Skip to main content
Erschienen in: Inflammation 5/2019

25.05.2019 | ORIGINAL ARTICLE

Novel Piperazino-Enaminones Decrease Pro-inflammatory Cytokines Following Hemarthrosis in a Hemophilia Mouse Model

verfasst von: Chen Zhong, Doreen Szollosi, Junjiang Sun, Baolai Hua, Ola Ghoneim, Ashley Bill, Yingping Zhuang, Ivan Edafiogho

Erschienen in: Inflammation | Ausgabe 5/2019

Einloggen, um Zugang zu erhalten

Abstract

Hemarthrosis is the primary cause of hemophiliac arthropathy (HA). Pro-inflammatory cytokines are thought to play an important role in the pathogenesis of HA, and thus, anti-cytokine approaches may be used as an adjuvant therapy. A novel series of enaminone compounds (JODI), that contain the N-aryl piperazino motif, have been shown in vitro to reduce pro-inflammatory cytokines and thus may be efficacious in vivo. In this report, we will assess whether JODI can suppress multiple cytokines which might be potentially responsible for joint inflammation in a mouse model of hemarthrosis. The results showed that JODI significantly improved the survival after LPS treatment, and most pro-inflammatory cytokines/chemokines were decreased significantly after JODI administration. In the hemophilia mouse model, hemarthrosis resulted in local cytokine/chemokine changes, represented by elevated pro-inflammatory (IL-6, MCP-1, MIP-1α, MIP-1β) and pro-angiogenic (VEGF and IL-33) cytokines, and decreased anti-pro-inflammatory cytokines IL-4 and IL-10. The changes were reversed by administration of JODI, which can be used as a novel approach to manage hemophilia arthropathy.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Srivastava, A., A.K. Brewer, E.P. Mauser-Bunschoten, et al. 2012. Guidelines for the management of hemophilia. Hemophilia 19: e1–e47.CrossRef Srivastava, A., A.K. Brewer, E.P. Mauser-Bunschoten, et al. 2012. Guidelines for the management of hemophilia. Hemophilia 19: e1–e47.CrossRef
2.
Zurück zum Zitat Soucie, J.M., S.D. Grosse, A.E. Siddiqi, et al. 2017. The effects of joint disease, inhibitors and other complications on health-related quality of life among males with severe hemophilia A in the United States. Hemophilia 23: e287–e293.CrossRef Soucie, J.M., S.D. Grosse, A.E. Siddiqi, et al. 2017. The effects of joint disease, inhibitors and other complications on health-related quality of life among males with severe hemophilia A in the United States. Hemophilia 23: e287–e293.CrossRef
3.
Zurück zum Zitat Nilsson, I.M., E. Berntorp, T. Lofqvist, et al. 1992. Twenty-five years’ experience of prophylactic treatment in severe hemophilia A and B. Journal of Internal Medicine 232: 25–32.CrossRefPubMed Nilsson, I.M., E. Berntorp, T. Lofqvist, et al. 1992. Twenty-five years’ experience of prophylactic treatment in severe hemophilia A and B. Journal of Internal Medicine 232: 25–32.CrossRefPubMed
4.
Zurück zum Zitat Manco-Johnson, M.J., B. Lundin, S. Funk, C. Peterfy, D. Raunig, M. Werk, C.L. Kempton, M.T. Reding, S. Goranov, L. Gercheva, L. Rusen, V. Uscatescu, M. Pierdominici, S. Engelen, J. Pocoski, D. Walker, and W. Hong. 2017. Effect of late prophylaxis in hemophilia on joint status: a randomized trial. Journal of Thrombosis and Haemostasis 15: 2115–2124.CrossRefPubMed Manco-Johnson, M.J., B. Lundin, S. Funk, C. Peterfy, D. Raunig, M. Werk, C.L. Kempton, M.T. Reding, S. Goranov, L. Gercheva, L. Rusen, V. Uscatescu, M. Pierdominici, S. Engelen, J. Pocoski, D. Walker, and W. Hong. 2017. Effect of late prophylaxis in hemophilia on joint status: a randomized trial. Journal of Thrombosis and Haemostasis 15: 2115–2124.CrossRefPubMed
5.
