Skip to main content
Erschienen in: Journal of Mammary Gland Biology and Neoplasia 1/2014

01.03.2014

Milk Secretion: The Role of SNARE Proteins

verfasst von: Sandrine Truchet, Sophie Chat, Michèle Ollivier-Bousquet

Erschienen in: Journal of Mammary Gland Biology and Neoplasia | Ausgabe 1/2014

Einloggen, um Zugang zu erhalten

Abstract

During lactation, polarized mammary epithelial secretory cells (MESCs) secrete huge quantities of the nutrient molecules that make up milk, i.e. proteins, fat globules and soluble components such as lactose and minerals. Some of these nutrients are only produced by the MESCs themselves, while others are to a great extent transferred from the blood. MESCs can thus be seen as a crossroads for both the uptake and the secretion with cross-talks between intracellular compartments that enable spatial and temporal coordination of the secretion of the milk constituents. Although the physiology of lactation is well understood, the molecular mechanisms underlying the secretion of milk components remain incompletely characterized. Major milk proteins, namely caseins, are secreted by exocytosis, while the milk fat globules are released by budding, being enwrapped by the apical plasma membrane. Prolactin, which stimulates the transcription of casein genes, also induces the production of arachidonic acid, leading to accelerated casein transport and/or secretion. Because of their ability to form complexes that bridge two membranes and promote their fusion, SNARE (Soluble N-ethylmaleimide-Sensitive Factor Attachment Protein Receptor) proteins are involved in almost all intracellular trafficking steps and exocytosis. As SNAREs can bind arachidonic acid, they could be the effectors of the secretagogue effect of prolactin in MESCs. Indeed, some SNAREs have been observed between secretory vesicles and lipid droplets suggesting that these proteins could not only orchestrate the intracellular trafficking of milk components but also act as key regulators for both the coupling and coordination of milk product secretion in response to hormones.
Literatur
1.
Zurück zum Zitat Mather IH, Keenan TW. The cell biology of milk secretion: historical notes. Introduction. J Mammary Gland Biol Neoplasia. 1998;3(3):227–32.PubMed Mather IH, Keenan TW. The cell biology of milk secretion: historical notes. Introduction. J Mammary Gland Biol Neoplasia. 1998;3(3):227–32.PubMed
2.
Zurück zum Zitat McManaman JL, Neville MC. Mammary physiology and milk secretion. Adv Drug Deliv Rev. 2003;55(5):629–41.PubMed McManaman JL, Neville MC. Mammary physiology and milk secretion. Adv Drug Deliv Rev. 2003;55(5):629–41.PubMed
3.
Zurück zum Zitat Chat S, Layani S, Mahaut C, Henry C, Chanat E, Truchet S. Characterisation of the potential SNARE proteins relevant to milk product release by mouse mammary epithelial cells. Eur J Cell Biol. 2011;90(5):401–13.PubMed Chat S, Layani S, Mahaut C, Henry C, Chanat E, Truchet S. Characterisation of the potential SNARE proteins relevant to milk product release by mouse mammary epithelial cells. Eur J Cell Biol. 2011;90(5):401–13.PubMed
4.
Zurück zum Zitat Rothman JE. Mechanisms of intracellular protein transport. Nature. 1994;372(6501):55–63.PubMed Rothman JE. Mechanisms of intracellular protein transport. Nature. 1994;372(6501):55–63.PubMed
5.
Zurück zum Zitat Südhof TC. The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature. 1995;375(6533):645–53.PubMed Südhof TC. The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature. 1995;375(6533):645–53.PubMed
6.
Zurück zum Zitat Weber T, Zemelman BV, McNew JA, Westermann B, Gmachl M, Parlati F, et al. SNAREpins: minimal machinery for membrane fusion. Cell. 1998;92(6):759–72.PubMed Weber T, Zemelman BV, McNew JA, Westermann B, Gmachl M, Parlati F, et al. SNAREpins: minimal machinery for membrane fusion. Cell. 1998;92(6):759–72.PubMed
7.
Zurück zum Zitat Jahn R, Südhof TC. Membrane fusion and exocytosis. Ann Rev Biochem. 1999;68:863–911.PubMed Jahn R, Südhof TC. Membrane fusion and exocytosis. Ann Rev Biochem. 1999;68:863–911.PubMed
8.
Zurück zum Zitat Chen YA, Scheller RH. SNARE-mediated membrane fusion. Nat Rev Mol Cell Biol. 2001;2(2):98–106.PubMed Chen YA, Scheller RH. SNARE-mediated membrane fusion. Nat Rev Mol Cell Biol. 2001;2(2):98–106.PubMed
9.
Zurück zum Zitat Söllner T, Whiteheart SW, Brunner M, Erdjument-Bromage H, Geromanos S, Tempst P, et al. SNAP receptors implicated in vesicle targeting and fusion. Nature. 1993;362(6418):318–24.PubMed Söllner T, Whiteheart SW, Brunner M, Erdjument-Bromage H, Geromanos S, Tempst P, et al. SNAP receptors implicated in vesicle targeting and fusion. Nature. 1993;362(6418):318–24.PubMed
10.
Zurück zum Zitat Fasshauer D, Sutton RB, Brunger AT, Jahn R. Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. Proc Natl Acad Sci U S A. 1998;95(26):15781–6.PubMedCentralPubMed Fasshauer D, Sutton RB, Brunger AT, Jahn R. Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. Proc Natl Acad Sci U S A. 1998;95(26):15781–6.PubMedCentralPubMed
11.
Zurück zum Zitat Binz T, Sikorra S, Mahrhold S. Clostridial neurotoxins: mechanism of SNARE cleavage and outlook on potential substrate specificity reengineering. Toxins. 2010;2(4):665–82.PubMedCentralPubMed Binz T, Sikorra S, Mahrhold S. Clostridial neurotoxins: mechanism of SNARE cleavage and outlook on potential substrate specificity reengineering. Toxins. 2010;2(4):665–82.PubMedCentralPubMed
12.
Zurück zum Zitat Jahn R, Scheller RH. SNAREs–engines for membrane fusion. Nat Rev Mol Cell Biol. 2006;7(9):631–43.PubMed Jahn R, Scheller RH. SNAREs–engines for membrane fusion. Nat Rev Mol Cell Biol. 2006;7(9):631–43.PubMed
13.
Zurück zum Zitat McNew JA. Regulation of SNARE-mediated membrane fusion during exocytosis. Chem Rev. 2008;108(5):1669–86.PubMed McNew JA. Regulation of SNARE-mediated membrane fusion during exocytosis. Chem Rev. 2008;108(5):1669–86.PubMed
14.
Zurück zum Zitat Fiebig KM, Rice LM, Pollock E, Brunger AT. Folding intermediates of SNARE complex assembly. Nat Struct Biol. 1999;6(2):117–23.PubMed Fiebig KM, Rice LM, Pollock E, Brunger AT. Folding intermediates of SNARE complex assembly. Nat Struct Biol. 1999;6(2):117–23.PubMed
15.
Zurück zum Zitat Hazzard J, Südhof TC, Rizo J. NMR analysis of the structure of synaptobrevin and of its interaction with syntaxin. J Biomol NMR. 1999;14(3):203–7.PubMed Hazzard J, Südhof TC, Rizo J. NMR analysis of the structure of synaptobrevin and of its interaction with syntaxin. J Biomol NMR. 1999;14(3):203–7.PubMed
16.
Zurück zum Zitat Rossi V, Banfield DK, Vacca M, Dietrich LE, Ungermann C, D’Esposito M, et al. Longins and their longin domains: regulated SNAREs and multifunctional SNARE regulators. Trends Biochem Sci. 2004;29(12):682–8.PubMed Rossi V, Banfield DK, Vacca M, Dietrich LE, Ungermann C, D’Esposito M, et al. Longins and their longin domains: regulated SNAREs and multifunctional SNARE regulators. Trends Biochem Sci. 2004;29(12):682–8.PubMed
17.
Zurück zum Zitat Dulubova I, Sugita S, Hill S, Hosaka M, Fernandez I, Südhof TC, et al. A conformational switch in syntaxin during exocytosis: role of munc18. Embo J. 1999;18(16):4372–82.PubMedCentralPubMed Dulubova I, Sugita S, Hill S, Hosaka M, Fernandez I, Südhof TC, et al. A conformational switch in syntaxin during exocytosis: role of munc18. Embo J. 1999;18(16):4372–82.PubMedCentralPubMed
18.
Zurück zum Zitat Fernandez I, Ubach J, Dulubova I, Zhang X, Südhof TC, Rizo J. Three-dimensional structure of an evolutionarily conserved N-terminal domain of syntaxin 1A. Cell. 1998;94(6):841–9.PubMed Fernandez I, Ubach J, Dulubova I, Zhang X, Südhof TC, Rizo J. Three-dimensional structure of an evolutionarily conserved N-terminal domain of syntaxin 1A. Cell. 1998;94(6):841–9.PubMed
19.
