Skip to main content
Erschienen in: Journal of Medical Systems 5/2018

01.05.2018 | Education & Training

Behavioral Modeling for Mental Health using Machine Learning Algorithms

verfasst von: M. Srividya, S. Mohanavalli, N. Bhalaji

Erschienen in: Journal of Medical Systems | Ausgabe 5/2018

Einloggen, um Zugang zu erhalten

Abstract

Mental health is an indicator of emotional, psychological and social well-being of an individual. It determines how an individual thinks, feels and handle situations. Positive mental health helps one to work productively and realize their full potential. Mental health is important at every stage of life, from childhood and adolescence through adulthood. Many factors contribute to mental health problems which lead to mental illness like stress, social anxiety, depression, obsessive compulsive disorder, drug addiction, and personality disorders. It is becoming increasingly important to determine the onset of the mental illness to maintain proper life balance. The nature of machine learning algorithms and Artificial Intelligence (AI) can be fully harnessed for predicting the onset of mental illness. Such applications when implemented in real time will benefit the society by serving as a monitoring tool for individuals with deviant behavior. This research work proposes to apply various machine learning algorithms such as support vector machines, decision trees, naïve bayes classifier, K-nearest neighbor classifier and logistic regression to identify state of mental health in a target group. The responses obtained from the target group for the designed questionnaire were first subject to unsupervised learning techniques. The labels obtained as a result of clustering were validated by computing the Mean Opinion Score. These cluster labels were then used to build classifiers to predict the mental health of an individual. Population from various groups like high school students, college students and working professionals were considered as target groups. The research presents an analysis of applying the aforementioned machine learning algorithms on the target groups and also suggests directions for future work.
Literatur
1.
Zurück zum Zitat Miner, L., et al., Practical predictive analytics and decisioning systems for medicine: Informatics accuracy and cost-effectiveness for healthcare administration and delivery including medical research. Cambridge: Academic Press, 2014. Miner, L., et al., Practical predictive analytics and decisioning systems for medicine: Informatics accuracy and cost-effectiveness for healthcare administration and delivery including medical research. Cambridge: Academic Press, 2014.
2.
Zurück zum Zitat Luxton, D. D., (ed.) Artificial Intelligence in Behavioral and Mental Health Care. Amsterdam: Elsevier Inc., 2015. Luxton, D. D., (ed.) Artificial Intelligence in Behavioral and Mental Health Care. Amsterdam: Elsevier Inc., 2015.
3.
Zurück zum Zitat Hahn, T., Nierenberg, A. A., and Whitfield-Gabrieli, S., Predictive analytics in mental health: applications, guidelines, challenges and perspectives. Mol. Psychiatry 22(1):37–43, 2017.CrossRefPubMed Hahn, T., Nierenberg, A. A., and Whitfield-Gabrieli, S., Predictive analytics in mental health: applications, guidelines, challenges and perspectives. Mol. Psychiatry 22(1):37–43, 2017.CrossRefPubMed
4.
Zurück zum Zitat Bijl, R. V., Ravelli, A., and Van Zessen, G., Prevalence of psychiatric disorder in the general population: results of The Netherlands Mental Health Survey and Incidence Study (NEMESIS). Soc. Psychiatry Psychiatr. Epidemiol. 33(12):587–595, 1998.CrossRefPubMed Bijl, R. V., Ravelli, A., and Van Zessen, G., Prevalence of psychiatric disorder in the general population: results of The Netherlands Mental Health Survey and Incidence Study (NEMESIS). Soc. Psychiatry Psychiatr. Epidemiol. 33(12):587–595, 1998.CrossRefPubMed
