Skip to main content
Erschienen in: Heart Failure Reviews 1/2014

01.01.2014

Metabolic dysfunction in diabetic cardiomyopathy

verfasst von: Michael Isfort, Sarah C. W. Stevens, Stephen Schaffer, Chian Ju Jong, Loren E. Wold

Erschienen in: Heart Failure Reviews | Ausgabe 1/2014

Einloggen, um Zugang zu erhalten

Abstract

Diabetic cardiomyopathy (DCM) is defined as cardiac disease independent of vascular complications during diabetes. The number of new cases of DCM is rising at epidemic rates in proportion to newly diagnosed cases of diabetes mellitus (DM) throughout the world. DCM is a heart failure syndrome found in diabetic patients that is characterized by left ventricular hypertrophy and reduced diastolic function, with or without concurrent systolic dysfunction, occurring in the absence of hypertension and coronary artery disease. DCM and other diabetic complications are caused in part by elevations in blood glucose and lipids, characteristic of DM. Although there are pathological consequences to hyperglycemia and hyperlipidemia, the combination of the two metabolic abnormalities potentiates the severity of diabetic complications. A natural competition exists between glucose and fatty acid metabolism in the heart that is regulated by allosteric and feedback control and transcriptional modulation of key limiting enzymes. Inhibition of these glycolytic enzymes not only controls flux of substrate through the glycolytic pathway, but also leads to the diversion of glycolytic intermediate substrate through pathological pathways, which mediate the onset of diabetic complications. The present review describes the limiting steps involved in the development of these pathological pathways and the factors involved in the regulation of these limiting steps. Additionally, therapeutic options with demonstrated or postulated effects on DCM are described.
Literatur
1.
Zurück zum Zitat Roger VL, Go AS, Lloyd-Jones DM et al (2012) Heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation 125:e2–e220PubMed Roger VL, Go AS, Lloyd-Jones DM et al (2012) Heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation 125:e2–e220PubMed
2.
Zurück zum Zitat Anand SS, Yusuf S (2011) Stemming the global tsunami of cardiovascular disease. Lancet 377:529–532PubMed Anand SS, Yusuf S (2011) Stemming the global tsunami of cardiovascular disease. Lancet 377:529–532PubMed
3.
Zurück zum Zitat Yach D, Stuckler D, Brownell KD (2006) Epidemiologic and economic consequences of the global epidemics of obesity and diabetes. Nat Med 12:62–66PubMed Yach D, Stuckler D, Brownell KD (2006) Epidemiologic and economic consequences of the global epidemics of obesity and diabetes. Nat Med 12:62–66PubMed
4.
Zurück zum Zitat Shao CH, Rozanski GJ, Patel KP et al (2007) Dyssynchronous (non-uniform) Ca2+ release in myocytes from streptozotocin-induced diabetic rats. J Mol Cell Cardiol 42:234–246PubMed Shao CH, Rozanski GJ, Patel KP et al (2007) Dyssynchronous (non-uniform) Ca2+ release in myocytes from streptozotocin-induced diabetic rats. J Mol Cell Cardiol 42:234–246PubMed
5.
Zurück zum Zitat Pereira L, Matthes J, Schuster I et al (2006) Mechanisms of [Ca2+]i transient decrease in cardiomyopathy of db/db type 2 diabetic mice. Diabetes 55:608–615PubMed Pereira L, Matthes J, Schuster I et al (2006) Mechanisms of [Ca2+]i transient decrease in cardiomyopathy of db/db type 2 diabetic mice. Diabetes 55:608–615PubMed
6.
Zurück zum Zitat Schafer SA, Machicao F, Fritsche A et al (2011) New type 2 diabetes risk genes provide new insights in insulin secretion mechanisms. Diabetes Res Clin Pract 93(Suppl 1):S9–S24PubMed Schafer SA, Machicao F, Fritsche A et al (2011) New type 2 diabetes risk genes provide new insights in insulin secretion mechanisms. Diabetes Res Clin Pract 93(Suppl 1):S9–S24PubMed
7.
Zurück zum Zitat An D, Rodrigues B (2006) Role of changes in cardiac metabolism in development of diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol 291:H1489–H1506PubMed An D, Rodrigues B (2006) Role of changes in cardiac metabolism in development of diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol 291:H1489–H1506PubMed
8.
Zurück zum Zitat Boudina S, Abel ED (2007) Diabetic cardiomyopathy revisited. Circulation 115:3213–3223PubMed Boudina S, Abel ED (2007) Diabetic cardiomyopathy revisited. Circulation 115:3213–3223PubMed
9.
Zurück zum Zitat Barlovic DP, Soro-Paavonen A, Jandeleit-Dahm KA (2011) RAGE biology, atherosclerosis and diabetes. Clin Sci (Lond) 121:43–55 Barlovic DP, Soro-Paavonen A, Jandeleit-Dahm KA (2011) RAGE biology, atherosclerosis and diabetes. Clin Sci (Lond) 121:43–55
10.
11.
Zurück zum Zitat Department of Health and Human Services CfDCaP (2011) Atlanta. GA. National Diabetes Fact Sheet, National Estimates and General Information on Diabetes and Prediabetes in the United States Department of Health and Human Services CfDCaP (2011) Atlanta. GA. National Diabetes Fact Sheet, National Estimates and General Information on Diabetes and Prediabetes in the United States
12.
Zurück zum Zitat Garcia MJ, McNamara PM, Gordon T et al (1974) Morbidity and mortality in diabetics in the Framingham population. Sixteen year follow-up study. Diabetes 23:105–111PubMed Garcia MJ, McNamara PM, Gordon T et al (1974) Morbidity and mortality in diabetics in the Framingham population. Sixteen year follow-up study. Diabetes 23:105–111PubMed
13.
Zurück zum Zitat Ren J, Ceylan-Isik AF (2004) Diabetic cardiomyopathy: do women differ from men? Endocrine 25:73–83PubMed Ren J, Ceylan-Isik AF (2004) Diabetic cardiomyopathy: do women differ from men? Endocrine 25:73–83PubMed
15.
Zurück zum Zitat Lacombe VA, Viatchenko-Karpinski S, Terentyev D et al (2007) Mechanisms of impaired calcium handling underlying subclinical diastolic dysfunction in diabetes. Am J Physiol Regul Integr Comp Physiol 293:R1787–R1797PubMedCentralPubMed Lacombe VA, Viatchenko-Karpinski S, Terentyev D et al (2007) Mechanisms of impaired calcium handling underlying subclinical diastolic dysfunction in diabetes. Am J Physiol Regul Integr Comp Physiol 293:R1787–R1797PubMedCentralPubMed
16.
Zurück zum Zitat Howarth FC, Qureshi MA, Hassan Z et al (2011) Changing pattern of gene expression is associated with ventricular myocyte dysfunction and altered mechanisms of Ca2+ signalling in young type 2 Zucker diabetic fatty rat heart. Exp Physiol 96:325–337PubMed Howarth FC, Qureshi MA, Hassan Z et al (2011) Changing pattern of gene expression is associated with ventricular myocyte dysfunction and altered mechanisms of Ca2+ signalling in young type 2 Zucker diabetic fatty rat heart. Exp Physiol 96:325–337PubMed
17.
Zurück zum Zitat Wold LE, Dutta K, Mason MM et al (2005) Impaired SERCA function contributes to cardiomyocyte dysfunction in insulin resistant rats. J Mol Cell Cardiol 39:297–307PubMed Wold LE, Dutta K, Mason MM et al (2005) Impaired SERCA function contributes to cardiomyocyte dysfunction in insulin resistant rats. J Mol Cell Cardiol 39:297–307PubMed
18.
Zurück zum Zitat Fang ZY, Prins JB, Marwick TH (2004) Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr Rev 25:543–567PubMed Fang ZY, Prins JB, Marwick TH (2004) Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr Rev 25:543–567PubMed
19.
Zurück zum Zitat McGavock JM, Lingvay I, Zib I et al (2007) Cardiac steatosis in diabetes mellitus: a 1H-magnetic resonance spectroscopy study. Circulation 116:1170–1175PubMed McGavock JM, Lingvay I, Zib I et al (2007) Cardiac steatosis in diabetes mellitus: a 1H-magnetic resonance spectroscopy study. Circulation 116:1170–1175PubMed
20.
Zurück zum Zitat Ng AC, Delgado V, Bertini M et al (2010) Myocardial steatosis and biventricular strain and strain rate imaging in patients with type 2 diabetes mellitus. Circulation 122:2538–2544PubMed Ng AC, Delgado V, Bertini M et al (2010) Myocardial steatosis and biventricular strain and strain rate imaging in patients with type 2 diabetes mellitus. Circulation 122:2538–2544PubMed
21.
Zurück zum Zitat Greer JJ, Ware DP, Lefer DJ (2006) Myocardial infarction and heart failure in the db/db diabetic mouse. Am J Physiol Heart Circ Physiol 290:H146–H153PubMed Greer JJ, Ware DP, Lefer DJ (2006) Myocardial infarction and heart failure in the db/db diabetic mouse. Am J Physiol Heart Circ Physiol 290:H146–H153PubMed
22.
Zurück zum Zitat Hoshida S, Yamashita N, Otsu K et al (2000) Cholesterol feeding exacerbates myocardial injury in Zucker diabetic fatty rats. Am J Physiol Heart Circ Physiol 278:H256–H262PubMed Hoshida S, Yamashita N, Otsu K et al (2000) Cholesterol feeding exacerbates myocardial injury in Zucker diabetic fatty rats. Am J Physiol Heart Circ Physiol 278:H256–H262PubMed
23.
Zurück zum Zitat Fauconnier J, Andersson DC, Zhang SJ et al (2007) Effects of palmitate on Ca(2+) handling in adult control and ob/ob cardiomyocytes: impact of mitochondrial reactive oxygen species. Diabetes 56:1136–1142PubMed Fauconnier J, Andersson DC, Zhang SJ et al (2007) Effects of palmitate on Ca(2+) handling in adult control and ob/ob cardiomyocytes: impact of mitochondrial reactive oxygen species. Diabetes 56:1136–1142PubMed
24.
Zurück zum Zitat Graham ML, Janecek JL, Kittredge JA et al (2011) The streptozotocin-induced diabetic nude mouse model: differences between animals from different sources. Comp Med 61:356–360PubMed Graham ML, Janecek JL, Kittredge JA et al (2011) The streptozotocin-induced diabetic nude mouse model: differences between animals from different sources. Comp Med 61:356–360PubMed
25.
Zurück zum Zitat Wold LE, Ren J (2004) Streptozotocin directly impairs cardiac contractile function in isolated ventricular myocytes via a p38 MAP kinase-dependent oxidative stress mechanism. Biochem Biophys Res Comm 318:1066–1071PubMed Wold LE, Ren J (2004) Streptozotocin directly impairs cardiac contractile function in isolated ventricular myocytes via a p38 MAP kinase-dependent oxidative stress mechanism. Biochem Biophys Res Comm 318:1066–1071PubMed
26.
Zurück zum Zitat Corsetti JP, Sparks JD, Peterson RG et al (2000) Effect of dietary fat on the development of non-insulin dependent diabetes mellitus in obese Zucker diabetic fatty male and female rats. Atherosclerosis 148:231–241PubMed Corsetti JP, Sparks JD, Peterson RG et al (2000) Effect of dietary fat on the development of non-insulin dependent diabetes mellitus in obese Zucker diabetic fatty male and female rats. Atherosclerosis 148:231–241PubMed
27.
Zurück zum Zitat Tokuyama Y, Sturis J, DePaoli AM et al (1995) Evolution of beta-cell dysfunction in the male Zucker diabetic fatty rat. Diabetes 44:1447–1457PubMed Tokuyama Y, Sturis J, DePaoli AM et al (1995) Evolution of beta-cell dysfunction in the male Zucker diabetic fatty rat. Diabetes 44:1447–1457PubMed
28.
Zurück zum Zitat Iida M, Murakami T, Ishida K et al (1996) Phenotype-linked amino acid alteration in leptin receptor cDNA from Zucker fatty (fa/fa) rat. Biochem Biophys Res Commun 222:19–26PubMed Iida M, Murakami T, Ishida K et al (1996) Phenotype-linked amino acid alteration in leptin receptor cDNA from Zucker fatty (fa/fa) rat. Biochem Biophys Res Commun 222:19–26PubMed
29.
Zurück zum Zitat Martin SS, Qasim A, Reilly MP (2008) Leptin resistance: a possible interface of inflammation and metabolism in obesity-related cardiovascular disease. J Am Coll Cardiol 52:1201–1210PubMed Martin SS, Qasim A, Reilly MP (2008) Leptin resistance: a possible interface of inflammation and metabolism in obesity-related cardiovascular disease. J Am Coll Cardiol 52:1201–1210PubMed
30.
Zurück zum Zitat Tilg H, Moschen AR (2006) Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol 6:772–783PubMed Tilg H, Moschen AR (2006) Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol 6:772–783PubMed
31.
Zurück zum Zitat Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820PubMed Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820PubMed
32.
Zurück zum Zitat Randle PJ, Garland PB, Hales CN et al (1966) Interactions of metabolism and the physiological role of insulin. Recent Prog Horm Res 22:1–48PubMed Randle PJ, Garland PB, Hales CN et al (1966) Interactions of metabolism and the physiological role of insulin. Recent Prog Horm Res 22:1–48PubMed
33.
Zurück zum Zitat Neely JR, Morgan HE (1974) Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Annu Rev Physiol 36:413–459PubMed Neely JR, Morgan HE (1974) Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Annu Rev Physiol 36:413–459PubMed
34.
Zurück zum Zitat Sambandam N, Lopaschuk GD (2003) AMP-activated protein kinase (AMPK) control of fatty acid and glucose metabolism in the ischemic heart. Prog Lipid Res 42:238–256PubMed Sambandam N, Lopaschuk GD (2003) AMP-activated protein kinase (AMPK) control of fatty acid and glucose metabolism in the ischemic heart. Prog Lipid Res 42:238–256PubMed
35.
Zurück zum Zitat Chappell JB, Robinson BH (1968) Penetration of the mitochondrial membrane by tricarboxylic acid anions. Biochem Soc Symp 27:123–133PubMed Chappell JB, Robinson BH (1968) Penetration of the mitochondrial membrane by tricarboxylic acid anions. Biochem Soc Symp 27:123–133PubMed
36.
Zurück zum Zitat Finck BN, Lehman JJ, Leone TC et al (2002) The cardiac phenotype induced by PPARalpha overexpression mimics that caused by diabetes mellitus. J Clin Invest 109:121–130PubMedCentralPubMed Finck BN, Lehman JJ, Leone TC et al (2002) The cardiac phenotype induced by PPARalpha overexpression mimics that caused by diabetes mellitus. J Clin Invest 109:121–130PubMedCentralPubMed
37.
Zurück zum Zitat Schaffer SW, Seyed-Mozaffari M, Cutcliff CR et al (1986) Postreceptor myocardial metabolic defect in a rat model of non-insulin-dependent diabetes mellitus. Diabetes 35:593–597PubMed Schaffer SW, Seyed-Mozaffari M, Cutcliff CR et al (1986) Postreceptor myocardial metabolic defect in a rat model of non-insulin-dependent diabetes mellitus. Diabetes 35:593–597PubMed
38.
Zurück zum Zitat Serpillon S, Floyd BC, Gupte RS et al (2009) Superoxide production by NAD(P)H oxidase and mitochondria is increased in genetically obese and hyperglycemic rat heart and aorta before the development of cardiac dysfunction. The role of glucose-6-phosphate dehydrogenase-derived NADPH. Am J Physiol Heart Circ Physiol 297:H153–H162PubMed Serpillon S, Floyd BC, Gupte RS et al (2009) Superoxide production by NAD(P)H oxidase and mitochondria is increased in genetically obese and hyperglycemic rat heart and aorta before the development of cardiac dysfunction. The role of glucose-6-phosphate dehydrogenase-derived NADPH. Am J Physiol Heart Circ Physiol 297:H153–H162PubMed
39.
Zurück zum Zitat Li SY, Sigmon VK, Babcock SA et al (2007) Advanced glycation endproduct induces ROS accumulation, apoptosis, MAP kinase activation and nuclear O-GlcNAcylation in human cardiac myocytes. Life Sci 80:1051–1056PubMed Li SY, Sigmon VK, Babcock SA et al (2007) Advanced glycation endproduct induces ROS accumulation, apoptosis, MAP kinase activation and nuclear O-GlcNAcylation in human cardiac myocytes. Life Sci 80:1051–1056PubMed
40.
Zurück zum Zitat Yan SF, Ramasamy R, Bucciarelli LG et al (2004) RAGE and its ligands: a lasting memory in diabetic complications? Diab Vasc Dis Res 1:10–20PubMed Yan SF, Ramasamy R, Bucciarelli LG et al (2004) RAGE and its ligands: a lasting memory in diabetic complications? Diab Vasc Dis Res 1:10–20PubMed
41.
Zurück zum Zitat Fulop N, Mason MM, Dutta K et al (2007) Impact of Type 2 diabetes and aging on cardiomyocyte function and O-linked N-acetylglucosamine levels in the heart. Am J Physiol Cell Physiol 292:C1370–C1378PubMed Fulop N, Mason MM, Dutta K et al (2007) Impact of Type 2 diabetes and aging on cardiomyocyte function and O-linked N-acetylglucosamine levels in the heart. Am J Physiol Cell Physiol 292:C1370–C1378PubMed
42.
Zurück zum Zitat Hu Y, Belke D, Suarez J et al (2005) Adenovirus-mediated overexpression of O-GlcNAcase improves contractile function in the diabetic heart. Circ Res 96:1006–1013PubMed Hu Y, Belke D, Suarez J et al (2005) Adenovirus-mediated overexpression of O-GlcNAcase improves contractile function in the diabetic heart. Circ Res 96:1006–1013PubMed
43.
Zurück zum Zitat Clark RJ, McDonough PM, Swanson E et al (2003) Diabetes and the accompanying hyperglycemia impairs cardiomyocyte calcium cycling through increased nuclear O-GlcNAcylation. J Biol Chem 278:44230–44237PubMed Clark RJ, McDonough PM, Swanson E et al (2003) Diabetes and the accompanying hyperglycemia impairs cardiomyocyte calcium cycling through increased nuclear O-GlcNAcylation. J Biol Chem 278:44230–44237PubMed
44.
Zurück zum Zitat Cotter MA, Cameron NE, Robertson S (1992) Polyol pathway-mediated changes in cardiac muscle contractile properties: studies in streptozotocin-diabetic and galactose-fed rats. Exp Physiol 77:829–838PubMed Cotter MA, Cameron NE, Robertson S (1992) Polyol pathway-mediated changes in cardiac muscle contractile properties: studies in streptozotocin-diabetic and galactose-fed rats. Exp Physiol 77:829–838PubMed
45.
Zurück zum Zitat Trueblood N, Ramasamy R (1998) Aldose reductase inhibition improves altered glucose metabolism of isolated diabetic rat hearts. Am J Physiol 275:H75–H83PubMed Trueblood N, Ramasamy R (1998) Aldose reductase inhibition improves altered glucose metabolism of isolated diabetic rat hearts. Am J Physiol 275:H75–H83PubMed
46.
Zurück zum Zitat Ojaimi C, Kinugawa S, Recchia FA et al (2010) Oxidant-NO dependent gene regulation in dogs with type I diabetes: impact on cardiac function and metabolism. Cardiovasc Diabetol 9:43PubMedCentralPubMed Ojaimi C, Kinugawa S, Recchia FA et al (2010) Oxidant-NO dependent gene regulation in dogs with type I diabetes: impact on cardiac function and metabolism. Cardiovasc Diabetol 9:43PubMedCentralPubMed
47.
Zurück zum Zitat Du XL, Edelstein D, Rossetti L et al (2000) Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc Natl Acad Sci USA 97:12222–12226PubMed Du XL, Edelstein D, Rossetti L et al (2000) Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc Natl Acad Sci USA 97:12222–12226PubMed
48.
Zurück zum Zitat Nishikawa T, Edelstein D, Du XL et al (2000) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404:787–790PubMed Nishikawa T, Edelstein D, Du XL et al (2000) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404:787–790PubMed
49.
Zurück zum Zitat Pacher P, Szabo C (2007) Role of poly(ADP-ribose) polymerase 1 (PARP-1) in cardiovascular diseases: the therapeutic potential of PARP inhibitors. Cardiovasc Drug Rev 25:235–260PubMedCentralPubMed Pacher P, Szabo C (2007) Role of poly(ADP-ribose) polymerase 1 (PARP-1) in cardiovascular diseases: the therapeutic potential of PARP inhibitors. Cardiovasc Drug Rev 25:235–260PubMedCentralPubMed
50.
Zurück zum Zitat Du X, Matsumura T, Edelstein D et al (2003) Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Invest 112:1049–1057PubMedCentralPubMed Du X, Matsumura T, Edelstein D et al (2003) Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Invest 112:1049–1057PubMedCentralPubMed
51.
Zurück zum Zitat Schaffer SW, Jong CJ, Mozaffari M (2012) Role of oxidative stress in diabetes-mediated vascular dysfunction: unifying hypothesis of diabetes revisited. Vascul Pharmacol 57:139–149PubMed Schaffer SW, Jong CJ, Mozaffari M (2012) Role of oxidative stress in diabetes-mediated vascular dysfunction: unifying hypothesis of diabetes revisited. Vascul Pharmacol 57:139–149PubMed
52.