Zurück zum Zitat Lerman JC, Robblee J, Fairman R, Hughson FM. Structural analysis of the neuronal SNARE protein syntaxin-1A. Biochemistry. 2000;39(29):8470–9.PubMed Lerman JC, Robblee J, Fairman R, Hughson FM. Structural analysis of the neuronal SNARE protein syntaxin-1A. Biochemistry. 2000;39(29):8470–9.PubMed
20.
Zurück zum Zitat Margittai M, Fasshauer D, Jahn R, Langen R. The Habc domain and the SNARE core complex are connected by a highly flexible linker. Biochemistry. 2003;42(14):4009–14.PubMed Margittai M, Fasshauer D, Jahn R, Langen R. The Habc domain and the SNARE core complex are connected by a highly flexible linker. Biochemistry. 2003;42(14):4009–14.PubMed
21.
Zurück zum Zitat Misura KM, Scheller RH, Weis WI. Three-dimensional structure of the neuronal-Sec1-syntaxin 1a complex. Nature. 2000;404(6776):355–62.PubMed Misura KM, Scheller RH, Weis WI. Three-dimensional structure of the neuronal-Sec1-syntaxin 1a complex. Nature. 2000;404(6776):355–62.PubMed
22.
Zurück zum Zitat Dulubova I, Khvotchev M, Liu S, Huryeva I, Südhof TC, Rizo J. Munc18-1 binds directly to the neuronal SNARE complex. Proc Natl Acad Sci U S A. 2007;104(8):2697–702.PubMedCentralPubMed Dulubova I, Khvotchev M, Liu S, Huryeva I, Südhof TC, Rizo J. Munc18-1 binds directly to the neuronal SNARE complex. Proc Natl Acad Sci U S A. 2007;104(8):2697–702.PubMedCentralPubMed
23.
Zurück zum Zitat Hu SH, Latham CF, Gee CL, James DE, Martin JL. Structure of the Munc18c/Syntaxin4 N-peptide complex defines universal features of the N-peptide binding mode of Sec1/Munc18 proteins. Proc Natl Acad Sci U S A. 2007;104(21):8773–8.PubMedCentralPubMed Hu SH, Latham CF, Gee CL, James DE, Martin JL. Structure of the Munc18c/Syntaxin4 N-peptide complex defines universal features of the N-peptide binding mode of Sec1/Munc18 proteins. Proc Natl Acad Sci U S A. 2007;104(21):8773–8.PubMedCentralPubMed
24.
Zurück zum Zitat Zhou P, Pang ZP, Yang X, Zhang Y, Rosenmund C, Bacaj T, et al. Syntaxin-1 N-peptide and Habc-domain perform distinct essential functions in synaptic vesicle fusion. Embo J. 2013;32(1):159–71.PubMedCentralPubMed Zhou P, Pang ZP, Yang X, Zhang Y, Rosenmund C, Bacaj T, et al. Syntaxin-1 N-peptide and Habc-domain perform distinct essential functions in synaptic vesicle fusion. Embo J. 2013;32(1):159–71.PubMedCentralPubMed
25.
Zurück zum Zitat McNew JA, Weber T, Engelman DM, Söllner TH, Rothman JE. The length of the flexible SNAREpin juxtamembrane region is a critical determinant of SNARE-dependent fusion. Mol Cell. 1999;4(3):415–21.PubMed McNew JA, Weber T, Engelman DM, Söllner TH, Rothman JE. The length of the flexible SNAREpin juxtamembrane region is a critical determinant of SNARE-dependent fusion. Mol Cell. 1999;4(3):415–21.PubMed
26.
Zurück zum Zitat McNew JA, Weber T, Parlati F, Johnston RJ, Melia TJ, Söllner TH, et al. Close is not enough: SNARE-dependent membrane fusion requires an active mechanism that transduces force to membrane anchors. J Cell Biol. 2000;150(1):105–17.PubMedCentralPubMed McNew JA, Weber T, Parlati F, Johnston RJ, Melia TJ, Söllner TH, et al. Close is not enough: SNARE-dependent membrane fusion requires an active mechanism that transduces force to membrane anchors. J Cell Biol. 2000;150(1):105–17.PubMedCentralPubMed
27.
Zurück zum Zitat Kweon DH, Kim CS, Shin YK. The membrane-dipped neuronal SNARE complex: a site-directed spin labeling electron paramagnetic resonance study. Biochemistry. 2002;41(29):9264–8.PubMed Kweon DH, Kim CS, Shin YK. The membrane-dipped neuronal SNARE complex: a site-directed spin labeling electron paramagnetic resonance study. Biochemistry. 2002;41(29):9264–8.PubMed
28.
Zurück zum Zitat Kim CS, Kweon DH, Shin YK. Membrane topologies of neuronal SNARE folding intermediates. Biochemistry. 2002;41(36):10928–33.PubMed Kim CS, Kweon DH, Shin YK. Membrane topologies of neuronal SNARE folding intermediates. Biochemistry. 2002;41(36):10928–33.PubMed
29.
Zurück zum Zitat Knecht V, Grubmuller H. Mechanical coupling via the membrane fusion SNARE protein syntaxin 1A: a molecular dynamics study. Biophys J. 2003;84(3):1527–47.PubMedCentralPubMed Knecht V, Grubmuller H. Mechanical coupling via the membrane fusion SNARE protein syntaxin 1A: a molecular dynamics study. Biophys J. 2003;84(3):1527–47.PubMedCentralPubMed
30.
Zurück zum Zitat Langosch D, Crane JM, Brosig B, Hellwig A, Tamm LK, Reed J. Peptide mimics of SNARE transmembrane segments drive membrane fusion depending on their conformational plasticity. J Mol Biol. 2001;311(4):709–21.PubMed Langosch D, Crane JM, Brosig B, Hellwig A, Tamm LK, Reed J. Peptide mimics of SNARE transmembrane segments drive membrane fusion depending on their conformational plasticity. J Mol Biol. 2001;311(4):709–21.PubMed
31.
Zurück zum Zitat Fasshauer D, Antonin W, Subramaniam V, Jahn R. SNARE assembly and disassembly exhibit a pronounced hysteresis. Nature Struct Biol. 2002;9(2):144–51.PubMed Fasshauer D, Antonin W, Subramaniam V, Jahn R. SNARE assembly and disassembly exhibit a pronounced hysteresis. Nature Struct Biol. 2002;9(2):144–51.PubMed
32.
Zurück zum Zitat Ungermann C, Langosch D. Functions of SNAREs in intracellular membrane fusion and lipid bilayer mixing. J Cell Sci. 2005;118(Pt 17):3819–28.PubMed Ungermann C, Langosch D. Functions of SNAREs in intracellular membrane fusion and lipid bilayer mixing. J Cell Sci. 2005;118(Pt 17):3819–28.PubMed
33.
Zurück zum Zitat Rizo J, Südhof TC. The membrane fusion enigma: SNAREs, Sec1/Munc18 proteins, and their accomplices–guilty as charged? Annu Rev Cell Dev Biol. 2012;28:279–308.PubMed Rizo J, Südhof TC. The membrane fusion enigma: SNAREs, Sec1/Munc18 proteins, and their accomplices–guilty as charged? Annu Rev Cell Dev Biol. 2012;28:279–308.PubMed
34.
Zurück zum Zitat Scales SJ, Chen YA, Yoo BY, Patel SM, Doung YC, Scheller RH. SNAREs contribute to the specificity of membrane fusion. Neuron. 2000;26(2):457–64.PubMed Scales SJ, Chen YA, Yoo BY, Patel SM, Doung YC, Scheller RH. SNAREs contribute to the specificity of membrane fusion. Neuron. 2000;26(2):457–64.PubMed
35.
Zurück zum Zitat McNew JA, Parlati F, Fukuda R, Johnston RJ, Paz K, Paumet F, et al. Compartmental specificity of cellular membrane fusion encoded in SNARE proteins. Nature. 2000;407(6801):153–9.PubMed McNew JA, Parlati F, Fukuda R, Johnston RJ, Paz K, Paumet F, et al. Compartmental specificity of cellular membrane fusion encoded in SNARE proteins. Nature. 2000;407(6801):153–9.PubMed
36.
Zurück zum Zitat Yang B, Gonzalez Jr L, Prekeris R, Steegmaier M, Advani RJ, Scheller RH. SNARE interactions are not selective. Implications for membrane fusion specificity. J Biol Chem. 1999;274(9):5649–53.PubMed Yang B, Gonzalez Jr L, Prekeris R, Steegmaier M, Advani RJ, Scheller RH. SNARE interactions are not selective. Implications for membrane fusion specificity. J Biol Chem. 1999;274(9):5649–53.PubMed
37.
Zurück zum Zitat Fasshauer D, Antonin W, Margittai M, Pabst S, Jahn R. Mixed and non-cognate SNARE complexes. Characterization of assembly and biophysical properties. J Biol Chem. 1999;274(22):15440–6.PubMed Fasshauer D, Antonin W, Margittai M, Pabst S, Jahn R. Mixed and non-cognate SNARE complexes. Characterization of assembly and biophysical properties. J Biol Chem. 1999;274(22):15440–6.PubMed
38.
Zurück zum Zitat von Mollard GF, Nothwehr SF, Stevens TH. The yeast v-SNARE Vti1p mediates two vesicle transport pathways through interactions with the t-SNAREs Sed5p and Pep12p. J Cell Biol. 1997;137(7):1511–24.PubMedCentral von Mollard GF, Nothwehr SF, Stevens TH. The yeast v-SNARE Vti1p mediates two vesicle transport pathways through interactions with the t-SNAREs Sed5p and Pep12p. J Cell Biol. 1997;137(7):1511–24.PubMedCentral
39.
Zurück zum Zitat Bhattacharya S, Stewart BA, Niemeyer BA, Burgess RW, McCabe BD, Lin P, et al. Members of the synaptobrevin/vesicle-associated membrane protein (VAMP) family in Drosophila are functionally interchangeable in vivo for neurotransmitter release and cell viability. Proc Natl Acad Sci U S A. 2002;99(21):13867–72.PubMedCentralPubMed Bhattacharya S, Stewart BA, Niemeyer BA, Burgess RW, McCabe BD, Lin P, et al. Members of the synaptobrevin/vesicle-associated membrane protein (VAMP) family in Drosophila are functionally interchangeable in vivo for neurotransmitter release and cell viability. Proc Natl Acad Sci U S A. 2002;99(21):13867–72.PubMedCentralPubMed
40.
Zurück zum Zitat Scales SJ, Bock JB, Scheller RH. The specifics of membrane fusion. Nature. 2000;407(6801):144–6.PubMed Scales SJ, Bock JB, Scheller RH. The specifics of membrane fusion. Nature. 2000;407(6801):144–6.PubMed
41.
Zurück zum Zitat Salaun C, James DJ, Chamberlain LH. Lipid rafts and the regulation of exocytosis. Traffic (Copenhagen, Denmark). 2004;5(4):255–64. Salaun C, James DJ, Chamberlain LH. Lipid rafts and the regulation of exocytosis. Traffic (Copenhagen, Denmark). 2004;5(4):255–64.
42.
Zurück zum Zitat Simons K, Ikonen E. Functional rafts in cell membranes. Nature. 1997;387(6633):569–72.PubMed Simons K, Ikonen E. Functional rafts in cell membranes. Nature. 1997;387(6633):569–72.PubMed
43.
Zurück zum Zitat Laude AJ, Prior IA. Plasma membrane microdomains: organization, function and trafficking. Mol Membr Biol. 2004;21(3):193–205.PubMedCentralPubMed Laude AJ, Prior IA. Plasma membrane microdomains: organization, function and trafficking. Mol Membr Biol. 2004;21(3):193–205.PubMedCentralPubMed
44.
Zurück zum Zitat Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000;1(1):31–9.PubMed Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000;1(1):31–9.PubMed
45.
Zurück zum Zitat Lafont F, Verkade P, Galli T, Wimmer C, Louvard D, Simons K. Raft association of SNAP receptors acting in apical trafficking in Madin-Darby canine kidney cells. Proc Natl Acad Sci U S A. 1999;96(7):3734–8.PubMedCentralPubMed Lafont F, Verkade P, Galli T, Wimmer C, Louvard D, Simons K. Raft association of SNAP receptors acting in apical trafficking in Madin-Darby canine kidney cells. Proc Natl Acad Sci U S A. 1999;96(7):3734–8.PubMedCentralPubMed
46.
Zurück zum Zitat Tooze SA, Martens GJ, Huttner WB. Secretory granule biogenesis: rafting to the SNARE. Trends Cell Biol. 2001;11(3):116–22.PubMed Tooze SA, Martens GJ, Huttner WB. Secretory granule biogenesis: rafting to the SNARE. Trends Cell Biol. 2001;11(3):116–22.PubMed
47.
Zurück zum Zitat Grosshans BL, Ortiz D, Novick P. Rabs and their effectors: achieving specificity in membrane traffic. Proc Natl Acad Sci U S A. 2006;103(32):11821–7.PubMedCentralPubMed Grosshans BL, Ortiz D, Novick P. Rabs and their effectors: achieving specificity in membrane traffic. Proc Natl Acad Sci U S A. 2006;103(32):11821–7.PubMedCentralPubMed
48.
49.
Zurück zum Zitat McMahon HT, Missler M, Li C, Südhof TC. Complexins: cytosolic proteins that regulate SNAP receptor function. Cell. 1995;83(1):111–9.PubMed McMahon HT, Missler M, Li C, Südhof TC. Complexins: cytosolic proteins that regulate SNAP receptor function. Cell. 1995;83(1):111–9.PubMed
50.
Zurück zum Zitat Fasshauer D, Otto H, Eliason WK, Jahn R, Brunger AT. Structural changes are associated with soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor complex formation. J Biol Chem. 1997;272(44):28036–41.PubMed Fasshauer D, Otto H, Eliason WK, Jahn R, Brunger AT. Structural changes are associated with soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor complex formation. J Biol Chem. 1997;272(44):28036–41.PubMed
51.
Zurück zum Zitat Hanson PI, Roth R, Morisaki H, Jahn R, Heuser JE. Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy. Cell. 1997;90(3):523–35.PubMed Hanson PI, Roth R, Morisaki H, Jahn R, Heuser JE. Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy. Cell. 1997;90(3):523–35.PubMed
52.
Zurück zum Zitat Sutton RB, Fasshauer D, Jahn R, Brunger AT. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature. 1998;395(6700):347–53.PubMed Sutton RB, Fasshauer D, Jahn R, Brunger AT. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature. 1998;395(6700):347–53.PubMed
53.
Zurück zum Zitat Südhof TC, Rothman JE. Membrane fusion: grappling with SNARE and SM proteins. Science (New York, NY). 2009;323(5913):474–7. Südhof TC, Rothman JE. Membrane fusion: grappling with SNARE and SM proteins. Science (New York, NY). 2009;323(5913):474–7.
54.
Zurück zum Zitat Mayer A. Membrane fusion in eukaryotic cells. Annu Rev Cell Dev Biol. 2002;18:289–314.PubMed Mayer A. Membrane fusion in eukaryotic cells. Annu Rev Cell Dev Biol. 2002;18:289–314.PubMed
55.
Zurück zum Zitat Antonin W, Holroyd C, Fasshauer D, Pabst S, Von Mollard GF, Jahn R. A SNARE complex mediating fusion of late endosomes defines conserved properties of SNARE structure and function. Embo J. 2000;19(23):6453–64.PubMedCentralPubMed Antonin W, Holroyd C, Fasshauer D, Pabst S, Von Mollard GF, Jahn R. A SNARE complex mediating fusion of late endosomes defines conserved properties of SNARE structure and function. Embo J. 2000;19(23):6453–64.PubMedCentralPubMed
56.
Zurück zum Zitat Antonin W, Fasshauer D, Becker S, Jahn R, Schneider TR. Crystal structure of the endosomal SNARE complex reveals common structural principles of all SNAREs. Nat Struct Biol. 2002;9(2):107–11.PubMed Antonin W, Fasshauer D, Becker S, Jahn R, Schneider TR. Crystal structure of the endosomal SNARE complex reveals common structural principles of all SNAREs. Nat Struct Biol. 2002;9(2):107–11.PubMed
57.
Zurück zum Zitat Cohen FS, Melikyan GB. The energetics of membrane fusion from binding, through hemifusion, pore formation, and pore enlargement. J Membr Biol. 2004;199(1):1–14.PubMed Cohen FS, Melikyan GB. The energetics of membrane fusion from binding, through hemifusion, pore formation, and pore enlargement. J Membr Biol. 2004;199(1):1–14.PubMed
58.
Zurück zum Zitat Li F, Pincet F, Perez E, Eng WS, Melia TJ, Rothman JE, et al. Energetics and dynamics of SNAREpin folding across lipid bilayers. Nat Struct Mol Biol. 2007;14(10):890–6.PubMed Li F, Pincet F, Perez E, Eng WS, Melia TJ, Rothman JE, et al. Energetics and dynamics of SNAREpin folding across lipid bilayers. Nat Struct Mol Biol. 2007;14(10):890–6.PubMed
59.
Zurück zum Zitat Mohrmann R, de Wit H, Verhage M, Neher E, Sorensen JB. Fast vesicle fusion in living cells requires at least three SNARE complexes. Science (New York, NY). 2010;330(6003):502–5. Mohrmann R, de Wit H, Verhage M, Neher E, Sorensen JB. Fast vesicle fusion in living cells requires at least three SNARE complexes. Science (New York, NY). 2010;330(6003):502–5.
60.
Zurück zum Zitat Söllner T, Bennett MK, Whiteheart SW, Scheller RH, Rothman JE. A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell. 1993;75(3):409–18.PubMed Söllner T, Bennett MK, Whiteheart SW, Scheller RH, Rothman JE. A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell. 1993;75(3):409–18.PubMed
62.
Zurück zum Zitat Smyth AM, Duncan RR, Rickman C. Munc18-1 and syntaxin1: unraveling the interactions between the dynamic duo. Cell Mol Neurobiol. 2010;30(8):1309–13.PubMed Smyth AM, Duncan RR, Rickman C. Munc18-1 and syntaxin1: unraveling the interactions between the dynamic duo. Cell Mol Neurobiol. 2010;30(8):1309–13.PubMed
63.
Zurück zum Zitat Weninger K, Bowen ME, Choi UB, Chu S, Brunger AT. Accessory proteins stabilize the acceptor complex for synaptobrevin, the 1:1 syntaxin/SNAP-25 complex. Structure. 2008;16(2):308–20.PubMedCentralPubMed Weninger K, Bowen ME, Choi UB, Chu S, Brunger AT. Accessory proteins stabilize the acceptor complex for synaptobrevin, the 1:1 syntaxin/SNAP-25 complex. Structure. 2008;16(2):308–20.PubMedCentralPubMed
64.
Zurück zum Zitat Zilly FE, Sorensen JB, Jahn R, Lang T. Munc18-bound syntaxin readily forms SNARE complexes with synaptobrevin in native plasma membranes. PLoS Biol. 2006;4(10):e330.PubMedCentralPubMed Zilly FE, Sorensen JB, Jahn R, Lang T. Munc18-bound syntaxin readily forms SNARE complexes with synaptobrevin in native plasma membranes. PLoS Biol. 2006;4(10):e330.PubMedCentralPubMed
65.
Zurück zum Zitat Südhof TC. Calcium control of neurotransmitter release. Cold Spring Harbor Perspect Biol. 2012;4(1):a011353. Südhof TC. Calcium control of neurotransmitter release. Cold Spring Harbor Perspect Biol. 2012;4(1):a011353.
66.
Zurück zum Zitat Brose N. For better or for worse: complexins regulate SNARE function and vesicle fusion. Traffic (Copenhagen, Denmark). 2008;9(9):1403–13. Brose N. For better or for worse: complexins regulate SNARE function and vesicle fusion. Traffic (Copenhagen, Denmark). 2008;9(9):1403–13.
67.
Zurück zum Zitat Chua CE, Tang BL. Rabs, SNAREs and alpha-synuclein–membrane trafficking defects in synucleinopathies. Brain Res Rev. 2011;67(1–2):268–81.PubMed Chua CE, Tang BL. Rabs, SNAREs and alpha-synuclein–membrane trafficking defects in synucleinopathies. Brain Res Rev. 2011;67(1–2):268–81.PubMed
68.
Zurück zum Zitat Darios F, Ruiperez V, Lopez I, Villanueva J, Gutierrez LM, Davletov B. Alpha-synuclein sequesters arachidonic acid to modulate SNARE-mediated exocytosis. EMBO Rep. 2010;11(7):528–33.PubMedCentralPubMed Darios F, Ruiperez V, Lopez I, Villanueva J, Gutierrez LM, Davletov B. Alpha-synuclein sequesters arachidonic acid to modulate SNARE-mediated exocytosis. EMBO Rep. 2010;11(7):528–33.PubMedCentralPubMed
69.
Zurück zum Zitat Duffield A, Caplan MJ, Muth TR. Protein trafficking in polarized cells. Int Rev Cell Mol Biol. 2008;270:145–79.PubMed Duffield A, Caplan MJ, Muth TR. Protein trafficking in polarized cells. Int Rev Cell Mol Biol. 2008;270:145–79.PubMed
70.
Zurück zum Zitat Weisz OA, Rodriguez-Boulan E. Apical trafficking in epithelial cells: signals, clusters and motors. J Cell Sci. 2009;122(Pt 23):4253–66.PubMedCentralPubMed Weisz OA, Rodriguez-Boulan E. Apical trafficking in epithelial cells: signals, clusters and motors. J Cell Sci. 2009;122(Pt 23):4253–66.PubMedCentralPubMed
71.
Zurück zum Zitat Low SH, Chapin SJ, Weimbs T, Komuves LG, Bennett MK, Mostov KE. Differential localization of syntaxin isoforms in polarized Madin-Darby canine kidney cells. Mol Biol Cell. 1996;7(12):2007–18.PubMedCentralPubMed Low SH, Chapin SJ, Weimbs T, Komuves LG, Bennett MK, Mostov KE. Differential localization of syntaxin isoforms in polarized Madin-Darby canine kidney cells. Mol Biol Cell. 1996;7(12):2007–18.PubMedCentralPubMed
72.
Zurück zum Zitat Steegmaier M, Lee KC, Prekeris R, Scheller RH. SNARE protein trafficking in polarized MDCK cells. Traffic (Copenhagen, Denmark). 2000;1(7):553–60. Steegmaier M, Lee KC, Prekeris R, Scheller RH. SNARE protein trafficking in polarized MDCK cells. Traffic (Copenhagen, Denmark). 2000;1(7):553–60.
73.
Zurück zum Zitat Low SH, Chapin SJ, Wimmer C, Whiteheart SW, Komuves LG, Mostov KE, et al. The SNARE machinery is involved in apical plasma membrane trafficking in MDCK cells. J Cell Biol. 1998;141(7):1503–13.PubMedCentralPubMed Low SH, Chapin SJ, Wimmer C, Whiteheart SW, Komuves LG, Mostov KE, et al. The SNARE machinery is involved in apical plasma membrane trafficking in MDCK cells. J Cell Biol. 1998;141(7):1503–13.PubMedCentralPubMed
74.
Zurück zum Zitat Low SH, Miura M, Roche PA, Valdez AC, Mostov KE, Weimbs T. Intracellular redirection of plasma membrane trafficking after loss of epithelial cell polarity. Mol Biol Cell. 2000;11(9):3045–60.PubMedCentralPubMed Low SH, Miura M, Roche PA, Valdez AC, Mostov KE, Weimbs T. Intracellular redirection of plasma membrane trafficking after loss of epithelial cell polarity. Mol Biol Cell. 2000;11(9):3045–60.PubMedCentralPubMed
75.
Zurück zum Zitat Zurzolo C, Le Bivic A, Quaroni A, Nitsch L, Rodriguez-Boulan E. Modulation of transcytotic and direct targeting pathways in a polarized thyroid cell line. Embo J. 1992;11(6):2337–44.PubMedCentralPubMed Zurzolo C, Le Bivic A, Quaroni A, Nitsch L, Rodriguez-Boulan E. Modulation of transcytotic and direct targeting pathways in a polarized thyroid cell line. Embo J. 1992;11(6):2337–44.PubMedCentralPubMed
76.
Zurück zum Zitat Li X, Low SH, Miura M, Weimbs T. SNARE expression and localization in renal epithelial cells suggest mechanism for variability of trafficking phenotypes. Am J Physiol Renal Physiol. 2002;283(5):F1111–22.PubMed Li X, Low SH, Miura M, Weimbs T. SNARE expression and localization in renal epithelial cells suggest mechanism for variability of trafficking phenotypes. Am J Physiol Renal Physiol. 2002;283(5):F1111–22.PubMed
77.
Zurück zum Zitat Burgess TL, Kelly RB. Constitutive and regulated secretion of proteins. Annu Rev Cell Biol. 1987;3:243–93.PubMed Burgess TL, Kelly RB. Constitutive and regulated secretion of proteins. Annu Rev Cell Biol. 1987;3:243–93.PubMed
78.
Zurück zum Zitat Burgoyne RD, Morgan A. Secretory granule exocytosis. Physiol Rev. 2003;83(2):581–632.PubMed Burgoyne RD, Morgan A. Secretory granule exocytosis. Physiol Rev. 2003;83(2):581–632.PubMed
79.
Zurück zum Zitat McManaman JL, Reyland ME, Thrower EC. Secretion and fluid transport mechanisms in the mammary gland: comparisons with the exocrine pancreas and the salivary gland. J Mammary Gland Biol Neoplasia. 2006;11(3–4):249–68.PubMed McManaman JL, Reyland ME, Thrower EC. Secretion and fluid transport mechanisms in the mammary gland: comparisons with the exocrine pancreas and the salivary gland. J Mammary Gland Biol Neoplasia. 2006;11(3–4):249–68.PubMed
80.
Zurück zum Zitat Turner MD, Rennison ME, Handel SE, Wilde CJ, Burgoyne RD. Proteins are secreted by both constitutive and regulated secretory pathways in lactating mouse mammary epithelial cells. J Cell Biol. 1992;117(2):269–78.PubMed Turner MD, Rennison ME, Handel SE, Wilde CJ, Burgoyne RD. Proteins are secreted by both constitutive and regulated secretory pathways in lactating mouse mammary epithelial cells. J Cell Biol. 1992;117(2):269–78.PubMed
81.
Zurück zum Zitat Wang CC, Shi H, Guo K, Ng CP, Li J, Gan BQ, et al. VAMP8/endobrevin as a general vesicular SNARE for regulated exocytosis of the exocrine system. Mol Biol Cell. 2007;18(3):1056–63.PubMedCentralPubMed Wang CC, Shi H, Guo K, Ng CP, Li J, Gan BQ, et al. VAMP8/endobrevin as a general vesicular SNARE for regulated exocytosis of the exocrine system. Mol Biol Cell. 2007;18(3):1056–63.PubMedCentralPubMed
82.
Zurück zum Zitat Wang CC, Ng CP, Lu L, Atlashkin V, Zhang W, Seet LF, et al. A role of VAMP8/endobrevin in regulated exocytosis of pancreatic acinar cells. Dev Cell. 2004;7(3):359–71.PubMed Wang CC, Ng CP, Lu L, Atlashkin V, Zhang W, Seet LF, et al. A role of VAMP8/endobrevin in regulated exocytosis of pancreatic acinar cells. Dev Cell. 2004;7(3):359–71.PubMed
83.
Zurück zum Zitat Forte JG, Zhu L. Apical recycling of the gastric parietal cell H,K-ATPase. Annu Rev Physiol. 2010;72:273–96.PubMed Forte JG, Zhu L. Apical recycling of the gastric parietal cell H,K-ATPase. Annu Rev Physiol. 2010;72:273–96.PubMed
84.
Zurück zum Zitat Turner RJ, Sugiya H. Understanding salivary fluid and protein secretion. Oral Dis. 2002;8(1):3–11.PubMed Turner RJ, Sugiya H. Understanding salivary fluid and protein secretion. Oral Dis. 2002;8(1):3–11.PubMed
85.
Zurück zum Zitat Wu K, Jerdeva GV, da Costa SR, Sou E, Schechter JE, Hamm-Alvarez SF. Molecular mechanisms of lacrimal acinar secretory vesicle exocytosis. Exp Eye Res. 2006;83(1):84–96.PubMed Wu K, Jerdeva GV, da Costa SR, Sou E, Schechter JE, Hamm-Alvarez SF. Molecular mechanisms of lacrimal acinar secretory vesicle exocytosis. Exp Eye Res. 2006;83(1):84–96.PubMed
86.
Zurück zum Zitat Cosen-Binker LI, Morris GP, Vanner S, Gaisano HY. Munc18/SNARE proteins’ regulation of exocytosis in guinea pig duodenal Brunner’s gland acini. World J Gastroenterol. 2008;14(15):2314–22.PubMedCentralPubMed Cosen-Binker LI, Morris GP, Vanner S, Gaisano HY. Munc18/SNARE proteins’ regulation of exocytosis in guinea pig duodenal Brunner’s gland acini. World J Gastroenterol. 2008;14(15):2314–22.PubMedCentralPubMed
87.
Zurück zum Zitat Gaisano HY, Sheu L, Foskett JK, Trimble WS. Tetanus toxin light chain cleaves a vesicle-associated membrane protein (VAMP) isoform 2 in rat pancreatic zymogen granules and inhibits enzyme secretion. J Biol Chem. 1994;269(25):17062–6.PubMed Gaisano HY, Sheu L, Foskett JK, Trimble WS. Tetanus toxin light chain cleaves a vesicle-associated membrane protein (VAMP) isoform 2 in rat pancreatic zymogen granules and inhibits enzyme secretion. J Biol Chem. 1994;269(25):17062–6.PubMed
88.
Zurück zum Zitat Weng N, Thomas DD, Groblewski GE. Pancreatic acinar cells express vesicle-associated membrane protein 2- and 8-specific populations of zymogen granules with distinct and overlapping roles in secretion. J Biol Chem. 2007;282(13):9635–45.PubMed Weng N, Thomas DD, Groblewski GE. Pancreatic acinar cells express vesicle-associated membrane protein 2- and 8-specific populations of zymogen granules with distinct and overlapping roles in secretion. J Biol Chem. 2007;282(13):9635–45.PubMed
89.
Zurück zum Zitat Husain S, Thrower E. Molecular and cellular regulation of pancreatic acinar cell function. Curr Opin Gastroenterol. 2009;25(5):466–71.PubMedCentralPubMed Husain S, Thrower E. Molecular and cellular regulation of pancreatic acinar cell function. Curr Opin Gastroenterol. 2009;25(5):466–71.PubMedCentralPubMed
90.
Zurück zum Zitat Cosen-Binker LI, Binker MG, Wang CC, Hong W, Gaisano HY. VAMP8 is the v-SNARE that mediates basolateral exocytosis in a mouse model of alcoholic pancreatitis. J Clin Invest. 2008;118(7):2535–51.PubMedCentralPubMed Cosen-Binker LI, Binker MG, Wang CC, Hong W, Gaisano HY. VAMP8 is the v-SNARE that mediates basolateral exocytosis in a mouse model of alcoholic pancreatitis. J Clin Invest. 2008;118(7):2535–51.PubMedCentralPubMed
91.
Zurück zum Zitat Bostrom P, Andersson L, Rutberg M, Perman J, Lidberg U, Johansson BR, et al. SNARE proteins mediate fusion between cytosolic lipid droplets and are implicated in insulin sensitivity. Nat Cell Biol. 2007;9(11):1286–93.PubMed Bostrom P, Andersson L, Rutberg M, Perman J, Lidberg U, Johansson BR, et al. SNARE proteins mediate fusion between cytosolic lipid droplets and are implicated in insulin sensitivity. Nat Cell Biol. 2007;9(11):1286–93.PubMed
92.
Zurück zum Zitat Liu Y, Ding X, Wang D, Deng H, Feng M, Wang M, et al. A mechanism of Munc18b-syntaxin 3-SNAP25 complex assembly in regulated epithelial secretion. FEBS Lett. 2007;581(22):4318–24.PubMedCentralPubMed Liu Y, Ding X, Wang D, Deng H, Feng M, Wang M, et al. A mechanism of Munc18b-syntaxin 3-SNAP25 complex assembly in regulated epithelial secretion. FEBS Lett. 2007;581(22):4318–24.PubMedCentralPubMed
93.
Zurück zum Zitat Imai A, Nashida T, Shimomura H. Roles of Munc18-3 in amylase release from rat parotid acinar cells. Arch Biochem Biophys. 2004;422(2):175–82.PubMed Imai A, Nashida T, Shimomura H. Roles of Munc18-3 in amylase release from rat parotid acinar cells. Arch Biochem Biophys. 2004;422(2):175–82.PubMed
94.
Zurück zum Zitat Zhu Y, Ehre C, Abdullah LH, Sheehan JK, Roy M, Evans CM, et al. Munc13-2−/− baseline secretion defect reveals source of oligomeric mucins in mouse airways. J Physiol. 2008;586(7):1977–92.PubMedCentralPubMed Zhu Y, Ehre C, Abdullah LH, Sheehan JK, Roy M, Evans CM, et al. Munc13-2−/− baseline secretion defect reveals source of oligomeric mucins in mouse airways. J Physiol. 2008;586(7):1977–92.PubMedCentralPubMed
95.
Zurück zum Zitat Levius O, Feinstein N, Linial M. Expression and localization of synaptotagmin I in rat parotid gland. Eur J Cell Biol. 1997;73(1):81–92.PubMed Levius O, Feinstein N, Linial M. Expression and localization of synaptotagmin I in rat parotid gland. Eur J Cell Biol. 1997;73(1):81–92.PubMed
96.
Zurück zum Zitat Tuvim MJ, Mospan AR, Burns KA, Chua M, Mohler PJ, Melicoff E, et al. Synaptotagmin 2 couples mucin granule exocytosis to Ca2+ signaling from endoplasmic reticulum. J Biol Chem. 2009;284(15):9781–7.PubMedCentralPubMed Tuvim MJ, Mospan AR, Burns KA, Chua M, Mohler PJ, Melicoff E, et al. Synaptotagmin 2 couples mucin granule exocytosis to Ca2+ signaling from endoplasmic reticulum. J Biol Chem. 2009;284(15):9781–7.PubMedCentralPubMed
97.
Zurück zum Zitat Falkowski MA, Thomas DD, Groblewski GE. Complexin 2 modulates vesicle-associated membrane protein (VAMP) 2-regulated zymogen granule exocytosis in pancreatic acini. J Biol Chem. 2010;285(46):35558–66.PubMedCentralPubMed Falkowski MA, Thomas DD, Groblewski GE. Complexin 2 modulates vesicle-associated membrane protein (VAMP) 2-regulated zymogen granule exocytosis in pancreatic acini. J Biol Chem. 2010;285(46):35558–66.PubMedCentralPubMed
98.
Zurück zum Zitat Weng N, Baumler MD, Thomas DD, Falkowski MA, Swayne LA, Braun JE, et al. Functional role of J domain of cysteine string protein in Ca2+−dependent secretion from acinar cells. Am J Physiol Gastrointest Liver Physiol. 2009;296(5):G1030–9.PubMedCentralPubMed Weng N, Baumler MD, Thomas DD, Falkowski MA, Swayne LA, Braun JE, et al. Functional role of J domain of cysteine string protein in Ca2+−dependent secretion from acinar cells. Am J Physiol Gastrointest Liver Physiol. 2009;296(5):G1030–9.PubMedCentralPubMed
99.