5.
Zurück zum Zitat World Health Organization, Mental health: a call for action by world health ministers. Geneva: World Health Organization, Department of Mental Health and Substance Dependence, 2001. World Health Organization, Mental health: a call for action by world health ministers. Geneva: World Health Organization, Department of Mental Health and Substance Dependence, 2001.
8.
Zurück zum Zitat Goodman, R., Renfrew, D., and Mullick, M., Predicting type of psychiatric disorder from Strengths and Difficulties Questionnaire (SDQ) scores in child mental health clinics in London and Dhaka. Eur. Child Adolesc. Psychiatry 9(2):129–134, 2000.CrossRefPubMed Goodman, R., Renfrew, D., and Mullick, M., Predicting type of psychiatric disorder from Strengths and Difficulties Questionnaire (SDQ) scores in child mental health clinics in London and Dhaka. Eur. Child Adolesc. Psychiatry 9(2):129–134, 2000.CrossRefPubMed
9.
Zurück zum Zitat Lanata, A. et al., Complexity index from a personalized wearable monitoring system for assessing remission in mental health. IEEE J. Biomed. Health Inform. 19(1):132–139, 2015.CrossRefPubMed Lanata, A. et al., Complexity index from a personalized wearable monitoring system for assessing remission in mental health. IEEE J. Biomed. Health Inform. 19(1):132–139, 2015.CrossRefPubMed
10.
Zurück zum Zitat Schaefer, J. D., et al. "Enduring mental health: Prevalence and prediction.". J. Abnorm. Psychol. 126(2):212, 2017.CrossRefPubMed Schaefer, J. D., et al. "Enduring mental health: Prevalence and prediction.". J. Abnorm. Psychol. 126(2):212, 2017.CrossRefPubMed
12.
Zurück zum Zitat Qiu, T., Qiao, R., Han, M., Sangaiah, A. K., and Lee, I., A Lifetime-Enhanced Data Collecting Scheme for the Internet of Things. IEEE Commun. Mag. 55(11):132–137, 2017.CrossRef Qiu, T., Qiao, R., Han, M., Sangaiah, A. K., and Lee, I., A Lifetime-Enhanced Data Collecting Scheme for the Internet of Things. IEEE Commun. Mag. 55(11):132–137, 2017.CrossRef
15.
Zurück zum Zitat Wu, F., et al., A lightweight and robust two-factor authentication scheme for personalized healthcare systems using wireless medical sensor networks. Futur. Gener. Comput. Syst. 82:727–737, 2017. Wu, F., et al., A lightweight and robust two-factor authentication scheme for personalized healthcare systems using wireless medical sensor networks. Futur. Gener. Comput. Syst. 82:727–737, 2017.
16.
Zurück zum Zitat Aborokbah, M. M., Al-Mutairi, S., Sangaiah, A. K., and Samuel, O. W., Adaptive context aware decision computing paradigm for intensive health care delivery in smart cities—A case analysis. Sustain. Cities Soc. 2017. Aborokbah, M. M., Al-Mutairi, S., Sangaiah, A. K., and Samuel, O. W., Adaptive context aware decision computing paradigm for intensive health care delivery in smart cities—A case analysis. Sustain. Cities Soc. 2017.
17.
Zurück zum Zitat Chinaveh, M., The effectiveness of problem-solving on coping skills and psychological adjustment. Procedia. Soc. Behav. Sci. 84:4–9, 2013.CrossRef Chinaveh, M., The effectiveness of problem-solving on coping skills and psychological adjustment. Procedia. Soc. Behav. Sci. 84:4–9, 2013.CrossRef
18.
Zurück zum Zitat Hajiyakhchali, A., The Effects of Creative Problem Solving Process Training on Academic Well-being of Shahid Chamran University Students. Procedia. Soc. Behav. Sci. 84:549–552, 2013.CrossRef Hajiyakhchali, A., The Effects of Creative Problem Solving Process Training on Academic Well-being of Shahid Chamran University Students. Procedia. Soc. Behav. Sci. 84:549–552, 2013.CrossRef
19.