Zurück zum Zitat Manco-Johnson, Marilyn J., Thomas C. Abshire, Amy D. Shapiro, Brenda Riske, Michele R. Hacker, Ray Kilcoyne, J. David Ingram, Michael L. Manco-Johnson, Sharon Funk, Linda Jacobson, Leonard A. Valentino, W. Keith Hoots, George R. Buchanan, Donna DiMichele, Michael Recht, Deborah Brown, Cindy Leissinger, Shirley Bleak, Alan Cohen, Prasad Mathew, Alison Matsunaga, Desiree Medeiros, Diane Nugent, Gregory A. Thomas, Alexis A. Thompson, Kevin McRedmond, J. Michael Soucie, Harlan Austin, and Bruce L. Evatt. 2007. Prophylaxis versus episodic treatment to prevent joint disease in boys with severe hemophilia. The New England Journal of Medicine 357: 535–544.CrossRefPubMed Manco-Johnson, Marilyn J., Thomas C. Abshire, Amy D. Shapiro, Brenda Riske, Michele R. Hacker, Ray Kilcoyne, J. David Ingram, Michael L. Manco-Johnson, Sharon Funk, Linda Jacobson, Leonard A. Valentino, W. Keith Hoots, George R. Buchanan, Donna DiMichele, Michael Recht, Deborah Brown, Cindy Leissinger, Shirley Bleak, Alan Cohen, Prasad Mathew, Alison Matsunaga, Desiree Medeiros, Diane Nugent, Gregory A. Thomas, Alexis A. Thompson, Kevin McRedmond, J. Michael Soucie, Harlan Austin, and Bruce L. Evatt. 2007. Prophylaxis versus episodic treatment to prevent joint disease in boys with severe hemophilia. The New England Journal of Medicine 357: 535–544.CrossRefPubMed
6.
Zurück zum Zitat Fischer, K., K. Steen Carlsson, P. Petrini, et al. 2013. Intermediate-dose versus high-dose prophylaxis for severe hemophilia: comparing outcome and costs since the 1970s. Blood 122: 1129–1136.CrossRefPubMedPubMedCentral Fischer, K., K. Steen Carlsson, P. Petrini, et al. 2013. Intermediate-dose versus high-dose prophylaxis for severe hemophilia: comparing outcome and costs since the 1970s. Blood 122: 1129–1136.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Simpson, M.L., and L.A. Valentino. 2012. Management of joint bleeding in hemophilia. Expert Review of Hematology 5: 459–468.CrossRefPubMed Simpson, M.L., and L.A. Valentino. 2012. Management of joint bleeding in hemophilia. Expert Review of Hematology 5: 459–468.CrossRefPubMed
8.
Zurück zum Zitat Arruda, V.R., B.S. Doshi, and B.J. Samelson-Jones. 2017. Novel approaches to hemophilia therapy: successes and challenges. Blood 130: 2251–2256.CrossRefPubMedPubMedCentral Arruda, V.R., B.S. Doshi, and B.J. Samelson-Jones. 2017. Novel approaches to hemophilia therapy: successes and challenges. Blood 130: 2251–2256.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Melchiorre, D., M. Manetti, and M. Matucci-Cerinic. 2017. Pathophysiology of hemophilic arthropathy. Journal of Clinical Medicine 6: 63.CrossRefPubMedCentral Melchiorre, D., M. Manetti, and M. Matucci-Cerinic. 2017. Pathophysiology of hemophilic arthropathy. Journal of Clinical Medicine 6: 63.CrossRefPubMedCentral
10.
Zurück zum Zitat Ovlisen, K., A.T. Kristensen, A.L. Jensen, et al. 2009. IL-1 beta, IL-6, KC and MCP-1 are elevated in synovial fluid from hemophilic mice with experimentally induced haemarthrosis. Hemophilia 15: 802–810.CrossRef Ovlisen, K., A.T. Kristensen, A.L. Jensen, et al. 2009. IL-1 beta, IL-6, KC and MCP-1 are elevated in synovial fluid from hemophilic mice with experimentally induced haemarthrosis. Hemophilia 15: 802–810.CrossRef
11.
Zurück zum Zitat Sen, D., A. Chapla, N. Walter, V. Daniel, A. Srivastava, and G.R. Jayandharan. 2013. Nuclear factor (NF)-kappaB and its associated pathways are major molecular regulators of blood-induced joint damage in a murine model of hemophilia. Journal of Thrombosis and Haemostasis 11: 293–306.CrossRefPubMed Sen, D., A. Chapla, N. Walter, V. Daniel, A. Srivastava, and G.R. Jayandharan. 2013. Nuclear factor (NF)-kappaB and its associated pathways are major molecular regulators of blood-induced joint damage in a murine model of hemophilia. Journal of Thrombosis and Haemostasis 11: 293–306.CrossRefPubMed
12.
Zurück zum Zitat El-Hashim, A., S. Yousefi, I. Edafiogho, et al. 2010. Anti-inflammatory and immunosuppressive effects of the enaminone E121. European Journal of Pharmacology 632: 73–78.CrossRefPubMed El-Hashim, A., S. Yousefi, I. Edafiogho, et al. 2010. Anti-inflammatory and immunosuppressive effects of the enaminone E121. European Journal of Pharmacology 632: 73–78.CrossRefPubMed
13.
Zurück zum Zitat Ghoneim, O.M., A. Bill, J. Dhuguru, D.E. Szollosi, and I.O. Edafiogho. 2018. Design, synthesis and biological evaluation of piperazino-enaminones as novel suppressants of pro-inflammatory cytokines. Bioorganic & Medicinal Chemistry 26: 3890–3898.CrossRef Ghoneim, O.M., A. Bill, J. Dhuguru, D.E. Szollosi, and I.O. Edafiogho. 2018. Design, synthesis and biological evaluation of piperazino-enaminones as novel suppressants of pro-inflammatory cytokines. Bioorganic & Medicinal Chemistry 26: 3890–3898.CrossRef
14.
Zurück zum Zitat Szollosi, D.E., O.A. Ghoneim, M.K. Manzoor, et al. 2016. Novel piperazino-enaminones suppress pro-inflammatory cytokines and inhibit chemokine receptor CCR2. Inflammation 39: 2053–2061.CrossRefPubMed Szollosi, D.E., O.A. Ghoneim, M.K. Manzoor, et al. 2016. Novel piperazino-enaminones suppress pro-inflammatory cytokines and inhibit chemokine receptor CCR2. Inflammation 39: 2053–2061.CrossRefPubMed
15.
Zurück zum Zitat Lin, H.F., N. Maeda, O. Smithies, D.L. Straight, and D.W. Stafford. 1997. A coagulation factor IX-deficient mouse model for human hemophilia B. Blood 90: 3962–3966.PubMedCrossRef Lin, H.F., N. Maeda, O. Smithies, D.L. Straight, and D.W. Stafford. 1997. A coagulation factor IX-deficient mouse model for human hemophilia B. Blood 90: 3962–3966.PubMedCrossRef
16.
Zurück zum Zitat Sun, J., N. Hakobyan, L.A. Valentino, B.L. Feldman, R.J. Samulski, and P.E. Monahan. 2008. Intraarticular factor IX protein or gene replacement protects against development of hemophilic synovitis in the absence of circulating factor IX. Blood 112: 4532–4541.CrossRefPubMedPubMedCentral Sun, J., N. Hakobyan, L.A. Valentino, B.L. Feldman, R.J. Samulski, and P.E. Monahan. 2008. Intraarticular factor IX protein or gene replacement protects against development of hemophilic synovitis in the absence of circulating factor IX. Blood 112: 4532–4541.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Sun, J., B. Hua, E.W. Livingston, S. Taves, P.B. Johansen, M. Hoffman, M. Ezban, D.M. Monroe, T.A. Bateman, and P.E. Monahan. 2017. Abnormal joint and bone wound healing in hemophilia mice is improved by extending factor IX activity after hemarthrosis. Blood 129: 2161–2171.CrossRefPubMedPubMedCentral Sun, J., B. Hua, E.W. Livingston, S. Taves, P.B. Johansen, M. Hoffman, M. Ezban, D.M. Monroe, T.A. Bateman, and P.E. Monahan. 2017. Abnormal joint and bone wound healing in hemophilia mice is improved by extending factor IX activity after hemarthrosis. Blood 129: 2161–2171.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Valentino, L.A., N. Hakobyan, C. Enockson, et al. 2012. Exploring the biological basis of hemophilic joint disease: experimental studies. Hemophilia 18: 310–318.CrossRef Valentino, L.A., N. Hakobyan, C. Enockson, et al. 2012. Exploring the biological basis of hemophilic joint disease: experimental studies. Hemophilia 18: 310–318.CrossRef
19.
Zurück zum Zitat Drake, T.A., J.H. Morrissey, and T.S. Edgington. 1989. Selective cellular expression of tissue factor in human tissues, implications for disorders of hemostasis and thrombosis. The American Journal of Pathology 134: 1087–1097.PubMedPubMedCentral Drake, T.A., J.H. Morrissey, and T.S. Edgington. 1989. Selective cellular expression of tissue factor in human tissues, implications for disorders of hemostasis and thrombosis. The American Journal of Pathology 134: 1087–1097.PubMedPubMedCentral
21.
Zurück zum Zitat Deschaseaux, F., L. Sensebe, and D. Heymann. 2009. Mechanisms of bone repair and regeneration. Trends in Molecular Medicine 15: 417–429.CrossRefPubMed Deschaseaux, F., L. Sensebe, and D. Heymann. 2009. Mechanisms of bone repair and regeneration. Trends in Molecular Medicine 15: 417–429.CrossRefPubMed
22.
Zurück zum Zitat Baud'huin, M., F. Lamoureux, L. Duplomb, et al. 2007. RANKL, RANK, osteoprotegerin: key partners of osteoimmunology and vascular diseases. Cellular and Molecular Life Sciences 64: 2334–2350.CrossRefPubMed Baud'huin, M., F. Lamoureux, L. Duplomb, et al. 2007. RANKL, RANK, osteoprotegerin: key partners of osteoimmunology and vascular diseases. Cellular and Molecular Life Sciences 64: 2334–2350.CrossRefPubMed
23.
Zurück zum Zitat Kaneshiro, S., K. Ebina, K. Shi, C. Higuchi, M. Hirao, M. Okamoto, K. Koizumi, T. Morimoto, H. Yoshikawa, and J. Hashimoto. 2014. IL-6 negatively regulates osteoblast differentiation through the SHP2/MEK2 and SHP2/Akt2 pathways in vitro. Journal of Bone and Mineral Metabolism 32: 378–392.CrossRefPubMed Kaneshiro, S., K. Ebina, K. Shi, C. Higuchi, M. Hirao, M. Okamoto, K. Koizumi, T. Morimoto, H. Yoshikawa, and J. Hashimoto. 2014. IL-6 negatively regulates osteoblast differentiation through the SHP2/MEK2 and SHP2/Akt2 pathways in vitro. Journal of Bone and Mineral Metabolism 32: 378–392.CrossRefPubMed
24.
Zurück zum Zitat Sims, N.A., B.J. Jenkins, J.M. Quinn, et al. 2004. Glycoprotein 130 regulates bone turnover and bone size by distinct downstream signaling pathways. The Journal of Clinical Investigation 113: 379–389.CrossRefPubMedPubMedCentral Sims, N.A., B.J. Jenkins, J.M. Quinn, et al. 2004. Glycoprotein 130 regulates bone turnover and bone size by distinct downstream signaling pathways. The Journal of Clinical Investigation 113: 379–389.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat van Vulpen, L.F., R.E. Schutgens, K. Coeleveld, et al. 2015. IL-1beta, in contrast to TNF alpha, is pivotal in blood-induced cartilage damage and is a potential target for therapy. Blood 126: 2239–2246.CrossRefPubMed van Vulpen, L.F., R.E. Schutgens, K. Coeleveld, et al. 2015. IL-1beta, in contrast to TNF alpha, is pivotal in blood-induced cartilage damage and is a potential target for therapy. Blood 126: 2239–2246.CrossRefPubMed
26.