Zurück zum Zitat Vadlamudi RK, Wang RA, Talukder AH, Adam L, Johnson R, Kumar R. Evidence of Rab3A expression, regulation of vesicle trafficking, and cellular secretion in response to heregulin in mammary epithelial cells. Mol Cell Biol. 2000;20(23):9092–101.PubMedCentralPubMed Vadlamudi RK, Wang RA, Talukder AH, Adam L, Johnson R, Kumar R. Evidence of Rab3A expression, regulation of vesicle trafficking, and cellular secretion in response to heregulin in mammary epithelial cells. Mol Cell Biol. 2000;20(23):9092–101.PubMedCentralPubMed
100.
Zurück zum Zitat Mostov KE, Verges M, Altschuler Y. Membrane traffic in polarized epithelial cells. Curr Opin Cell Biol. 2000;12(4):483–90.PubMed Mostov KE, Verges M, Altschuler Y. Membrane traffic in polarized epithelial cells. Curr Opin Cell Biol. 2000;12(4):483–90.PubMed
101.
Zurück zum Zitat Radisky DC, Hirai Y, Bissell MJ. Delivering the message: epimorphin and mammary epithelial morphogenesis. Trends Cell Biol. 2003;13(8):426–34.PubMedCentralPubMed Radisky DC, Hirai Y, Bissell MJ. Delivering the message: epimorphin and mammary epithelial morphogenesis. Trends Cell Biol. 2003;13(8):426–34.PubMedCentralPubMed
102.
Zurück zum Zitat Delgrossi MH, Breuza L, Mirre C, Chavrier P, Le Bivic A. Human syntaxin 3 is localized apically in human intestinal cells. J Cell Sci. 1997;110(Pt 18):2207–14.PubMed Delgrossi MH, Breuza L, Mirre C, Chavrier P, Le Bivic A. Human syntaxin 3 is localized apically in human intestinal cells. J Cell Sci. 1997;110(Pt 18):2207–14.PubMed
103.
Zurück zum Zitat Hansen NJ, Antonin W, Edwardson JM. Identification of SNAREs involved in regulated exocytosis in the pancreatic acinar cell. J Biol Chem. 1999;274(32):22871–6.PubMed Hansen NJ, Antonin W, Edwardson JM. Identification of SNAREs involved in regulated exocytosis in the pancreatic acinar cell. J Biol Chem. 1999;274(32):22871–6.PubMed
104.
Zurück zum Zitat Hirai Y, Takebe K, Takashina M, Kobayashi S, Takeichi M. Epimorphin: a mesenchymal protein essential for epithelial morphogenesis. Cell. 1992;69(3):471–81.PubMed Hirai Y, Takebe K, Takashina M, Kobayashi S, Takeichi M. Epimorphin: a mesenchymal protein essential for epithelial morphogenesis. Cell. 1992;69(3):471–81.PubMed
105.
Zurück zum Zitat Bascom JL, Fata JE, Hirai Y, Sternlicht MD, Bissell MJ. Epimorphin overexpression in the mouse mammary gland promotes alveolar hyperplasia and mammary adenocarcinoma. Cancer Res. 2005;65(19):8617–21.PubMed Bascom JL, Fata JE, Hirai Y, Sternlicht MD, Bissell MJ. Epimorphin overexpression in the mouse mammary gland promotes alveolar hyperplasia and mammary adenocarcinoma. Cancer Res. 2005;65(19):8617–21.PubMed
106.
Zurück zum Zitat Pelham HR. Is epimorphin involved in vesicular transport? Cell. 1993;73(3):425–6.PubMed Pelham HR. Is epimorphin involved in vesicular transport? Cell. 1993;73(3):425–6.PubMed
107.
Zurück zum Zitat Inoue A, Akagawa K. Neuron-specific antigen HPC-1 from bovine brain reveals strong homology to epimorphin, an essential factor involved in epithelial morphogenesis: identification of a novel protein family. Biochem Biophys Res Commun. 1992;187(2):1144–50.PubMed Inoue A, Akagawa K. Neuron-specific antigen HPC-1 from bovine brain reveals strong homology to epimorphin, an essential factor involved in epithelial morphogenesis: identification of a novel protein family. Biochem Biophys Res Commun. 1992;187(2):1144–50.PubMed
108.
Zurück zum Zitat Wang Y, Wang L, Iordanov H, Swietlicki EA, Zheng Q, Jiang S, et al. Epimorphin(−/−) mice have increased intestinal growth, decreased susceptibility to dextran sodium sulfate colitis, and impaired spermatogenesis. J Clin Invest. 2006;116(6):1535–46.PubMedCentralPubMed Wang Y, Wang L, Iordanov H, Swietlicki EA, Zheng Q, Jiang S, et al. Epimorphin(−/−) mice have increased intestinal growth, decreased susceptibility to dextran sodium sulfate colitis, and impaired spermatogenesis. J Clin Invest. 2006;116(6):1535–46.PubMedCentralPubMed
109.
Zurück zum Zitat Hirai Y. Molecular cloning of human epimorphin: identification of isoforms and their unique properties. Biochem Biophys Res Commun. 1993;191(3):1332–7.PubMed Hirai Y. Molecular cloning of human epimorphin: identification of isoforms and their unique properties. Biochem Biophys Res Commun. 1993;191(3):1332–7.PubMed
110.
Zurück zum Zitat Quinones B, Riento K, Olkkonen VM, Hardy S, Bennett MK. Syntaxin 2 splice variants exhibit differential expression patterns, biochemical properties and subcellular localizations. J Cell Sci. 1999;112(Pt 23):4291–304.PubMed Quinones B, Riento K, Olkkonen VM, Hardy S, Bennett MK. Syntaxin 2 splice variants exhibit differential expression patterns, biochemical properties and subcellular localizations. J Cell Sci. 1999;112(Pt 23):4291–304.PubMed
111.
Zurück zum Zitat Hirai Y. Epimorphin as a morphogen: does a protein for intracellular vesicular targeting act as an extracellular signaling molecule? Cell Biol Int. 2001;25(3):193–5.PubMed Hirai Y. Epimorphin as a morphogen: does a protein for intracellular vesicular targeting act as an extracellular signaling molecule? Cell Biol Int. 2001;25(3):193–5.PubMed
112.
Zurück zum Zitat Kadono N, Miyazaki T, Okugawa Y, Nakajima K, Hirai Y. The impact of extracellular syntaxin4 on HaCaT keratinocyte behavior. Biochem Biophys Res Commun. 2012;417(4):1200–5.PubMed Kadono N, Miyazaki T, Okugawa Y, Nakajima K, Hirai Y. The impact of extracellular syntaxin4 on HaCaT keratinocyte behavior. Biochem Biophys Res Commun. 2012;417(4):1200–5.PubMed
113.
Zurück zum Zitat Flaumenhaft R, Rozenvayn N, Feng D, Dvorak AM. SNAP-23 and syntaxin-2 localize to the extracellular surface of the platelet plasma membrane. Blood. 2007;110(5):1492–501.PubMedCentralPubMed Flaumenhaft R, Rozenvayn N, Feng D, Dvorak AM. SNAP-23 and syntaxin-2 localize to the extracellular surface of the platelet plasma membrane. Blood. 2007;110(5):1492–501.PubMedCentralPubMed
114.
Zurück zum Zitat Hirai Y, Nelson CM, Yamazaki K, Takebe K, Przybylo J, Madden B, et al. Non-classical export of epimorphin and its adhesion to alphav-integrin in regulation of epithelial morphogenesis. J Cell Sci. 2007;120(Pt 12):2032–43.PubMed Hirai Y, Nelson CM, Yamazaki K, Takebe K, Przybylo J, Madden B, et al. Non-classical export of epimorphin and its adhesion to alphav-integrin in regulation of epithelial morphogenesis. J Cell Sci. 2007;120(Pt 12):2032–43.PubMed
115.
116.
Zurück zum Zitat Ollivier-Bousquet M. Early effects of prolactin on lactating rabbit mammary gland. Ultrastructural changes and stimulation of casein secretion. Cell Tissue Res. 1978;187(1):25–43.PubMed Ollivier-Bousquet M. Early effects of prolactin on lactating rabbit mammary gland. Ultrastructural changes and stimulation of casein secretion. Cell Tissue Res. 1978;187(1):25–43.PubMed
117.
Zurück zum Zitat Gundelfinger ED, Kessels MM, Qualmann B. Temporal and spatial coordination of exocytosis and endocytosis. Nat Rev Mol Cell Biol. 2003;4(2):127–39.PubMed Gundelfinger ED, Kessels MM, Qualmann B. Temporal and spatial coordination of exocytosis and endocytosis. Nat Rev Mol Cell Biol. 2003;4(2):127–39.PubMed
118.
