Skip to main content
Erschienen in: Current Cardiology Reports 4/2017

01.04.2017 | Nuclear Cardiology (V Dilsizian, Section Editor)

Recent Advances and Clinical Applications of PET Cardiac Autonomic Nervous System Imaging

verfasst von: Nabil E. Boutagy, Albert J. Sinusas

Erschienen in: Current Cardiology Reports | Ausgabe 4/2017

Einloggen, um Zugang zu erhalten

Abstract

Purpose of Review

The purpose of this review was to summarize current advances in positron emission tomography (PET) cardiac autonomic nervous system (ANS) imaging, with a specific focus on clinical applications of novel and established tracers.

Recent Findings

[11C]-Meta-hydroxyephedrine (HED) has provided useful information in evaluation of normal and pathological cardiovascular function. Recently, [11C]-HED PET imaging was able to predict lethal arrhythmias, sudden cardiac death (SCD), and all-cause mortality in heart failure patients with reduced ejection fraction (HFrEF). In addition, initial [11C]-HED PET imaging studies have shown the potential of this agent in elucidating the relationship between impaired cardiac sympathetic nervous system (SNS) innervation and the severity of diastolic dysfunction in HF patients with preserved ejection fraction (HFpEF) and in predicting the response to cardiac resynchronization therapy (CRT) in HFrEF patients. Longer half-life 18F-labeled presynaptic SNS tracers (e.g., [18F]-LMI1195) have been developed to facilitate clinical imaging, although no PET radiotracers that target the ANS have gained wide clinical use in the cardiovascular system. Although the use of parasympathetic nervous system radiotracers in cardiac imaging is limited, the novel tracer, [11C]-donepezil, has shown potential utility in initial studies.

Summary

Many ANS radioligands have been synthesized for PET cardiac imaging, but to date, the most clinically relevant PET tracer has been [11C]-HED. Recent studies have shown the utility of [11C]-HED in relevant clinical issues, such as in the elusive clinical syndrome of HFpEF. Conversely, tracers that target cardiac PNS innervation have been used less clinically, but novel tracers show potential utility for future work. The future application of [11C]-HED and newly designed 18F-labeled tracers for targeting the ANS hold promise for the evaluation and management of a wide range of cardiovascular diseases, including the prognostication of patients with HFpEF.
Literatur
1.
Zurück zum Zitat Hall, JE. Chapter 60: The autonomic nervous system and the adrenal medulla. In: Guyton and Hall textbook of medical physiology, 13th edition. Philadelphia, PA: Saunders Elsevier. 2015:748-760. Hall, JE. Chapter 60: The autonomic nervous system and the adrenal medulla. In: Guyton and Hall textbook of medical physiology, 13th edition. Philadelphia, PA: Saunders Elsevier. 2015:748-760.
2.
Zurück zum Zitat Battipaglia I, Lanza GA. Chapter 1: The Autonomic Nervous System of the Heart. In: Autonomic Innervation of the Heart. New York City: Springer Publishing. 2015:1-12. Battipaglia I, Lanza GA. Chapter 1: The Autonomic Nervous System of the Heart. In: Autonomic Innervation of the Heart. New York City: Springer Publishing. 2015:1-12.
3.
Zurück zum Zitat Merz CNB, Elboudwarej O, Mehta P. The autonomic nervous system and cardiovascular health and disease: a complex balancing act. JACC. 2015;3:383–5. Merz CNB, Elboudwarej O, Mehta P. The autonomic nervous system and cardiovascular health and disease: a complex balancing act. JACC. 2015;3:383–5.
4.
Zurück zum Zitat Olshansky B, Sabbah HN, Hauptman PJ, Colucci WS. Parasympathetic nervous system and heart failure pathophysiology and potential implications for therapy. Circulation. 2008;118:863–71.CrossRefPubMed Olshansky B, Sabbah HN, Hauptman PJ, Colucci WS. Parasympathetic nervous system and heart failure pathophysiology and potential implications for therapy. Circulation. 2008;118:863–71.CrossRefPubMed
5.
Zurück zum Zitat Malpas SC. Sympathetic nervous system overactivity and its role in the development of cardiovascular disease. Physiol Rev. 2010;90:513–57.CrossRefPubMed Malpas SC. Sympathetic nervous system overactivity and its role in the development of cardiovascular disease. Physiol Rev. 2010;90:513–57.CrossRefPubMed
6.
Zurück zum Zitat Esler M, Kaye D. Sympathetic nervous system activation in essential hypertension, cardiac failure and psychosomatic heart disease. J Cardiovasc Pharmacol. 2000;35:S1–7.CrossRefPubMed Esler M, Kaye D. Sympathetic nervous system activation in essential hypertension, cardiac failure and psychosomatic heart disease. J Cardiovasc Pharmacol. 2000;35:S1–7.CrossRefPubMed
7.
Zurück zum Zitat Barron HV, Lesh MD. Autonomic nervous system and sudden cardiac death. J Am Coll Cardiol. 1996;27:1053–60.CrossRefPubMed Barron HV, Lesh MD. Autonomic nervous system and sudden cardiac death. J Am Coll Cardiol. 1996;27:1053–60.CrossRefPubMed
8.
Zurück zum Zitat Travin MI. Clinical applications of myocardial innervation imaging. Cardiol Clin. 2016;34:133–47.CrossRefPubMed Travin MI. Clinical applications of myocardial innervation imaging. Cardiol Clin. 2016;34:133–47.CrossRefPubMed
9.
Zurück zum Zitat Higuchi T, Schwaiger M. Imaging cardiac neuronal function and dysfunction. Curr Cardiol Rep. 2006;8:131–8.CrossRefPubMed Higuchi T, Schwaiger M. Imaging cardiac neuronal function and dysfunction. Curr Cardiol Rep. 2006;8:131–8.CrossRefPubMed
10.
Zurück zum Zitat Henneman MM, Bengel FM, van der Wall EE, Knuuti J, Bax JJ. Cardiac neuronal imaging: application in the evaluation of cardiac disease. J Nucl Cardiol. 2008;15:442–55.CrossRefPubMed Henneman MM, Bengel FM, van der Wall EE, Knuuti J, Bax JJ. Cardiac neuronal imaging: application in the evaluation of cardiac disease. J Nucl Cardiol. 2008;15:442–55.CrossRefPubMed
11.
Zurück zum Zitat Slart RH, van der Meer P, Tio RA, van Veldhuisen DJ, Elsinga PH. Chapter 11: PET imaging of myocardial β-adrenoceptors. In: Autonomic Innervation of the Heart: New York City: Springer Publishing. 2015:235-253. Slart RH, van der Meer P, Tio RA, van Veldhuisen DJ, Elsinga PH. Chapter 11: PET imaging of myocardial β-adrenoceptors. In: Autonomic Innervation of the Heart: New York City: Springer Publishing. 2015:235-253.
12.
Zurück zum Zitat • Raffel DM, Chen W, Jung Y-W, Jang KS, Gu G, Cozzi NV. Radiotracers for cardiac sympathetic innervation: transport kinetics and binding affinities for the human norepinephrine transporter. Nucl Med Biol. 2013;40:331-7. This study provides a thorough comparison of the kinetics and binding affinities of novel and established SNS presynaptic PET radiotracers for the human norepinephrine transporter. • Raffel DM, Chen W, Jung Y-W, Jang KS, Gu G, Cozzi NV. Radiotracers for cardiac sympathetic innervation: transport kinetics and binding affinities for the human norepinephrine transporter. Nucl Med Biol. 2013;40:331-7. This study provides a thorough comparison of the kinetics and binding affinities of novel and established SNS presynaptic PET radiotracers for the human norepinephrine transporter.
13.
Zurück zum Zitat Tipre DN, Fox JJ, Holt DP, et al. In vivo PET imaging of cardiac presynaptic sympathoneuronal mechanisms in the rat. J Nucl Med. 2008;49:1189–95.CrossRefPubMed Tipre DN, Fox JJ, Holt DP, et al. In vivo PET imaging of cardiac presynaptic sympathoneuronal mechanisms in the rat. J Nucl Med. 2008;49:1189–95.CrossRefPubMed
14.
Zurück zum Zitat Münch G, Nguyen NT, Nekolla S, et al. Evaluation of sympathetic nerve terminals with [11C] epinephrine and [11C] hydroxyephedrine and positron emission tomography. Circulation. 2000;101:516–23.CrossRefPubMed Münch G, Nguyen NT, Nekolla S, et al. Evaluation of sympathetic nerve terminals with [11C] epinephrine and [11C] hydroxyephedrine and positron emission tomography. Circulation. 2000;101:516–23.CrossRefPubMed
15.
Zurück zum Zitat Raffel DM, Chen W. Binding of [3H] mazindol to cardiac norepinephrine transporters: kinetic and equilibrium studies. Naunyn Schmiedeberg’s Arch Pharmacol. 2004;370:9–16.CrossRef Raffel DM, Chen W. Binding of [3H] mazindol to cardiac norepinephrine transporters: kinetic and equilibrium studies. Naunyn Schmiedeberg’s Arch Pharmacol. 2004;370:9–16.CrossRef
16.
Zurück zum Zitat Rosenspire KC, Haka MS, Van Dort ME, et al. Synthesis and preliminary evaluation of carbon-11-meta-hydroxyephedrine: a false transmitter agent for heart neuronal imaging. J Nucl Med. 1990;31:1328–34.PubMed Rosenspire KC, Haka MS, Van Dort ME, et al. Synthesis and preliminary evaluation of carbon-11-meta-hydroxyephedrine: a false transmitter agent for heart neuronal imaging. J Nucl Med. 1990;31:1328–34.PubMed
17.
Zurück zum Zitat Law MP, Osman S, Davenport RJ, Cunningham VJ, Pike VW, Camici PG. Biodistribution and metabolism of [N-methyl-11 C]-m-hydroxyphedrine in the rat. Nucl Med Biol. 1997;24:417–24.PubMed Law MP, Osman S, Davenport RJ, Cunningham VJ, Pike VW, Camici PG. Biodistribution and metabolism of [N-methyl-11 C]-m-hydroxyphedrine in the rat. Nucl Med Biol. 1997;24:417–24.PubMed
18.
Zurück zum Zitat Schwaiger M, Kalff V, Rosenspire K, et al. Noninvasive evaluation of sympathetic nervous system in human heart by positron emission tomography. Circulation. 1990;82:457–64.CrossRefPubMed Schwaiger M, Kalff V, Rosenspire K, et al. Noninvasive evaluation of sympathetic nervous system in human heart by positron emission tomography. Circulation. 1990;82:457–64.CrossRefPubMed
19.
Zurück zum Zitat Thackeray JT, Beanlands RS, DaSilva JN. Presence of specific 11C-meta-hydroxyephedrine retention in heart, lung, pancreas, and brown adipose tissue. J Nucl Med. 2007;48:1733–40.CrossRefPubMed Thackeray JT, Beanlands RS, DaSilva JN. Presence of specific 11C-meta-hydroxyephedrine retention in heart, lung, pancreas, and brown adipose tissue. J Nucl Med. 2007;48:1733–40.CrossRefPubMed
20.
Zurück zum Zitat Nguyen NT, DeGrado TR, Chakraborty P, Wieland DM, Schwaiger M. Myocardial kinetics of carbon-11-epinephrine in the isolated working rat heart. J Nucl Med. 1997;38:780.PubMed Nguyen NT, DeGrado TR, Chakraborty P, Wieland DM, Schwaiger M. Myocardial kinetics of carbon-11-epinephrine in the isolated working rat heart. J Nucl Med. 1997;38:780.PubMed
21.
Zurück zum Zitat • Bravo PE, Lautamäki R, Carter D et al. Mechanistic insights into sympathetic neuronal regeneration: multitracer molecular imaging of catecholamine handling after cardiac transplantation. Circulation: Cardiovascular Imaging 2015;8:e003507. This is the first-in-human study that assessed 11 C-hydroxyephedrine, 11 C-epinephrine, and 11 C-phenylephrine simultaneously with myocardial blood flow ( 13 N-ammonia) in heart transplant patients and healthy controls. As such, this study was able to provide mechanistic information on the regrowth of SNS neurons post transplant. • Bravo PE, Lautamäki R, Carter D et al. Mechanistic insights into sympathetic neuronal regeneration: multitracer molecular imaging of catecholamine handling after cardiac transplantation. Circulation: Cardiovascular Imaging 2015;8:e003507. This is the first-in-human study that assessed 11 C-hydroxyephedrine, 11 C-epinephrine, and 11 C-phenylephrine simultaneously with myocardial blood flow ( 13 N-ammonia) in heart transplant patients and healthy controls. As such, this study was able to provide mechanistic information on the regrowth of SNS neurons post transplant.
22.
Zurück zum Zitat Raffel DM, Corbett JR, del Rosario RB, Mukhopadhyay SK. Sensitivity of [11C] phenylephrine kinetics to monoamine oxidase activity in normal human heart. J Nucl Med. 1999;40:232.PubMed Raffel DM, Corbett JR, del Rosario RB, Mukhopadhyay SK. Sensitivity of [11C] phenylephrine kinetics to monoamine oxidase activity in normal human heart. J Nucl Med. 1999;40:232.PubMed
23.
Zurück zum Zitat Del Rosario RB, Jung Y-W, Caraher J, Chakraborty PK, Wieland DM. Synthesis and preliminary evaluation of [11 C]-(−)-phenylepnrine as a functional heart neuronal PET agent. Nucl Med Biol. 1996;23:611–6.CrossRefPubMed Del Rosario RB, Jung Y-W, Caraher J, Chakraborty PK, Wieland DM. Synthesis and preliminary evaluation of [11 C]-(−)-phenylepnrine as a functional heart neuronal PET agent. Nucl Med Biol. 1996;23:611–6.CrossRefPubMed
24.
Zurück zum Zitat Chirakal R, Coates G, Firnau G, Schrobilgen GJ, Nahmias C. Direct radiofluorination of dopamine: 18 F-labeled 6-fluorodopamine for imaging cardiac sympathetic innervation in humans using positron emission tomography. Nucl Med Biol. 1996;23:41–5.CrossRefPubMed Chirakal R, Coates G, Firnau G, Schrobilgen GJ, Nahmias C. Direct radiofluorination of dopamine: 18 F-labeled 6-fluorodopamine for imaging cardiac sympathetic innervation in humans using positron emission tomography. Nucl Med Biol. 1996;23:41–5.CrossRefPubMed
25.
Zurück zum Zitat Goldstein D, Holmes C, Stuhlmuller JE, Lenders JW, Kopin IJ. 6-[18F] Fluorodopamine positron emission tomographic scanning in the assessment of cardiac sympathoneural function—studies in normal humans. Clin Auton Res. 1997;7:17–29.CrossRefPubMed Goldstein D, Holmes C, Stuhlmuller JE, Lenders JW, Kopin IJ. 6-[18F] Fluorodopamine positron emission tomographic scanning in the assessment of cardiac sympathoneural function—studies in normal humans. Clin Auton Res. 1997;7:17–29.CrossRefPubMed
26.
Zurück zum Zitat Yu M, Bozek J, Lamoy M, et al. Evaluation of LMI1195, a novel 18F-labeled cardiac neuronal PET imaging agent, in cells and animal models. Circ Cardiovasc Imaging. 2011;4:435–43.CrossRefPubMed Yu M, Bozek J, Lamoy M, et al. Evaluation of LMI1195, a novel 18F-labeled cardiac neuronal PET imaging agent, in cells and animal models. Circ Cardiovasc Imaging. 2011;4:435–43.CrossRefPubMed
27.
Zurück zum Zitat Werner RA, Rischpler C, Onthank D, et al. Retention kinetics of the 18F-labeled sympathetic nerve PET tracer LMI1195: comparison with 11C-Hydroxyephedrine and 123I-MIBG. J Nucl Med. 2015;56:1429–33.CrossRefPubMed Werner RA, Rischpler C, Onthank D, et al. Retention kinetics of the 18F-labeled sympathetic nerve PET tracer LMI1195: comparison with 11C-Hydroxyephedrine and 123I-MIBG. J Nucl Med. 2015;56:1429–33.CrossRefPubMed
28.
Zurück zum Zitat Higuchi T, Yousefi BH, Reder S, et al. Myocardial kinetics of a novel [F]-labeled sympathetic nerve PET tracer LMI1195 in the isolated perfused rabbit heart. J Am Coll Cardiol Img. 2015;8:1229–31.CrossRef Higuchi T, Yousefi BH, Reder S, et al. Myocardial kinetics of a novel [F]-labeled sympathetic nerve PET tracer LMI1195 in the isolated perfused rabbit heart. J Am Coll Cardiol Img. 2015;8:1229–31.CrossRef
29.
Zurück zum Zitat •• Sinusas AJ, Lazewatsky J, Brunetti J et al. Biodistribution and radiation dosimetry of LMI1195: first-in-human study of a novel 18F-labeled tracer for imaging myocardial innervation. J Nucl Med. 2014;55:1445-51. This was the first-in-human study to assess the biodistribution and radiation dosimetry of 18 F-LMI1195, an 18 F-analog of the widely used SPECT tracer, 123 I-meta-iodobenzylguanidine (mIBG). This study showed acceptable radiation dosimetry and very favorable target-to-background ratio for cardiac imaging. •• Sinusas AJ, Lazewatsky J, Brunetti J et al. Biodistribution and radiation dosimetry of LMI1195: first-in-human study of a novel 18F-labeled tracer for imaging myocardial innervation. J Nucl Med. 2014;55:1445-51. This was the first-in-human study to assess the biodistribution and radiation dosimetry of 18 F-LMI1195, an 18 F-analog of the widely used SPECT tracer, 123 I-meta-iodobenzylguanidine (mIBG). This study showed acceptable radiation dosimetry and very favorable target-to-background ratio for cardiac imaging.
30.
Zurück zum Zitat Mohell N, Dicker A. The β-adrenergic radioligand [3H] CGP-12177, generally classified as an antagonist, is a thermogenic agonist in brown adipose tissue. Biochem J. 1989;261:401–5.CrossRefPubMedPubMedCentral Mohell N, Dicker A. The β-adrenergic radioligand [3H] CGP-12177, generally classified as an antagonist, is a thermogenic agonist in brown adipose tissue. Biochem J. 1989;261:401–5.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Van Waarde A, Meeder JG, Blanksma PK, et al. Uptake of radioligands by rat heart and lung in vivo: CGP 12177 does and CGP 26505 does not reflect binding to β-adrenoceptors. Eur J Pharmacol. 1992;222:107–12.CrossRefPubMed Van Waarde A, Meeder JG, Blanksma PK, et al. Uptake of radioligands by rat heart and lung in vivo: CGP 12177 does and CGP 26505 does not reflect binding to β-adrenoceptors. Eur J Pharmacol. 1992;222:107–12.CrossRefPubMed
32.
Zurück zum Zitat Delforge J, