associated with steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol 8:637–648PubMedCentralPubMedCrossRef
Zurück zum Zitat Miles MV, Patterson BJ, Schapiro MB et al (2006) Coenzyme Q10 absorption and tolerance in children with Down syndrome: a dose-ranging trial. Pediatr Neurol 35:30–37PubMedCrossRef Miles MV, Patterson BJ, Schapiro MB et al (2006) Coenzyme Q10 absorption and tolerance in children with Down syndrome: a dose-ranging trial. Pediatr Neurol 35:30–37PubMedCrossRef
Zurück zum Zitat Mollet J, Giurgea I, Schlemmer D et al (2007) Prenyldiphosphate synthase, subunit 1 (PDSS1) and OH-benzoate polyprenyltransferase (COQ2) mutations in ubiquinone deficiency and oxidative phosphorylation disorders. J Clin Invest 117:765–772PubMedCentralPubMedCrossRef Mollet J, Giurgea I, Schlemmer D et al (2007) Prenyldiphosphate synthase, subunit 1 (PDSS1) and OH-benzoate polyprenyltransferase (COQ2) mutations in ubiquinone deficiency and oxidative phosphorylation disorders. J Clin Invest 117:765–772PubMedCentralPubMedCrossRef
Zurück zum Zitat Mollet J, Delahodde A, Serre V et al (2008) CABC1 gene mutations cause ubiquinone deficiency with cerebellar ataxia and seizures. Am J Hum Genet 82:623–630PubMedCentralPubMedCrossRef Mollet J, Delahodde A, Serre V et al (2008) CABC1 gene mutations cause ubiquinone deficiency with cerebellar ataxia and seizures. Am J Hum Genet 82:623–630PubMedCentralPubMedCrossRef
Zurück zum Zitat Montero R, Sánchez-Alcázar JA, Briones P et al (2008) Analysis of coenzyme Q10 in muscle and fibroblasts for the diagnosis of CoQ10 deficiency syndromes. Clin Biochem 41:697–700PubMedCrossRef Montero R, Sánchez-Alcázar JA, Briones P et al (2008) Analysis of coenzyme Q10 in muscle and fibroblasts for the diagnosis of CoQ10 deficiency syndromes. Clin Biochem 41:697–700PubMedCrossRef
Zurück zum Zitat Montero R, Grazina M, Lopez-Gallardo E et al (2013) Coenzyme Q(1)(0) deficiency in mitochondrial DNA depletion syndromes. Mitochondrion 13:337–341PubMedCrossRef Montero R, Grazina M, Lopez-Gallardo E et al (2013) Coenzyme Q(1)(0) deficiency in mitochondrial DNA depletion syndromes. Mitochondrion 13:337–341PubMedCrossRef
Zurück zum Zitat Montini G, Malaventura C, Salviati L (2008) Early coenzyme Q10 supplementation in primary coenzyme Q10 deficiency. N Engl J Med 358:2849–2850PubMedCrossRef Montini G, Malaventura C, Salviati L (2008) Early coenzyme Q10 supplementation in primary coenzyme Q10 deficiency. N Engl J Med 358:2849–2850PubMedCrossRef
Zurück zum Zitat Multiple-System Atrophy Research Collaboration (2013) Mutations in COQ2 in familial and sporadic multiple-system atrophy. N Engl J Med 369:233–244CrossRef Multiple-System Atrophy Research Collaboration (2013) Mutations in COQ2 in familial and sporadic multiple-system atrophy. N Engl J Med 369:233–244CrossRef
Zurück zum Zitat Ogasahara S, Engel AG, Frens D, Mack D (1989) Muscle coenzyme Q deficiency in familial mitochondrial encephalomyopathy. Proc Natl Acad Sci U S A 86:2379–2382PubMedCentralPubMedCrossRef Ogasahara S, Engel AG, Frens D, Mack D (1989) Muscle coenzyme Q deficiency in familial mitochondrial encephalomyopathy. Proc Natl Acad Sci U S A 86:2379–2382PubMedCentralPubMedCrossRef
Zurück zum Zitat Peng M, Falk MJ, Haase VH et al (2008) Primary coenzyme Q deficiency in Pdss2 mutant mice causes isolated renal disease. PLoS Genet 4(4) Peng M, Falk MJ, Haase VH et al (2008) Primary coenzyme Q deficiency in Pdss2 mutant mice causes isolated renal disease. PLoS Genet 4(4)
Zurück zum Zitat Pierrel F, Hamelin O, Douki T et al (2010) Involvement of mitochondrial ferredoxin and para-aminobenzoic acid in yeast coenzyme Q biosynthesis. Chem Biol 17:449–459PubMedCrossRef Pierrel F, Hamelin O, Douki T et al (2010) Involvement of mitochondrial ferredoxin and para-aminobenzoic acid in yeast coenzyme Q biosynthesis. Chem Biol 17:449–459PubMedCrossRef
Zurück zum Zitat Quinzii CM, Kattah AG, Naini A et al (2005) Coenzyme Q deficiency and cerebellar ataxia associated with an aprataxin mutation. Neurology 64:539–541PubMedCrossRef Quinzii CM, Kattah AG, Naini A et al (2005) Coenzyme Q deficiency and cerebellar ataxia associated with an aprataxin mutation. Neurology 64:539–541PubMedCrossRef
Zurück zum Zitat Quinzii CM, Naini A, Salviati L et al (2006) A mutation in para-hydroxybenzoate-polyprenyl transferase (COQ2) causes primary coenzyme Q10 deficiency. Am J Hum Genet 78:345–349PubMedCentralPubMedCrossRef Quinzii CM, Naini A, Salviati L et al (2006) A mutation in para-hydroxybenzoate-polyprenyl transferase (COQ2) causes primary coenzyme Q10 deficiency. Am J Hum Genet 78:345–349PubMedCentralPubMedCrossRef
Zurück zum Zitat Quinzii CM, López LC, Gilkerson RW et al (2010) Reactive oxygen species, oxidative stress, and cell death correlate with level of CoQ10 deficiency. FASEB J 24:3733–3743PubMedCentralPubMedCrossRef Quinzii CM, López LC, Gilkerson RW et al (2010) Reactive oxygen species, oxidative stress, and cell death correlate with level of CoQ10 deficiency. FASEB J 24:3733–3743PubMedCentralPubMedCrossRef
Zurück zum Zitat Quinzii CM, Garone C, Emmanuele V et al (2013) Tissue-specific oxidative stress and loss of mitochondria in CoQ-deficient Pdss2 mutant mice. FASEB J 27:612–621PubMedCentralPubMedCrossRef Quinzii CM, Garone C, Emmanuele V et al (2013) Tissue-specific oxidative stress and loss of mitochondria in CoQ-deficient Pdss2 mutant mice. FASEB J 27:612–621PubMedCentralPubMedCrossRef
Zurück zum Zitat Quinzii CM, Hirano M, DiMauro S (2014) Mutant COQ2 in multiple-system atrophy. N Engl J Med 371:81–82PubMed Quinzii CM, Hirano M, DiMauro S (2014) Mutant COQ2 in multiple-system atrophy. N Engl J Med 371:81–82PubMed
Zurück zum Zitat Rahman S, Hargreaves I, Clayton P, Heales S (2001) Neonatal presentation of coenzyme Q10 deficiency. J Pediatr 139:456–468PubMedCrossRef Rahman S, Hargreaves I, Clayton P, Heales S (2001) Neonatal presentation of coenzyme Q10 deficiency. J Pediatr 139:456–468PubMedCrossRef
Zurück zum Zitat Rahman S, Clarke CF, Hirano M (2011) 176th ENMC International Workshop: diagnosis and treatment of coenzyme Q10 deficiency. Neuromuscul Disord 22:76–86PubMedCentralPubMedCrossRef Rahman S, Clarke CF, Hirano M (2011) 176th ENMC International Workshop: diagnosis and treatment of coenzyme Q10 deficiency. Neuromuscul Disord 22:76–86PubMedCentralPubMedCrossRef
Zurück zum Zitat Rodríguez-Hernández A, Cordero MD, Salviati L et al (2009) Coenzyme Q deficiency triggers mitochondria degradation by mitophagy. Autophagy 5:19–32PubMedCrossRef Rodríguez-Hernández A, Cordero MD, Salviati L et al (2009) Coenzyme Q deficiency triggers mitochondria degradation by mitophagy. Autophagy 5:19–32PubMedCrossRef
Zurück zum Zitat Rotig A, Appelkvist EL, Geromel V et al (2000) Quinone-responsive multiple respiratory-chain dysfunction due to widespread coenzyme Q10 deficiency. Lancet 356:391–395PubMedCrossRef Rotig A, Appelkvist EL, Geromel V et al (2000) Quinone-responsive multiple respiratory-chain dysfunction due to widespread coenzyme Q10 deficiency. Lancet 356:391–395PubMedCrossRef
Zurück zum Zitat Sacconi S, Trevisson E, Salviati L et al (2010) Coenzyme Q10 is frequently reduced in muscle of patients with mitochondrial myopathy. Neuromuscul Disord 20:44–48PubMedCrossRef Sacconi S, Trevisson E, Salviati L et al (2010) Coenzyme Q10 is frequently reduced in muscle of patients with mitochondrial myopathy. Neuromuscul Disord 20:44–48PubMedCrossRef
Zurück zum Zitat Saiki R, Lunceford AL, Shi Y et al (2008) Coenzyme Q10 supplementation rescues renal disease in Pdss2kd/kd mice with mutations in prenyl diphosphate synthase subunit 2. Am J Physiol Renal Physiol 295:F1535–F1544PubMedCentralPubMedCrossRef Saiki R, Lunceford AL, Shi Y et al (2008) Coenzyme Q10 supplementation rescues renal disease in Pdss2kd/kd mice with mutations in prenyl diphosphate synthase subunit 2. Am J Physiol Renal Physiol 295:F1535–F1544PubMedCentralPubMedCrossRef
Zurück zum Zitat Salviati L, Sacconi S, Murer L et al (2005) Infantile encephalomyopathy and nephropathy with CoQ10 deficiency: a CoQ10-responsive condition. Neurology 65:606–608PubMedCrossRef Salviati L, Sacconi S, Murer L et al (2005) Infantile encephalomyopathy and nephropathy with CoQ10 deficiency: a CoQ10-responsive condition. Neurology 65:606–608PubMedCrossRef
Zurück zum Zitat Scalais E, Chafai R, Van Coster R et al (2013) Early myoclonic epilepsy, hypertrophic cardiomyopathy and subsequently a nephrotic syndrome in a patient with CoQ10 deficiency caused by mutations in para-hydroxybenzoate-polyprenyl transferase (COQ2). Eur J Paediatr Neurol 17:625–630PubMedCrossRef Scalais E, Chafai R, Van Coster R et al (2013) Early myoclonic epilepsy, hypertrophic cardiomyopathy and subsequently a nephrotic syndrome in a patient with CoQ10 deficiency caused by mutations in para-hydroxybenzoate-polyprenyl transferase (COQ2). Eur J Paediatr Neurol 17:625–630PubMedCrossRef
Zurück zum Zitat Schottlaender LV, Houlden H, Multiple-System Atrophy (MSA) Brain Bank Collaboration (2014) Mutant COQ2 in multiple-system atrophy. N Engl J Med 371:81PubMed Schottlaender LV, Houlden H, Multiple-System Atrophy (MSA) Brain Bank Collaboration (2014) Mutant COQ2 in multiple-system atrophy. N Engl J Med 371:81PubMed
Zurück zum Zitat Sharma M, Wenning G, Krüger R, European Multiple-System Atrophy Study Group (EMSA-SG) (2014) Mutant COQ2 in multiple-system atrophy. N Engl J Med 2014(371):80–81 Sharma M, Wenning G, Krüger R, European Multiple-System Atrophy Study Group (EMSA-SG) (2014) Mutant COQ2 in multiple-system atrophy. N Engl J Med 2014(371):80–81
Zurück zum Zitat Terracciano A, Renaldo F, Zanni G et al (2012) The use of muscle biopsy in the diagnosis of undefined ataxia with cerebellar atrophy in children. Eur J Paediatr Neurol 16:248–256PubMedCrossRef Terracciano A, Renaldo F, Zanni G et al (2012) The use of muscle biopsy in the diagnosis of undefined ataxia with cerebellar atrophy in children. Eur J Paediatr Neurol 16:248–256PubMedCrossRef
Zurück zum Zitat Trevisson E, DiMauro S, Navas P, Salviati L (2011) Coenzyme Q deficiency in muscle. Curr Opin Neurol 24:449–456PubMedCrossRef Trevisson E, DiMauro S, Navas P, Salviati L (2011) Coenzyme Q deficiency in muscle. Curr Opin Neurol 24:449–456PubMedCrossRef
Zurück zum Zitat Turunen M, Swiezewska E, Chojnacki T, Sindelar P, Dallner G (2002) Regulatory aspects of coenzyme Q metabolism. Free Rad Res 36:437–443CrossRef Turunen M, Swiezewska E, Chojnacki T, Sindelar P, Dallner G (2002) Regulatory aspects of coenzyme Q metabolism. Free Rad Res 36:437–443CrossRef
Zurück zum Zitat Turunen M, Olsson J, Dallner G (2004) Metabolism and function of coenzyme Q. Biochim Biophys Acta Biomembr 1660:171–199CrossRef Turunen M, Olsson J, Dallner G (2004) Metabolism and function of coenzyme Q. Biochim Biophys Acta Biomembr 1660:171–199CrossRef
Zurück zum Zitat Wenz T, Diaz F, Spiegelman BM, Moraes CT (2008) Activation of the PPAR/PGC-1alpha pathway prevents a bioenergetic deficit and effectively improves amitochondrial myopathy phenotype. Cell Metab 8:249–256PubMedCentralPubMedCrossRef Wenz T, Diaz F, Spiegelman BM, Moraes CT (2008) Activation of the PPAR/PGC-1alpha pathway prevents a bioenergetic deficit and effectively improves amitochondrial myopathy phenotype. Cell Metab 8:249–256PubMedCentralPubMedCrossRef
Zurück zum Zitat Xie LX, Hsieh EJ, Watanabe S et al (2011) Expression of the human atypical kinase ADCK3 rescues coenzyme Q biosynthesis and phosphorylation of Coq polypeptides in yeast coq8 mutants. Biochim Biophys Acta 1811:348–360PubMedCentralPubMedCrossRef Xie LX, Hsieh EJ, Watanabe S et al (2011) Expression of the human atypical kinase ADCK3 rescues coenzyme Q biosynthesis and phosphorylation of Coq polypeptides in yeast coq8 mutants. Biochim Biophys Acta 1811:348–360PubMedCentralPubMedCrossRef
Zurück zum Zitat Xie LX, Ozeir M, Tang JY et al (2012) Overexpression of the Coq8 kinase in Saccharomyces cerevisiae coq null mutants allows for accumulation of diagnostic intermediates of the coenzyme Q6 biosynthetic pathway. J Biol Chem 287:23571–23581PubMedCentralPubMedCrossRef Xie LX, Ozeir M, Tang JY et al (2012) Overexpression of the Coq8 kinase in Saccharomyces cerevisiae coq null mutants allows for accumulation of diagnostic intermediates of the coenzyme Q6 biosynthetic pathway. J Biol Chem 287:23571–23581PubMedCentralPubMedCrossRef
Metadaten
Titel
Genetic bases and clinical manifestations of coenzyme Q10 (CoQ10) deficiency
verfasst von
Maria Andrea Desbats
Giada Lunardi
Mara Doimo
Eva Trevisson
Leonardo Salviati
Publikationsdatum
01.01.2015
Verlag
Springer Netherlands
Erschienen in
Journal of Inherited Metabolic Disease / Ausgabe 1/2015
Print ISSN: 0141-8955
Elektronische ISSN: 1573-2665
DOI
https://doi.org/10.1007/s10545-014-9749-9

Weitere Artikel der Ausgabe 1/2015

Journal of Inherited Metabolic Disease 1/2015 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.