Zurück zum Zitat Truchet S, Ollivier-Bousquet M. Mammary gland secretion: hormonal coordination of endocytosis and exocytosis. Animal. 2009;3(12):1733–42.PubMed Truchet S, Ollivier-Bousquet M. Mammary gland secretion: hormonal coordination of endocytosis and exocytosis. Animal. 2009;3(12):1733–42.PubMed
119.
Zurück zum Zitat Ollivier-Bousquet M. Transferrin and prolactin transcytosis in the lactating mammary epithelial cell. J Mammary Gland Biol Neoplasia. 1998;3(3):303–13.PubMed Ollivier-Bousquet M. Transferrin and prolactin transcytosis in the lactating mammary epithelial cell. J Mammary Gland Biol Neoplasia. 1998;3(3):303–13.PubMed
120.
Zurück zum Zitat Monks J, Neville MC. Albumin transcytosis across the epithelium of the lactating mouse mammary gland. J Physiol. 2004;560(Pt 1):267–80.PubMedCentralPubMed Monks J, Neville MC. Albumin transcytosis across the epithelium of the lactating mouse mammary gland. J Physiol. 2004;560(Pt 1):267–80.PubMedCentralPubMed
121.
Zurück zum Zitat Hunziker W, Kraehenbuhl JP. Epithelial transcytosis of immunoglobulins. J Mammary Gland Biol Neoplasia. 1998;3(3):287–302.PubMed Hunziker W, Kraehenbuhl JP. Epithelial transcytosis of immunoglobulins. J Mammary Gland Biol Neoplasia. 1998;3(3):287–302.PubMed
122.
Zurück zum Zitat Wooding FB. The mechanism of secretion of the milk fat globule. J Cell Sci. 1971;9(3):805–21.PubMed Wooding FB. The mechanism of secretion of the milk fat globule. J Cell Sci. 1971;9(3):805–21.PubMed
123.
Zurück zum Zitat McManaman JL, Palmer CA, Anderson S, Schwertfeger K, Neville MC. Regulation of milk lipid formation and secretion in the mouse mammary gland. Adv Exp Med Biol. 2004;554:263–79.PubMed McManaman JL, Palmer CA, Anderson S, Schwertfeger K, Neville MC. Regulation of milk lipid formation and secretion in the mouse mammary gland. Adv Exp Med Biol. 2004;554:263–79.PubMed
124.
Zurück zum Zitat Chong BM, Reigan P, Mayle-Combs KD, Orlicky DJ, McManaman JL. Determinants of adipophilin function in milk lipid formation and secretion. Trends Endocrinol Metab: TEM. 2011;22(6):211–7.PubMedCentralPubMed Chong BM, Reigan P, Mayle-Combs KD, Orlicky DJ, McManaman JL. Determinants of adipophilin function in milk lipid formation and secretion. Trends Endocrinol Metab: TEM. 2011;22(6):211–7.PubMedCentralPubMed
125.
Zurück zum Zitat Pechoux C, Boisgard R, Chanat E, Lavialle F. Ca(2+)-independent phospholipase A2 participates in the vesicular transport of milk proteins. Biochim Biophys Acta. 2005;1743(3):317–29.PubMed Pechoux C, Boisgard R, Chanat E, Lavialle F. Ca(2+)-independent phospholipase A2 participates in the vesicular transport of milk proteins. Biochim Biophys Acta. 2005;1743(3):317–29.PubMed
126.
Zurück zum Zitat Ollivier-Bousquet M, Guesnet P, Seddiki T, Durand G. Deficiency of (n-6) but not (n-3) polyunsaturated fatty acids inhibits the secretagogue effect of prolactin in lactating rat mammary epithelial cells. J Nutr. 1993;123(12):2090–100.PubMed Ollivier-Bousquet M, Guesnet P, Seddiki T, Durand G. Deficiency of (n-6) but not (n-3) polyunsaturated fatty acids inhibits the secretagogue effect of prolactin in lactating rat mammary epithelial cells. J Nutr. 1993;123(12):2090–100.PubMed
127.
Zurück zum Zitat Rickman C, Davletov B. Arachidonic acid allows SNARE complex formation in the presence of Munc18. Chem Biol. 2005;12(5):545–53.PubMed Rickman C, Davletov B. Arachidonic acid allows SNARE complex formation in the presence of Munc18. Chem Biol. 2005;12(5):545–53.PubMed
128.
Zurück zum Zitat Darios F, Davletov B. Omega-3 and omega-6 fatty acids stimulate cell membrane expansion by acting on syntaxin 3. Nature. 2006;440(7085):813–7.PubMed Darios F, Davletov B. Omega-3 and omega-6 fatty acids stimulate cell membrane expansion by acting on syntaxin 3. Nature. 2006;440(7085):813–7.PubMed
129.
Zurück zum Zitat Ollivier-Bousquet M. Role of Ca2+ in the secretion of milk caseins in lactating rabbit mammary epithelial cells. Biol Cell. 1983;49(2):127–35.PubMed Ollivier-Bousquet M. Role of Ca2+ in the secretion of milk caseins in lactating rabbit mammary epithelial cells. Biol Cell. 1983;49(2):127–35.PubMed
130.
Zurück zum Zitat Anantamongkol U, Takemura H, Suthiphongchai T, Krishnamra N, Horio Y. Regulation of Ca2+ mobilization by prolactin in mammary gland cells: possible role of secretory pathway Ca2+−ATPase type 2. Biochem Biophys Res Commun. 2007;352(2):537–42.PubMed Anantamongkol U, Takemura H, Suthiphongchai T, Krishnamra N, Horio Y. Regulation of Ca2+ mobilization by prolactin in mammary gland cells: possible role of secretory pathway Ca2+−ATPase type 2. Biochem Biophys Res Commun. 2007;352(2):537–42.PubMed
131.
Zurück zum Zitat Cunha DA, Amaral ME, Carvalho CP, Collares-Buzato CB, Carneiro EM, Boschero AC. Increased expression of SNARE proteins and synaptotagmin IV in islets from pregnant rats and in vitro prolactin-treated neonatal islets. Biol Res. 2006;39(3):555–66.PubMed Cunha DA, Amaral ME, Carvalho CP, Collares-Buzato CB, Carneiro EM, Boschero AC. Increased expression of SNARE proteins and synaptotagmin IV in islets from pregnant rats and in vitro prolactin-treated neonatal islets. Biol Res. 2006;39(3):555–66.PubMed
132.
Zurück zum Zitat Weller PF, Monahan-Earley RA, Dvorak HF, Dvorak AM. Cytoplasmic lipid bodies of human eosinophils. Subcellular isolation and analysis of arachidonate incorporation. Am J Pathol. 1991;138(1):141–8.PubMedCentralPubMed Weller PF, Monahan-Earley RA, Dvorak HF, Dvorak AM. Cytoplasmic lipid bodies of human eosinophils. Subcellular isolation and analysis of arachidonate incorporation. Am J Pathol. 1991;138(1):141–8.PubMedCentralPubMed
133.
Zurück zum Zitat Yu W, Bozza PT, Tzizik DM, Gray JP, Cassara J, Dvorak AM, et al. Co-compartmentalization of MAP kinases and cytosolic phospholipase A2 at cytoplasmic arachidonate-rich lipid bodies. Am J Pathol. 1998;152(3):759–69.PubMedCentralPubMed Yu W, Bozza PT, Tzizik DM, Gray JP, Cassara J, Dvorak AM, et al. Co-compartmentalization of MAP kinases and cytosolic phospholipase A2 at cytoplasmic arachidonate-rich lipid bodies. Am J Pathol. 1998;152(3):759–69.PubMedCentralPubMed
134.
Zurück zum Zitat Linder S, Wiesner C, Himmel M. Degrading devices: invadosomes in proteolytic cell invasion. Ann Rev Cell Dev Biol. 2011;27:185–211. Linder S, Wiesner C, Himmel M. Degrading devices: invadosomes in proteolytic cell invasion. Ann Rev Cell Dev Biol. 2011;27:185–211.
135.
Zurück zum Zitat Stromberg S, Agnarsdottir M, Magnusson K, Rexhepaj E, Bolander A, Lundberg E, et al. Selective expression of Syntaxin-7 protein in benign melanocytes and malignant melanoma. J Proteome Res. 2009;8(4):1639–46.PubMed Stromberg S, Agnarsdottir M, Magnusson K, Rexhepaj E, Bolander A, Lundberg E, et al. Selective expression of Syntaxin-7 protein in benign melanocytes and malignant melanoma. J Proteome Res. 2009;8(4):1639–46.PubMed
136.
Zurück zum Zitat Steegmaier M, Oorschot V, Klumperman J, Scheller RH. Syntaxin 17 is abundant in steroidogenic cells and implicated in smooth endoplasmic reticulum membrane dynamics. Mol Biol Cell. 2000;11(8):2719–31.PubMedCentralPubMed Steegmaier M, Oorschot V, Klumperman J, Scheller RH. Syntaxin 17 is abundant in steroidogenic cells and implicated in smooth endoplasmic reticulum membrane dynamics. Mol Biol Cell. 2000;11(8):2719–31.PubMedCentralPubMed
137.
Zurück zum Zitat Zhang Q, Li J, Deavers M, Abbruzzese JL, Ho L. The subcellular localization of syntaxin 17 varies among different cell types and is altered in some malignant cells. J Histochem Cytochem. 2005;53(11):1371–82.PubMed Zhang Q, Li J, Deavers M, Abbruzzese JL, Ho L. The subcellular localization of syntaxin 17 varies among different cell types and is altered in some malignant cells. J Histochem Cytochem. 2005;53(11):1371–82.PubMed
138.
Zurück zum Zitat Steffen A, Le Dez G, Poincloux R, Recchi C, Nassoy P, Rottner K, et al. MT1-MMP-dependent invasion is regulated by TI-VAMP/VAMP7. Curr Biol. 2008;18(12):926–31.PubMed Steffen A, Le Dez G, Poincloux R, Recchi C, Nassoy P, Rottner K, et al. MT1-MMP-dependent invasion is regulated by TI-VAMP/VAMP7. Curr Biol. 2008;18(12):926–31.PubMed
139.
Zurück zum Zitat Williams D, Pessin JE. Mapping of R-SNARE function at distinct intracellular GLUT4 trafficking steps in adipocytes. J Cell Biol. 2008;180(2):375–87.PubMedCentralPubMed Williams D, Pessin JE. Mapping of R-SNARE function at distinct intracellular GLUT4 trafficking steps in adipocytes. J Cell Biol. 2008;180(2):375–87.PubMedCentralPubMed
140.
Zurück zum Zitat Bollig-Fischer A, Dewey TG, Ethier SP. Oncogene activation induces metabolic transformation resulting in insulin-independence in human breast cancer cells. PLoS One. 2011;6(3):e17959.PubMedCentralPubMed Bollig-Fischer A, Dewey TG, Ethier SP. Oncogene activation induces metabolic transformation resulting in insulin-independence in human breast cancer cells. PLoS One. 2011;6(3):e17959.PubMedCentralPubMed
141.
Zurück zum Zitat Kluger HM, Kluger Y, Gilmore-Hebert M, DiVito K, Chang JT, Rodov S, et al. cDNA microarray analysis of invasive and tumorigenic phenotypes in a breast cancer model. Lab Invest. 2004;84(3):320–31.PubMed Kluger HM, Kluger Y, Gilmore-Hebert M, DiVito K, Chang JT, Rodov S, et al. cDNA microarray analysis of invasive and tumorigenic phenotypes in a breast cancer model. Lab Invest. 2004;84(3):320–31.PubMed
142.
Zurück zum Zitat Sapi E, Flick MB, Rodov S, Gilmore-Hebert M, Kelley M, Rockwell S, et al. Independent regulation of invasion and anchorage-independent growth by different autophosphorylation sites of the macrophage colony-stimulating factor 1 receptor. Cancer Res. 1996;56(24):5704–12.PubMed Sapi E, Flick MB, Rodov S, Gilmore-Hebert M, Kelley M, Rockwell S, et al. Independent regulation of invasion and anchorage-independent growth by different autophosphorylation sites of the macrophage colony-stimulating factor 1 receptor. Cancer Res. 1996;56(24):5704–12.PubMed
143.
Zurück zum Zitat Ooe A, Kato K, Noguchi S. Possible involvement of CCT5, RGS3, and YKT6 genes up-regulated in p53-mutated tumors in resistance to docetaxel in human breast cancers. Breast Cancer Res Treat. 2007;101(3):305–15.PubMed Ooe A, Kato K, Noguchi S. Possible involvement of CCT5, RGS3, and YKT6 genes up-regulated in p53-mutated tumors in resistance to docetaxel in human breast cancers. Breast Cancer Res Treat. 2007;101(3):305–15.PubMed
144.
Zurück zum Zitat Bassett T, Harpur B, Poon HY, Kuo KH, Lee CH. Effective stimulation of growth in MCF-7 human breast cancer cells by inhibition of syntaxin18 by external guide sequence and ribonuclease P. Cancer Lett. 2008;272(1):167–75.PubMed Bassett T, Harpur B, Poon HY, Kuo KH, Lee CH. Effective stimulation of growth in MCF-7 human breast cancer cells by inhibition of syntaxin18 by external guide sequence and ribonuclease P. Cancer Lett. 2008;272(1):167–75.PubMed
145.
Zurück zum Zitat Hirose H, Arasaki K, Dohmae N, Takio K, Hatsuzawa K, Nagahama M, et al. Implication of ZW10 in membrane trafficking between the endoplasmic reticulum and Golgi. Embo J. 2004;23(6):1267–78.PubMedCentralPubMed Hirose H, Arasaki K, Dohmae N, Takio K, Hatsuzawa K, Nagahama M, et al. Implication of ZW10 in membrane trafficking between the endoplasmic reticulum and Golgi. Embo J. 2004;23(6):1267–78.PubMedCentralPubMed
146.
Zurück zum Zitat Lev S, Ben Halevy D, Peretti D, Dahan N. The VAP protein family: from cellular functions to motor neuron disease. Trends Cell Biol. 2008;18(6):282–90.PubMed Lev S, Ben Halevy D, Peretti D, Dahan N. The VAP protein family: from cellular functions to motor neuron disease. Trends Cell Biol. 2008;18(6):282–90.PubMed
147.
Zurück zum Zitat Rao M, Song W, Jiang A, Shyr Y, Lev S, Greenstein D, et al. VAMP-associated protein B (VAPB) promotes breast tumor growth by modulation of Akt activity. PloS One. 2012;7(10):e46281.PubMedCentralPubMed Rao M, Song W, Jiang A, Shyr Y, Lev S, Greenstein D, et al. VAMP-associated protein B (VAPB) promotes breast tumor growth by modulation of Akt activity. PloS One. 2012;7(10):e46281.PubMedCentralPubMed
148.
Zurück zum Zitat Chin K, DeVries S, Fridlyand J, Spellman PT, Roydasgupta R, Kuo WL, et al. Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell. 2006;10(6):529–41.PubMed Chin K, DeVries S, Fridlyand J, Spellman PT, Roydasgupta R, Kuo WL, et al. Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell. 2006;10(6):529–41.PubMed
149.
Zurück zum Zitat Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell. 2006;10(6):515–27.PubMedCentralPubMed Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell. 2006;10(6):515–27.PubMedCentralPubMed
150.
Zurück zum Zitat Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.PubMed Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.PubMed
151.
Zurück zum Zitat Tsuda H, Han SM, Yang Y, Tong C, Lin YQ, Mohan K, et al. The amyotrophic lateral sclerosis 8 protein VAPB is cleaved, secreted, and acts as a ligand for Eph receptors. Cell. 2008;133(6):963–77.PubMedCentralPubMed Tsuda H, Han SM, Yang Y, Tong C, Lin YQ, Mohan K, et al. The amyotrophic lateral sclerosis 8 protein VAPB is cleaved, secreted, and acts as a ligand for Eph receptors. Cell. 2008;133(6):963–77.PubMedCentralPubMed
152.
Zurück zum Zitat Brantley-Sieders DM, Zhuang G, Hicks D, Fang WB, Hwang Y, Cates JM, et al. The receptor tyrosine kinase EphA2 promotes mammary adenocarcinoma tumorigenesis and metastatic progression in mice by amplifying ErbB2 signaling. J Clin Invest. 2008;118(1):64–78.PubMedCentralPubMed Brantley-Sieders DM, Zhuang G, Hicks D, Fang WB, Hwang Y, Cates JM, et al. The receptor tyrosine kinase EphA2 promotes mammary adenocarcinoma tumorigenesis and metastatic progression in mice by amplifying ErbB2 signaling. J Clin Invest. 2008;118(1):64–78.PubMedCentralPubMed
153.
Zurück zum Zitat Chen J. Regulation of tumor initiation and metastatic progression by Eph receptor tyrosine kinases. Adv Cancer Res. 2012;114:1–20.PubMedCentralPubMed Chen J. Regulation of tumor initiation and metastatic progression by Eph receptor tyrosine kinases. Adv Cancer Res. 2012;114:1–20.PubMedCentralPubMed
Metadaten
Titel
Milk Secretion: The Role of SNARE Proteins
verfasst von
Sandrine Truchet
Sophie Chat
Michèle Ollivier-Bousquet
Publikationsdatum
01.03.2014
Verlag
Springer US
Erschienen in
Journal of Mammary Gland Biology and Neoplasia / Ausgabe 1/2014
Print ISSN: 1083-3021
Elektronische ISSN: 1573-7039
DOI
https://doi.org/10.1007/s10911-013-9311-7

Weitere Artikel der Ausgabe 1/2014

Journal of Mammary Gland Biology and Neoplasia 1/2014 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.