Zurück zum Zitat Aghaei, A., Khayyamnekouei, Z., and Yousefy, A., General health prediction based on life orientation, quality of life, life satisfaction and age. Procedia. Soc. Behav. Sci. 84:569–573, 2013.CrossRef Aghaei, A., Khayyamnekouei, Z., and Yousefy, A., General health prediction based on life orientation, quality of life, life satisfaction and age. Procedia. Soc. Behav. Sci. 84:569–573, 2013.CrossRef
20.
Zurück zum Zitat Strauss, J., Peguero, A. M., and Hirst, G., Machine learning methods for clinical forms analysis in mental health. MedInfo. 192:1024, 2013. Strauss, J., Peguero, A. M., and Hirst, G., Machine learning methods for clinical forms analysis in mental health. MedInfo. 192:1024, 2013.
21.
Zurück zum Zitat Jung, Y., and Yoon, Y. I., Multi-level assessment model for wellness service based on human mental stress level. Multimedia Tools and Applications 76(9):11305–11317, 2017.CrossRef Jung, Y., and Yoon, Y. I., Multi-level assessment model for wellness service based on human mental stress level. Multimedia Tools and Applications 76(9):11305–11317, 2017.CrossRef
22.
Zurück zum Zitat Wang, H., and Wang, J., An effective image representation method using kernel classification. Tools with Artificial Intelligence (ICTAI), 2014 I.E. 26th International Conference on. IEEE, 2014. Wang, H., and Wang, J., An effective image representation method using kernel classification. Tools with Artificial Intelligence (ICTAI), 2014 I.E. 26th International Conference on. IEEE, 2014.
23.
Zurück zum Zitat Cheng, X. et al., iATC-mISF: a multi-label classifier for predicting the classes of anatomical therapeutic chemicals. Bioinformatics 33(3):341–346, 2016. Cheng, X. et al., iATC-mISF: a multi-label classifier for predicting the classes of anatomical therapeutic chemicals. Bioinformatics 33(3):341–346, 2016.
24.
Zurück zum Zitat Rakesh, G., Suicide Prediction With Machine Learning. Am. J. Psychiatry Residents' J. 12(1):15–17, 2017.CrossRef Rakesh, G., Suicide Prediction With Machine Learning. Am. J. Psychiatry Residents' J. 12(1):15–17, 2017.CrossRef
25.
Zurück zum Zitat Ribeiro, J. D. et al., Letter to the Editor: Suicide as a complex classification problem: machine learning and related techniques can advance suicide prediction-a reply to Roaldset (2016). Psychol. Med. 46(9):2009, 2016.CrossRefPubMed Ribeiro, J. D. et al., Letter to the Editor: Suicide as a complex classification problem: machine learning and related techniques can advance suicide prediction-a reply to Roaldset (2016). Psychol. Med. 46(9):2009, 2016.CrossRefPubMed
26.
Zurück zum Zitat Kessler, R. C., et al., Testing a machine-learning algorithm to predict the persistence and severity of major depressive disorder from baseline self-reports. Mol. Psychiatry. 21(10):1366, 2016.CrossRefPubMedPubMedCentral Kessler, R. C., et al., Testing a machine-learning algorithm to predict the persistence and severity of major depressive disorder from baseline self-reports. Mol. Psychiatry. 21(10):1366, 2016.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Fleury, A., Vacher, M., and Noury, N., SVM-based multimodal classification of activities of daily living in health smart homes: sensors, algorithms, and first experimental results. IEEE Trans. Inf. Technol. Biomed. 14(2):274–283, 2010.CrossRefPubMed Fleury, A., Vacher, M., and Noury, N., SVM-based multimodal classification of activities of daily living in health smart homes: sensors, algorithms, and first experimental results. IEEE Trans. Inf. Technol. Biomed. 14(2):274–283, 2010.CrossRefPubMed
28.