Zurück zum Zitat Wieland O, Siess E, Schulze-Wethmar FH et al (1971) Active and inactive forms of pyruvate dehydrogenase in rat heart and kidney: effect of diabetes, fasting, and refeeding on pyruvate dehydrogenase interconversion. Arch Biochem Biophys 143:593–601PubMed Wieland O, Siess E, Schulze-Wethmar FH et al (1971) Active and inactive forms of pyruvate dehydrogenase in rat heart and kidney: effect of diabetes, fasting, and refeeding on pyruvate dehydrogenase interconversion. Arch Biochem Biophys 143:593–601PubMed
53.
Zurück zum Zitat Hansford RG, Cohen L (1978) Relative importance of pyruvate dehydrogenase interconversion and feed-back inhibition in the effect of fatty acids on pyruvate oxidation by rat heart mitochondria. Arch Biochem Biophys 191:65–81PubMed Hansford RG, Cohen L (1978) Relative importance of pyruvate dehydrogenase interconversion and feed-back inhibition in the effect of fatty acids on pyruvate oxidation by rat heart mitochondria. Arch Biochem Biophys 191:65–81PubMed
54.
Zurück zum Zitat McCormack JG, Halestrap AP, Denton RM (1990) Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol Rev 70:391–425PubMed McCormack JG, Halestrap AP, Denton RM (1990) Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol Rev 70:391–425PubMed
55.
Zurück zum Zitat Hopkins TA, Sugden MC, Holness MJ et al (2003) Control of cardiac pyruvate dehydrogenase activity in peroxisome proliferator-activated receptor-alpha transgenic mice. Am J Physiol Heart Circ Physiol 285:H270–H276PubMed Hopkins TA, Sugden MC, Holness MJ et al (2003) Control of cardiac pyruvate dehydrogenase activity in peroxisome proliferator-activated receptor-alpha transgenic mice. Am J Physiol Heart Circ Physiol 285:H270–H276PubMed
56.
Zurück zum Zitat Campbell FM, Kozak R, Wagner A et al (2002) A role for peroxisome proliferator-activated receptor alpha (PPARalpha) in the control of cardiac malonyl-CoA levels: reduced fatty acid oxidation rates and increased glucose oxidation rates in the hearts of mice lacking PPARalpha are associated with higher concentrations of malonyl-CoA and reduced expression of malonyl-CoA decarboxylase. J Biol Chem 277:4098–4103PubMed Campbell FM, Kozak R, Wagner A et al (2002) A role for peroxisome proliferator-activated receptor alpha (PPARalpha) in the control of cardiac malonyl-CoA levels: reduced fatty acid oxidation rates and increased glucose oxidation rates in the hearts of mice lacking PPARalpha are associated with higher concentrations of malonyl-CoA and reduced expression of malonyl-CoA decarboxylase. J Biol Chem 277:4098–4103PubMed
57.
Zurück zum Zitat Chatham JC, Forder JR (1997) Relationship between cardiac function and substrate oxidation in hearts of diabetic rats. Am J Physiol 273:H52–H58PubMed Chatham JC, Forder JR (1997) Relationship between cardiac function and substrate oxidation in hearts of diabetic rats. Am J Physiol 273:H52–H58PubMed
58.
Zurück zum Zitat Connelly KA, Kelly DJ, Zhang Y et al (2009) Inhibition of protein kinase C-beta by ruboxistaurin preserves cardiac function and reduces extracellular matrix production in diabetic cardiomyopathy. Circ Heart Fail 2:129–137PubMed Connelly KA, Kelly DJ, Zhang Y et al (2009) Inhibition of protein kinase C-beta by ruboxistaurin preserves cardiac function and reduces extracellular matrix production in diabetic cardiomyopathy. Circ Heart Fail 2:129–137PubMed
59.
Zurück zum Zitat Ricci C, Pastukh V, Leonard J et al (2008) Mitochondrial DNA damage triggers mitochondrial-superoxide generation and apoptosis. Am J Physiol Cell Physiol 294:C413–C422PubMed Ricci C, Pastukh V, Leonard J et al (2008) Mitochondrial DNA damage triggers mitochondrial-superoxide generation and apoptosis. Am J Physiol Cell Physiol 294:C413–C422PubMed
60.
Zurück zum Zitat Luiken JJ, Arumugam Y, Dyck DJ et al (2001) Increased rates of fatty acid uptake and plasmalemmal fatty acid transporters in obese Zucker rats. J Biol Chem 276:40567–40573PubMed Luiken JJ, Arumugam Y, Dyck DJ et al (2001) Increased rates of fatty acid uptake and plasmalemmal fatty acid transporters in obese Zucker rats. J Biol Chem 276:40567–40573PubMed
61.
Zurück zum Zitat Coort SL, Willems J, Coumans WA et al (2002) Sulfo-N-succinimidyl esters of long chain fatty acids specifically inhibit fatty acid translocase (FAT/CD36)-mediated cellular fatty acid uptake. Mol Cell Biochem 239:213–219PubMed Coort SL, Willems J, Coumans WA et al (2002) Sulfo-N-succinimidyl esters of long chain fatty acids specifically inhibit fatty acid translocase (FAT/CD36)-mediated cellular fatty acid uptake. Mol Cell Biochem 239:213–219PubMed
62.
Zurück zum Zitat Lopaschuk GD, Ussher JR, Folmes CD et al (2010) Myocardial fatty acid metabolism in health and disease. Physiol Rev 90:207–258PubMed Lopaschuk GD, Ussher JR, Folmes CD et al (2010) Myocardial fatty acid metabolism in health and disease. Physiol Rev 90:207–258PubMed
63.
Zurück zum Zitat Chabowski A, Coort SL, Calles-Escandon J et al (2004) Insulin stimulates fatty acid transport by regulating expression of FAT/CD36 but not FABPpm. Am J Physiol Endocrinol Metab 287:E781–E789PubMed Chabowski A, Coort SL, Calles-Escandon J et al (2004) Insulin stimulates fatty acid transport by regulating expression of FAT/CD36 but not FABPpm. Am J Physiol Endocrinol Metab 287:E781–E789PubMed
64.
Zurück zum Zitat Luiken JJ, Coort SL, Koonen DP et al (2004) Regulation of cardiac long-chain fatty acid and glucose uptake by translocation of substrate transporters. Pflugers Arch 448:1–15PubMed Luiken JJ, Coort SL, Koonen DP et al (2004) Regulation of cardiac long-chain fatty acid and glucose uptake by translocation of substrate transporters. Pflugers Arch 448:1–15PubMed
65.
Zurück zum Zitat Carley AN, Severson DL (2005) Fatty acid metabolism is enhanced in type 2 diabetic hearts. Biochim Biophys Acta 1734:112–126PubMed Carley AN, Severson DL (2005) Fatty acid metabolism is enhanced in type 2 diabetic hearts. Biochim Biophys Acta 1734:112–126PubMed
66.
Zurück zum Zitat Holland WL, Brozinick JT, Wang LP et al (2007) Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metab 5:167–179PubMed Holland WL, Brozinick JT, Wang LP et al (2007) Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metab 5:167–179PubMed
67.