Zurück zum Zitat Cavalli, G., and C.A. Dinarello. 2015. Treating rheumatological diseases and co-morbidities with interleukin-1 blocking therapies. Rheumatology 54: 2134–2144.PubMed Cavalli, G., and C.A. Dinarello. 2015. Treating rheumatological diseases and co-morbidities with interleukin-1 blocking therapies. Rheumatology 54: 2134–2144.PubMed
27.
Zurück zum Zitat Latourte, A., A. Frazier, C. Briere, et al. 2013. Interleukin-1 receptor antagonist in refractory haemochromatosis-related arthritis of the hands. Annals of the Rheumatic Diseases 72: 783–784.CrossRefPubMed Latourte, A., A. Frazier, C. Briere, et al. 2013. Interleukin-1 receptor antagonist in refractory haemochromatosis-related arthritis of the hands. Annals of the Rheumatic Diseases 72: 783–784.CrossRefPubMed
28.
Zurück zum Zitat Narkbunnam, N., J. Sun, G. Hu, F.C. Lin, T.A. Bateman, M. Mihara, and P.E. Monahan. 2013. IL-6 receptor antagonist as adjunctive therapy with clotting factor replacement to protect against bleeding-induced arthropathy in hemophilia. Journal of Thrombosis and Haemostasis 11: 881–893.CrossRefPubMed Narkbunnam, N., J. Sun, G. Hu, F.C. Lin, T.A. Bateman, M. Mihara, and P.E. Monahan. 2013. IL-6 receptor antagonist as adjunctive therapy with clotting factor replacement to protect against bleeding-induced arthropathy in hemophilia. Journal of Thrombosis and Haemostasis 11: 881–893.CrossRefPubMed
29.
Zurück zum Zitat Sun, Junjiang, Genlin Hu, and Paul E. Monahan. 2009. TNF-alpha antagonists augment factor replacement to prevent arthropathy in hemophilic mice. Journal of Thrombosis and Haemostasis 7 (Suppl 2): 225. Sun, Junjiang, Genlin Hu, and Paul E. Monahan. 2009. TNF-alpha antagonists augment factor replacement to prevent arthropathy in hemophilic mice. Journal of Thrombosis and Haemostasis 7 (Suppl 2): 225.
30.
Zurück zum Zitat Melchiorre, D., M. Morfini, S. Linari, A.L. Zignego, M. Innocenti, and M. Matucci Cerinic. 2014. Anti-TNF-alpha therapy prevents the recurrence of joint bleeding in hemophilia and arthritis. Rheumatology 53: 576–578.CrossRefPubMed Melchiorre, D., M. Morfini, S. Linari, A.L. Zignego, M. Innocenti, and M. Matucci Cerinic. 2014. Anti-TNF-alpha therapy prevents the recurrence of joint bleeding in hemophilia and arthritis. Rheumatology 53: 576–578.CrossRefPubMed
31.
Zurück zum Zitat McDonald, A.G., K. Yang, H.R. Roberts, D.M. Monroe, and M. Hoffman. 2008. Perivascular tissue factor is down-regulated following cutaneous wounding: implications for bleeding in hemophilia. Blood 111: 2046–2048.CrossRefPubMed McDonald, A.G., K. Yang, H.R. Roberts, D.M. Monroe, and M. Hoffman. 2008. Perivascular tissue factor is down-regulated following cutaneous wounding: implications for bleeding in hemophilia. Blood 111: 2046–2048.CrossRefPubMed
32.