Zurück zum Zitat Smets, E., et al. Comparison of machine learning techniques for psychophysiological stress detection. International Symposium on Pervasive Computing Paradigms for Mental Health. Springer International Publishing, 2015. Smets, E., et al. Comparison of machine learning techniques for psychophysiological stress detection. International Symposium on Pervasive Computing Paradigms for Mental Health. Springer International Publishing, 2015.
29.
Zurück zum Zitat Xu, J., et al. On the properties of mean opinion scores for quality of experience management. Multimedia (ISM), 2011 I.E. International Symposium on. IEEE, 2011. Xu, J., et al. On the properties of mean opinion scores for quality of experience management. Multimedia (ISM), 2011 I.E. International Symposium on. IEEE, 2011.
30.
Zurück zum Zitat Jung, Y. G., Kang, M. S., and Heo, J., Clustering performance comparison using K-means and expectation maximization algorithms. Biotechnol. Biotechnol. Equip. 28(sup1):S44–S48, 2014.CrossRefPubMedPubMedCentral Jung, Y. G., Kang, M. S., and Heo, J., Clustering performance comparison using K-means and expectation maximization algorithms. Biotechnol. Biotechnol. Equip. 28(sup1):S44–S48, 2014.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Kern, M. L., et al. "The EPOCH Measure of Adolescent Well-Being.". Psychol. Assess. 28(5):586, 2016.CrossRefPubMed Kern, M. L., et al. "The EPOCH Measure of Adolescent Well-Being.". Psychol. Assess. 28(5):586, 2016.CrossRefPubMed
32.
Zurück zum Zitat Milligan, G. W., and Cooper, M. C., Methodology review: Clustering methods. Appl. Psychol. Meas. 11(4):329–354, 1987.CrossRef Milligan, G. W., and Cooper, M. C., Methodology review: Clustering methods. Appl. Psychol. Meas. 11(4):329–354, 1987.CrossRef
33.
Zurück zum Zitat Dziopa, T., Clustering Validity Indices Evaluation with Regard to Semantic Homogeneity. FedCSIS Position Papers 2016. Dziopa, T., Clustering Validity Indices Evaluation with Regard to Semantic Homogeneity. FedCSIS Position Papers 2016.
34.
Zurück zum Zitat Aggarwal, C. C., and Zhai, C. X., A survey of text classification algorithms. Mining text data. Springer US, 163–222, 2012. Aggarwal, C. C., and Zhai, C. X., A survey of text classification algorithms. Mining text data. Springer US, 163–222, 2012.
35.
Zurück zum Zitat Burges, C. J. C., A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc. 2(2):121–167, 1998.CrossRef Burges, C. J. C., A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc. 2(2):121–167, 1998.CrossRef
36.
Zurück zum Zitat Lee, Y., Handwritten digit recognition using k nearest-neighbor, radial-basis function, and backpropagation neural networks. Neural Comput. 3(3):440–449, 1991.CrossRef Lee, Y., Handwritten digit recognition using k nearest-neighbor, radial-basis function, and backpropagation neural networks. Neural Comput. 3(3):440–449, 1991.CrossRef
37.
Zurück zum Zitat Statnikov, A., Wang, L., and Aliferis, C. F., A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification. BMC Bioinformatics 9(1):319, 2008.CrossRefPubMedPubMedCentral Statnikov, A., Wang, L., and Aliferis, C. F., A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification. BMC Bioinformatics 9(1):319, 2008.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Joachims, T., Text categorization with support vector machines: learning with many relevant features. In: European conference on machine learning. Pp. 137–142. Berlin, Heidelberg: Springer, 1998. Joachims, T., Text categorization with support vector machines: learning with many relevant features. In: European conference on machine learning. Pp. 137–142. Berlin, Heidelberg: Springer, 1998.
39.
Zurück zum Zitat Friedl, M. A., and Brodley, C. E., Decision tree classification of land cover from remotely sensed data. Remote Sens. Environ. 61(3):399–409, 1997.CrossRef Friedl, M. A., and Brodley, C. E., Decision tree classification of land cover from remotely sensed data. Remote Sens. Environ. 61(3):399–409, 1997.CrossRef
40.
Zurück zum Zitat Vlahou, A. et al., Diagnosis of ovarian cancer using decision tree classification of mass spectral data. Biomed. Res. Int. 2003(5):308–314, 2003. Vlahou, A. et al., Diagnosis of ovarian cancer using decision tree classification of mass spectral data. Biomed. Res. Int. 2003(5):308–314, 2003.
41.
Zurück zum Zitat Zhang, Y., Wang, S., and Dong, Z., Classification of Alzheimer disease based on structural magnetic resonance imaging by kernel support vector machine decision tree. Prog. Electromagn. Res. 144:171–184, 2014.CrossRef Zhang, Y., Wang, S., and Dong, Z., Classification of Alzheimer disease based on structural magnetic resonance imaging by kernel support vector machine decision tree. Prog. Electromagn. Res. 144:171–184, 2014.CrossRef
42.
Zurück zum Zitat Jiang, L., et al. Survey of improving k-nearest-neighbor for classification." Fuzzy Systems and Knowledge Discovery, 2007. FSKD 2007. Fourth International Conference on. Vol. 1. IEEE, 2007. Jiang, L., et al. Survey of improving k-nearest-neighbor for classification." Fuzzy Systems and Knowledge Discovery, 2007. FSKD 2007. Fourth International Conference on. Vol. 1. IEEE, 2007.
43.
Zurück zum Zitat Liao, Y., and Rao Vemuri, V., Use of k-nearest neighbor classifier for intrusion detection. Comput Secur 21(5):439–448, 2002.CrossRef Liao, Y., and Rao Vemuri, V., Use of k-nearest neighbor classifier for intrusion detection. Comput Secur 21(5):439–448, 2002.CrossRef
44.
Zurück zum Zitat Liu, B., et al. Scalable sentiment classification for big data analysis using naive bayes classifier. Big Data, 2013 I.E. International Conference on. IEEE, 2013. Liu, B., et al. Scalable sentiment classification for big data analysis using naive bayes classifier. Big Data, 2013 I.E. International Conference on. IEEE, 2013.
45.
Zurück zum Zitat Dreiseitl, S., and Ohno-Machado, L., Logistic regression and artificial neural network classification models: a methodology review. J. Biomed. Inform. 35(5):352–359, 2002.CrossRefPubMed Dreiseitl, S., and Ohno-Machado, L., Logistic regression and artificial neural network classification models: a methodology review. J. Biomed. Inform. 35(5):352–359, 2002.CrossRefPubMed
46.
Zurück zum Zitat Ribeiro, M. T., Singh, S., and Guestrin, C., Why should i trust you?: Explaining the predictions of any classifier. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2016. Ribeiro, M. T., Singh, S., and Guestrin, C., Why should i trust you?: Explaining the predictions of any classifier. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2016.
47.
Zurück zum Zitat Kuncheva, L. I. Combining pattern classifiers: methods and algorithms. New York: John Wiley & Sons, 2004. Kuncheva, L. I. Combining pattern classifiers: methods and algorithms. New York: John Wiley & Sons, 2004.
48.
49.
Zurück zum Zitat Gislason, P. O., Benediktsson, J. A., and Sveinsson, J. R., Random forests for land cover classification. Pattern Recogn. Lett. 27(4):294–300, 2006.CrossRef Gislason, P. O., Benediktsson, J. A., and Sveinsson, J. R., Random forests for land cover classification. Pattern Recogn. Lett. 27(4):294–300, 2006.CrossRef
Metadaten
Titel
Behavioral Modeling for Mental Health using Machine Learning Algorithms
verfasst von
M. Srividya
S. Mohanavalli
N. Bhalaji
Publikationsdatum
01.05.2018
Verlag
Springer US
Erschienen in
Journal of Medical Systems / Ausgabe 5/2018
Print ISSN: 0148-5598
Elektronische ISSN: 1573-689X
DOI
https://doi.org/10.1007/s10916-018-0934-5

Weitere Artikel der Ausgabe 5/2018

Journal of Medical Systems 5/2018 Zur Ausgabe

Systems-Level Quality Improvement

Patient Access to Academic Cancer Centers