Zurück zum Zitat Rodrigues B, Xiang H, McNeill JH (1988) Effect of L-carnitine treatment on lipid metabolism and cardiac performance in chronically diabetic rats. Diabetes 37:1358–1364PubMed Rodrigues B, Xiang H, McNeill JH (1988) Effect of L-carnitine treatment on lipid metabolism and cardiac performance in chronically diabetic rats. Diabetes 37:1358–1364PubMed
68.
Zurück zum Zitat Sakamoto J, Barr RL, Kavanagh KM et al (2000) Contribution of malonyl-CoA decarboxylase to the high fatty acid oxidation rates seen in the diabetic heart. Am J Physiol Heart Circ Physiol 278:H1196–H1204PubMed Sakamoto J, Barr RL, Kavanagh KM et al (2000) Contribution of malonyl-CoA decarboxylase to the high fatty acid oxidation rates seen in the diabetic heart. Am J Physiol Heart Circ Physiol 278:H1196–H1204PubMed
69.
Zurück zum Zitat Kudo N, Barr AJ, Barr RL et al (1995) High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5′-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase. J Biol Chem 270:17513–17520PubMed Kudo N, Barr AJ, Barr RL et al (1995) High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5′-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase. J Biol Chem 270:17513–17520PubMed
70.
Zurück zum Zitat Gamble J, Lopaschuk GD (1997) Insulin inhibition of 5′ adenosine monophosphate-activated protein kinase in the heart results in activation of acetyl coenzyme A carboxylase and inhibition of fatty acid oxidation. Metabolism 46:1270–1274PubMed Gamble J, Lopaschuk GD (1997) Insulin inhibition of 5′ adenosine monophosphate-activated protein kinase in the heart results in activation of acetyl coenzyme A carboxylase and inhibition of fatty acid oxidation. Metabolism 46:1270–1274PubMed
71.
Zurück zum Zitat Young ME, Goodwin GW, Ying J et al (2001) Regulation of cardiac and skeletal muscle malonyl-CoA decarboxylase by fatty acids. Am J Physiol Endocrinol Metab 280:E471–E479PubMed Young ME, Goodwin GW, Ying J et al (2001) Regulation of cardiac and skeletal muscle malonyl-CoA decarboxylase by fatty acids. Am J Physiol Endocrinol Metab 280:E471–E479PubMed
72.
Zurück zum Zitat Finck BN, Han X, Courtois M et al (2003) A critical role for PPARalpha-mediated lipotoxicity in the pathogenesis of diabetic cardiomyopathy: modulation by dietary fat content. Proc Natl Acad Sci USA 100:1226–1231PubMed Finck BN, Han X, Courtois M et al (2003) A critical role for PPARalpha-mediated lipotoxicity in the pathogenesis of diabetic cardiomyopathy: modulation by dietary fat content. Proc Natl Acad Sci USA 100:1226–1231PubMed
73.
Zurück zum Zitat Chen W, Xia Y, Zhao X et al (2012) The critical role of astragalus polysaccharides for the improvement of PPRAalpha-mediated lipotoxicity in diabetic cardiomyopathy. PLoS ONE 7:e45541PubMedCentralPubMed Chen W, Xia Y, Zhao X et al (2012) The critical role of astragalus polysaccharides for the improvement of PPRAalpha-mediated lipotoxicity in diabetic cardiomyopathy. PLoS ONE 7:e45541PubMedCentralPubMed
74.
Zurück zum Zitat Yu BC, Chang CK, Ou HY et al (2008) Decrease of peroxisome proliferator-activated receptor delta expression in cardiomyopathy of streptozotocin-induced diabetic rats. Cardiovasc Res 80:78–87PubMed Yu BC, Chang CK, Ou HY et al (2008) Decrease of peroxisome proliferator-activated receptor delta expression in cardiomyopathy of streptozotocin-induced diabetic rats. Cardiovasc Res 80:78–87PubMed
75.
Zurück zum Zitat Cheng L, Ding G, Qin Q et al (2004) Cardiomyocyte-restricted peroxisome proliferator-activated receptor-delta deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathy. Nat Med 10:1245–1250PubMed Cheng L, Ding G, Qin Q et al (2004) Cardiomyocyte-restricted peroxisome proliferator-activated receptor-delta deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathy. Nat Med 10:1245–1250PubMed
76.
Zurück zum Zitat Burkart EM, Sambandam N, Han X et al (2007) Nuclear receptors PPARbeta/delta and PPARalpha direct distinct metabolic regulatory programs in the mouse heart. J Clin Invest 117:3930–3939PubMedCentralPubMed Burkart EM, Sambandam N, Han X et al (2007) Nuclear receptors PPARbeta/delta and PPARalpha direct distinct metabolic regulatory programs in the mouse heart. J Clin Invest 117:3930–3939PubMedCentralPubMed
77.
Zurück zum Zitat Bowman RH (1966) Effects of diabetes, fatty acids, and ketone bodies on tricarboxylic acid cycle metabolism in the perfused rat heart. J Biol Chem 241:3041–3048PubMed Bowman RH (1966) Effects of diabetes, fatty acids, and ketone bodies on tricarboxylic acid cycle metabolism in the perfused rat heart. J Biol Chem 241:3041–3048PubMed
78.
Zurück zum Zitat Taegtmeyer H, Passmore JM (1985) Defective energy metabolism of the heart in diabetes. Lancet 1:139–141PubMed Taegtmeyer H, Passmore JM (1985) Defective energy metabolism of the heart in diabetes. Lancet 1:139–141PubMed
79.
Zurück zum Zitat Kuo TH, Moore KH, Giacomelli F et al (1983) Defective oxidative metabolism of heart mitochondria from genetically diabetic mice. Diabetes 32:781–787PubMed Kuo TH, Moore KH, Giacomelli F et al (1983) Defective oxidative metabolism of heart mitochondria from genetically diabetic mice. Diabetes 32:781–787PubMed
80.
Zurück zum Zitat Pierce GN, Dhalla NS (1985) Heart mitochondrial function in chronic experimental diabetes in rats. Can J Cardiol 1:48–54PubMed Pierce GN, Dhalla NS (1985) Heart mitochondrial function in chronic experimental diabetes in rats. Can J Cardiol 1:48–54PubMed
81.
Zurück zum Zitat Tomita M, Mukae S, Geshi E et al (1996) Mitochondrial respiratory impairment in streptozotocin-induced diabetic rat heart. Jpn Circ J 60:673–682PubMed Tomita M, Mukae S, Geshi E et al (1996) Mitochondrial respiratory impairment in streptozotocin-induced diabetic rat heart. Jpn Circ J 60:673–682PubMed
82.
Zurück zum Zitat Boudina S, Sena S, O’Neill BT et al (2005) Reduced mitochondrial oxidative capacity and increased mitochondrial uncoupling impair myocardial energetics in obesity. Circulation 112:2686–2695PubMed Boudina S, Sena S, O’Neill BT et al (2005) Reduced mitochondrial oxidative capacity and increased mitochondrial uncoupling impair myocardial energetics in obesity. Circulation 112:2686–2695PubMed
83.
Zurück zum Zitat Suarez J, Hu Y, Makino A et al (2008) Alterations in mitochondrial function and cytosolic calcium induced by hyperglycemia are restored by mitochondrial transcription factor A in cardiomyocytes. Am J Physiol Cell Physiol 295:C1561–C1568PubMed Suarez J, Hu Y, Makino A et al (2008) Alterations in mitochondrial function and cytosolic calcium induced by hyperglycemia are restored by mitochondrial transcription factor A in cardiomyocytes. Am J Physiol Cell Physiol 295:C1561–C1568PubMed
84.
Zurück zum Zitat Zungu M, Young ME, Stanley WC et al (2009) Chronic treatment with the peroxisome proliferator-activated receptor alpha agonist Wy-14,643 attenuates myocardial respiratory capacity and contractile function. Mol Cell Biochem 330:55–62PubMed Zungu M, Young ME, Stanley WC et al (2009) Chronic treatment with the peroxisome proliferator-activated receptor alpha agonist Wy-14,643 attenuates myocardial respiratory capacity and contractile function. Mol Cell Biochem 330:55–62PubMed
85.
Zurück zum Zitat Boudina S, Sena S, Theobald H et al (2007) Mitochondrial energetics in the heart in obesity-related diabetes: direct evidence for increased uncoupled respiration and activation of uncoupling proteins. Diabetes 56:2457–2466PubMed Boudina S, Sena S, Theobald H et al (2007) Mitochondrial energetics in the heart in obesity-related diabetes: direct evidence for increased uncoupled respiration and activation of uncoupling proteins. Diabetes 56:2457–2466PubMed
86.
Zurück zum Zitat von Bibra H, Hansen A, Dounis V et al (2004) Augmented metabolic control improves myocardial diastolic function and perfusion in patients with non-insulin dependent diabetes. Heart 90:1483–1484 von Bibra H, Hansen A, Dounis V et al (2004) Augmented metabolic control improves myocardial diastolic function and perfusion in patients with non-insulin dependent diabetes. Heart 90:1483–1484
87.
Zurück zum Zitat von Bibra H, Siegmund T, Hansen A et al (2007) Augmentation of myocardial function by improved glycemic control in patients with type 2 diabetes mellitus. Dtsch Med Wochenschr 132:729–734 von Bibra H, Siegmund T, Hansen A et al (2007) Augmentation of myocardial function by improved glycemic control in patients with type 2 diabetes mellitus. Dtsch Med Wochenschr 132:729–734
88.
Zurück zum Zitat McGuire DK, Inzucchi SE (2008) New drugs for the treatment of diabetes mellitus: part I: thiazolidinediones and their evolving cardiovascular implications. Circulation 117:440–449PubMed McGuire DK, Inzucchi SE (2008) New drugs for the treatment of diabetes mellitus: part I: thiazolidinediones and their evolving cardiovascular implications. Circulation 117:440–449PubMed
89.
Zurück zum Zitat Sharma AM, Staels B (2007) Review: peroxisome proliferator-activated receptor gamma and adipose tissue–understanding obesity-related changes in regulation of lipid and glucose metabolism. J Clin Endocrinol Metab 92:386–395PubMed Sharma AM, Staels B (2007) Review: peroxisome proliferator-activated receptor gamma and adipose tissue–understanding obesity-related changes in regulation of lipid and glucose metabolism. J Clin Endocrinol Metab 92:386–395PubMed
90.
Zurück zum Zitat Masoudi FA, Inzucchi SE (2007) Diabetes mellitus and heart failure: epidemiology, mechanisms, and pharmacotherapy. Am J Cardiol 99:113B–132BPubMed Masoudi FA, Inzucchi SE (2007) Diabetes mellitus and heart failure: epidemiology, mechanisms, and pharmacotherapy. Am J Cardiol 99:113B–132BPubMed
91.
Zurück zum Zitat Masoudi FA, Inzucchi SE, Wang Y et al (2005) Thiazolidinediones, metformin, and outcomes in older patients with diabetes and heart failure: an observational study. Circulation 111:583–590PubMed Masoudi FA, Inzucchi SE, Wang Y et al (2005) Thiazolidinediones, metformin, and outcomes in older patients with diabetes and heart failure: an observational study. Circulation 111:583–590PubMed
92.
Zurück zum Zitat Nikolaidis LA, Elahi D, Hentosz T et al (2004) Recombinant glucagon-like peptide-1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy. Circulation 110:955–961PubMed Nikolaidis LA, Elahi D, Hentosz T et al (2004) Recombinant glucagon-like peptide-1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy. Circulation 110:955–961PubMed
93.
Zurück zum Zitat Sokos GG, Nikolaidis LA, Mankad S et al (2006) Glucagon-like peptide-1 infusion improves left ventricular ejection fraction and functional status in patients with chronic heart failure. J Card Fail 12:694–699PubMed Sokos GG, Nikolaidis LA, Mankad S et al (2006) Glucagon-like peptide-1 infusion improves left ventricular ejection fraction and functional status in patients with chronic heart failure. J Card Fail 12:694–699PubMed
94.
Zurück zum Zitat Chiasson JL, Josse RG, Gomis R et al (2002) Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet 359:2072–2077PubMed Chiasson JL, Josse RG, Gomis R et al (2002) Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet 359:2072–2077PubMed
95.
Zurück zum Zitat Hanefeld M, Josse RG, Chiasson JL (2005) Alpha-glucosidase inhibitors for patients with type 2 diabetes: response to van de Laar et al. Diabet Care 28:1840 (author reply 1) Hanefeld M, Josse RG, Chiasson JL (2005) Alpha-glucosidase inhibitors for patients with type 2 diabetes: response to van de Laar et al. Diabet Care 28:1840 (author reply 1)
96.
Zurück zum Zitat Konduracka E, Gackowski A, Rostoff P et al (2007) Diabetes-specific cardiomyopathy in type 1 diabetes mellitus: no evidence for its occurrence in the era of intensive insulin therapy. Eur Heart J 28:2465–2471PubMed Konduracka E, Gackowski A, Rostoff P et al (2007) Diabetes-specific cardiomyopathy in type 1 diabetes mellitus: no evidence for its occurrence in the era of intensive insulin therapy. Eur Heart J 28:2465–2471PubMed
97.
Zurück zum Zitat Haas SJ, Vos T, Gilbert RE et al (2003) Are beta-blockers as efficacious in patients with diabetes mellitus as in patients without diabetes mellitus who have chronic heart failure? A meta-analysis of large-scale clinical trials. Am Heart J 146:848–853PubMed Haas SJ, Vos T, Gilbert RE et al (2003) Are beta-blockers as efficacious in patients with diabetes mellitus as in patients without diabetes mellitus who have chronic heart failure? A meta-analysis of large-scale clinical trials. Am Heart J 146:848–853PubMed
98.
Zurück zum Zitat Fonseca V, Bakris GL, Bell DS et al (2007) Differential effect of beta-blocker therapy on insulin resistance as a function of insulin sensitizer use: results from GEMINI. Diabet Med 24:759–763PubMed Fonseca V, Bakris GL, Bell DS et al (2007) Differential effect of beta-blocker therapy on insulin resistance as a function of insulin sensitizer use: results from GEMINI. Diabet Med 24:759–763PubMed
99.
Zurück zum Zitat Ramasubbu K, Estep J, White DL et al (2008) Experimental and clinical basis for the use of statins in patients with ischemic and nonischemic cardiomyopathy. J Am Coll Cardiol 51:415–426PubMed Ramasubbu K, Estep J, White DL et al (2008) Experimental and clinical basis for the use of statins in patients with ischemic and nonischemic cardiomyopathy. J Am Coll Cardiol 51:415–426PubMed
100.
Zurück zum Zitat Stolen TO, Hoydal MA, Kemi OJ et al (2009) Interval training normalizes cardiomyocyte function, diastolic Ca2+ control, and SR Ca2+ release synchronicity in a mouse model of diabetic cardiomyopathy. Circ Res 105:527–536PubMed Stolen TO, Hoydal MA, Kemi OJ et al (2009) Interval training normalizes cardiomyocyte function, diastolic Ca2+ control, and SR Ca2+ release synchronicity in a mouse model of diabetic cardiomyopathy. Circ Res 105:527–536PubMed
101.
Zurück zum Zitat Howarth FC, Almugaddum FA, Qureshi MA et al (2010) The effects of heavy long-term exercise on ventricular myocyte shortening and intracellular Ca2+ in streptozotocin-induced diabetic rat. J Diabet Complicat 24:278–285 Howarth FC, Almugaddum FA, Qureshi MA et al (2010) The effects of heavy long-term exercise on ventricular myocyte shortening and intracellular Ca2+ in streptozotocin-induced diabetic rat. J Diabet Complicat 24:278–285
102.
Zurück zum Zitat Rubenstrunk A, Hanf R, Hum DW et al (2007) Safety issues and prospects for future generations of PPAR modulators. Biochim Biophys Acta 1771:1065–1081PubMed Rubenstrunk A, Hanf R, Hum DW et al (2007) Safety issues and prospects for future generations of PPAR modulators. Biochim Biophys Acta 1771:1065–1081PubMed
103.
Zurück zum Zitat Goa KL, Barradell LB, Plosker GL (1996) Bezafibrate. An update of its pharmacology and use in the management of dyslipidaemia. Drugs 52:725–753PubMed Goa KL, Barradell LB, Plosker GL (1996) Bezafibrate. An update of its pharmacology and use in the management of dyslipidaemia. Drugs 52:725–753PubMed
104.
Zurück zum Zitat Gross B, Staels B (2007) PPAR agonists: multimodal drugs for the treatment of type-2 diabetes. Best Pract Res Clin Endocrinol Metab 21:687–710PubMed Gross B, Staels B (2007) PPAR agonists: multimodal drugs for the treatment of type-2 diabetes. Best Pract Res Clin Endocrinol Metab 21:687–710PubMed
105.
Zurück zum Zitat Davidoff AJ, Mason MM, Davidson MB et al (2004) Sucrose-induced cardiomyocyte dysfunction is both preventable and reversible with clinically relevant treatments. Am J Physiol Endocrinol Metab 286:E718–E724PubMed Davidoff AJ, Mason MM, Davidson MB et al (2004) Sucrose-induced cardiomyocyte dysfunction is both preventable and reversible with clinically relevant treatments. Am J Physiol Endocrinol Metab 286:E718–E724PubMed
106.
Zurück zum Zitat Dong F, Fang CX, Yang X et al (2006) Cardiac overexpression of catalase rescues cardiac contractile dysfunction induced by insulin resistance: role of oxidative stress, protein carbonyl formation and insulin sensitivity. Diabetologia 49:1421–1433PubMed Dong F, Fang CX, Yang X et al (2006) Cardiac overexpression of catalase rescues cardiac contractile dysfunction induced by insulin resistance: role of oxidative stress, protein carbonyl formation and insulin sensitivity. Diabetologia 49:1421–1433PubMed
107.
Zurück zum Zitat Wold LE, Ceylan-Isik AF, Fang CX et al (2006) Metallothionein alleviates cardiac dysfunction in streptozotocin-induced diabetes: role of Ca2+ cycling proteins, NADPH oxidase, poly(ADP-Ribose) polymerase and myosin heavy chain isozyme. Free Radic Biol Med 40:1419–1429PubMed Wold LE, Ceylan-Isik AF, Fang CX et al (2006) Metallothionein alleviates cardiac dysfunction in streptozotocin-induced diabetes: role of Ca2+ cycling proteins, NADPH oxidase, poly(ADP-Ribose) polymerase and myosin heavy chain isozyme. Free Radic Biol Med 40:1419–1429PubMed
108.
Zurück zum Zitat Yaras N, Bilginoglu A, Vassort G et al (2007) Restoration of diabetes-induced abnormal local Ca2+ release in cardiomyocytes by angiotensin II receptor blockade. Am J Physiol Heart Circ Physiol 292:H912–H920PubMed Yaras N, Bilginoglu A, Vassort G et al (2007) Restoration of diabetes-induced abnormal local Ca2+ release in cardiomyocytes by angiotensin II receptor blockade. Am J Physiol Heart Circ Physiol 292:H912–H920PubMed
109.
Zurück zum Zitat Shekelle PG, Rich MW, Morton SC et al (2003) Efficacy of angiotensin-converting enzyme inhibitors and beta-blockers in the management of left ventricular systolic dysfunction according to race, gender, and diabetic status: a meta-analysis of major clinical trials. J Am Coll Cardiol 41:1529–1538PubMed Shekelle PG, Rich MW, Morton SC et al (2003) Efficacy of angiotensin-converting enzyme inhibitors and beta-blockers in the management of left ventricular systolic dysfunction according to race, gender, and diabetic status: a meta-analysis of major clinical trials. J Am Coll Cardiol 41:1529–1538PubMed
110.
Zurück zum Zitat Sowers JR, Epstein M, Frohlich ED (2001) Diabetes, hypertension, and cardiovascular disease: an update. Hypertension 37:1053–1059PubMed Sowers JR, Epstein M, Frohlich ED (2001) Diabetes, hypertension, and cardiovascular disease: an update. Hypertension 37:1053–1059PubMed
111.
Zurück zum Zitat Murarka S, Movahed MR (2010) Diabetic cardiomyopathy. J Card Fail 16:971–979PubMed Murarka S, Movahed MR (2010) Diabetic cardiomyopathy. J Card Fail 16:971–979PubMed
112.
Zurück zum Zitat Zaman AK, Fujii S, Goto D et al (2004) Salutary effects of attenuation of angiotensin II on coronary perivascular fibrosis associated with insulin resistance and obesity. J Mol Cell Cardiol 37:525–535PubMed Zaman AK, Fujii S, Goto D et al (2004) Salutary effects of attenuation of angiotensin II on coronary perivascular fibrosis associated with insulin resistance and obesity. J Mol Cell Cardiol 37:525–535PubMed
113.
Zurück zum Zitat Orea-Tejeda A, Colin-Ramirez E, Castillo-Martinez L et al (2007) Aldosterone receptor antagonists induce favorable cardiac remodeling in diastolic heart failure patients. Rev Invest Clin 59:103–107PubMed Orea-Tejeda A, Colin-Ramirez E, Castillo-Martinez L et al (2007) Aldosterone receptor antagonists induce favorable cardiac remodeling in diastolic heart failure patients. Rev Invest Clin 59:103–107PubMed
114.
Zurück zum Zitat Shimada T (1993) Correlation between metabolic and histopathological changes in the myocardium of the KK mouse. Effect of diltiazem on the diabetic heart. Jpn Heart J 34:617–626PubMed Shimada T (1993) Correlation between metabolic and histopathological changes in the myocardium of the KK mouse. Effect of diltiazem on the diabetic heart. Jpn Heart J 34:617–626PubMed
115.
Zurück zum Zitat Afzal N, Ganguly PK, Dhalla KS et al (1988) Beneficial effects of verapamil in diabetic cardiomyopathy. Diabetes 37:936–942PubMed Afzal N, Ganguly PK, Dhalla KS et al (1988) Beneficial effects of verapamil in diabetic cardiomyopathy. Diabetes 37:936–942PubMed
116.
Zurück zum Zitat Afzal N, Pierce GN, Elimban V et al (1989) Influence of verapamil on some subcellular defects in diabetic cardiomyopathy. Am J Physiol 256:E453–E458PubMed Afzal N, Pierce GN, Elimban V et al (1989) Influence of verapamil on some subcellular defects in diabetic cardiomyopathy. Am J Physiol 256:E453–E458PubMed
117.
Zurück zum Zitat Shah TS, Satia MC, Gandhi TP et al (1995) Effects of chronic nifedipine treatment on streptozotocin-induced diabetic rats. J Cardiovasc Pharmacol 26:6–12PubMed Shah TS, Satia MC, Gandhi TP et al (1995) Effects of chronic nifedipine treatment on streptozotocin-induced diabetic rats. J Cardiovasc Pharmacol 26:6–12PubMed
118.
Zurück zum Zitat Higa S, Shimabukuro M, Shinzato T et al (1995) Long-term nifedipine treatment reduces calcium overload in isolated reperfused hearts of diabetic rats. Gen Pharmacol 26:1679–1686PubMed Higa S, Shimabukuro M, Shinzato T et al (1995) Long-term nifedipine treatment reduces calcium overload in isolated reperfused hearts of diabetic rats. Gen Pharmacol 26:1679–1686PubMed
119.
Zurück zum Zitat Aneja A, Tang WH, Bansilal S et al (2008) Diabetic cardiomyopathy: insights into pathogenesis, diagnostic challenges, and therapeutic options. Am J Med 121:748–757PubMed Aneja A, Tang WH, Bansilal S et al (2008) Diabetic cardiomyopathy: insights into pathogenesis, diagnostic challenges, and therapeutic options. Am J Med 121:748–757PubMed
120.
Zurück zum Zitat Suarez J, Scott B, Dillmann WH (2008) Conditional increase in SERCA2a protein is able to reverse contractile dysfunction and abnormal calcium flux in established diabetic cardiomyopathy. Am J Physiol Regul Integr Comp Physiol 295:R1439–R1445PubMed Suarez J, Scott B, Dillmann WH (2008) Conditional increase in SERCA2a protein is able to reverse contractile dysfunction and abnormal calcium flux in established diabetic cardiomyopathy. Am J Physiol Regul Integr Comp Physiol 295:R1439–R1445PubMed
121.
Zurück zum Zitat Wang M, Zhang WB, Zhu JH et al (2010) Breviscapine ameliorates cardiac dysfunction and regulates the myocardial Ca(2+)-cycling proteins in streptozotocin-induced diabetic rats. Acta Diabetol 47:209–218PubMed Wang M, Zhang WB, Zhu JH et al (2010) Breviscapine ameliorates cardiac dysfunction and regulates the myocardial Ca(2+)-cycling proteins in streptozotocin-induced diabetic rats. Acta Diabetol 47:209–218PubMed
122.
Zurück zum Zitat Giles TD, Ouyang J, Kerut EK et al (1998) Changes in protein kinase C in early cardiomyopathy and in gracilis muscle in the BB/Wor diabetic rat. Am J Physiol 274:H295–H307PubMed Giles TD, Ouyang J, Kerut EK et al (1998) Changes in protein kinase C in early cardiomyopathy and in gracilis muscle in the BB/Wor diabetic rat. Am J Physiol 274:H295–H307PubMed
123.
Zurück zum Zitat Liu X, Wang J, Takeda N et al (1999) Changes in cardiac protein kinase C activities and isozymes in streptozotocin-induced diabetes. Am J Physiol 277:E798–E804PubMed Liu X, Wang J, Takeda N et al (1999) Changes in cardiac protein kinase C activities and isozymes in streptozotocin-induced diabetes. Am J Physiol 277:E798–E804PubMed
124.
Zurück zum Zitat Malhotra A, Kang BP, Cheung S et al (2001) Angiotensin II promotes glucose-induced activation of cardiac protein kinase C isozymes and phosphorylation of troponin I. Diabetes 50:1918–1926PubMed Malhotra A, Kang BP, Cheung S et al (2001) Angiotensin II promotes glucose-induced activation of cardiac protein kinase C isozymes and phosphorylation of troponin I. Diabetes 50:1918–1926PubMed
125.
Zurück zum Zitat Shizukuda Y, Buttrick PM (2001) Protein kinase C(epsilon) modulates apoptosis induced by beta -adrenergic stimulation in adult rat ventricular myocytes via extracellular signal-regulated kinase (ERK) activity. J Mol Cell Cardiol 33:1791–1803PubMed Shizukuda Y, Buttrick PM (2001) Protein kinase C(epsilon) modulates apoptosis induced by beta -adrenergic stimulation in adult rat ventricular myocytes via extracellular signal-regulated kinase (ERK) activity. J Mol Cell Cardiol 33:1791–1803PubMed
126.
Zurück zum Zitat Pastukh V, Wu S, Ricci C et al (2005) Reversal of hyperglycemic preconditioning by angiotensin II: role of calcium transport. Am J Physiol Heart Circ Physiol 288:H1965–H1975PubMed Pastukh V, Wu S, Ricci C et al (2005) Reversal of hyperglycemic preconditioning by angiotensin II: role of calcium transport. Am J Physiol Heart Circ Physiol 288:H1965–H1975PubMed
127.
Zurück zum Zitat Wakasaki H, Koya D, Schoen FJ et al (1997) Targeted overexpression of protein kinase C beta2 isoform in myocardium causes cardiomyopathy. Proc Natl Acad Sci USA 94:9320–9325PubMed Wakasaki H, Koya D, Schoen FJ et al (1997) Targeted overexpression of protein kinase C beta2 isoform in myocardium causes cardiomyopathy. Proc Natl Acad Sci USA 94:9320–9325PubMed
Metadaten
Titel
Metabolic dysfunction in diabetic cardiomyopathy
verfasst von
Michael Isfort
Sarah C. W. Stevens
Stephen Schaffer
Chian Ju Jong
Loren E. Wold
Publikationsdatum
01.01.2014
Verlag
Springer US
Erschienen in
Heart Failure Reviews / Ausgabe 1/2014
Print ISSN: 1382-4147
Elektronische ISSN: 1573-7322
DOI
https://doi.org/10.1007/s10741-013-9377-8

Weitere Artikel der Ausgabe 1/2014

Heart Failure Reviews 1/2014 Zur Ausgabe

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.