Zurück zum Zitat Acharya, S.S., R.N. Kaplan, D. Macdonald, O.T. Fabiyi, D. DiMichele, and D. Lyden. 2011. Neoangiogenesis contributes to the development of hemophilic synovitis. Blood 117: 2484–2493.CrossRefPubMedPubMedCentral Acharya, S.S., R.N. Kaplan, D. Macdonald, O.T. Fabiyi, D. DiMichele, and D. Lyden. 2011. Neoangiogenesis contributes to the development of hemophilic synovitis. Blood 117: 2484–2493.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat He, R., H. Yin, B. Yuan, T. Liu, L. Luo, P. Huang, L. Dai, and K. Zeng. 2017. IL-33 improves wound healing through enhanced M2 macrophage polarization in diabetic mice. Molecular Immunology 90: 42–49.CrossRefPubMed He, R., H. Yin, B. Yuan, T. Liu, L. Luo, P. Huang, L. Dai, and K. Zeng. 2017. IL-33 improves wound healing through enhanced M2 macrophage polarization in diabetic mice. Molecular Immunology 90: 42–49.CrossRefPubMed
34.
Zurück zum Zitat Nefla, M., D. Holzinger, F. Berenbaum, and C. Jacques. 2016. The danger from within: alarmins in arthritis. Nature Reviews Rheumatology 12: 669–683.CrossRefPubMed Nefla, M., D. Holzinger, F. Berenbaum, and C. Jacques. 2016. The danger from within: alarmins in arthritis. Nature Reviews Rheumatology 12: 669–683.CrossRefPubMed
35.
Zurück zum Zitat Nieuwenhuizen, L., R.E. Schutgens, K. Coeleveld, et al. 2014. Hemarthrosis in hemophilic mice results in alterations in M1-M2 monocyte/macrophage polarization. Thrombosis Research 133: 390–395.CrossRefPubMed Nieuwenhuizen, L., R.E. Schutgens, K. Coeleveld, et al. 2014. Hemarthrosis in hemophilic mice results in alterations in M1-M2 monocyte/macrophage polarization. Thrombosis Research 133: 390–395.CrossRefPubMed
36.
Zurück zum Zitat van Meegeren, M.E., G. Roosendaal, N.W. Jansen, et al. 2012. IL-4 alone and in combination with IL-10 protects against blood-induced cartilage damage. Osteoarthritis and Cartilage 20: 764–772.CrossRefPubMed van Meegeren, M.E., G. Roosendaal, N.W. Jansen, et al. 2012. IL-4 alone and in combination with IL-10 protects against blood-induced cartilage damage. Osteoarthritis and Cartilage 20: 764–772.CrossRefPubMed
37.
Zurück zum Zitat van Meegeren, M.E., G. Roosendaal, K. van Veghel, et al. 2013. A short time window to profit from protection of blood-induced cartilage damage by IL-4 plus IL-10. Rheumatology 52: 1563–1571.CrossRefPubMed van Meegeren, M.E., G. Roosendaal, K. van Veghel, et al. 2013. A short time window to profit from protection of blood-induced cartilage damage by IL-4 plus IL-10. Rheumatology 52: 1563–1571.CrossRefPubMed
38.
Zurück zum Zitat van Meegeren, M.E., G. Roosendaal, K. Coeleveld, et al. 2013. A single intra-articular injection with IL-4 plus IL-10 ameliorates blood-induced cartilage degeneration in hemophilic mice. British J Hematology 160: 515–520.CrossRef van Meegeren, M.E., G. Roosendaal, K. Coeleveld, et al. 2013. A single intra-articular injection with IL-4 plus IL-10 ameliorates blood-induced cartilage degeneration in hemophilic mice. British J Hematology 160: 515–520.CrossRef
Metadaten
Titel
Novel Piperazino-Enaminones Decrease Pro-inflammatory Cytokines Following Hemarthrosis in a Hemophilia Mouse Model
verfasst von
Chen Zhong
Doreen Szollosi
Junjiang Sun
Baolai Hua
Ola Ghoneim
Ashley Bill
Yingping Zhuang
Ivan Edafiogho
Publikationsdatum
25.05.2019
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 5/2019
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-019-01032-y

Weitere Artikel der Ausgabe 5/2019

Inflammation 5/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.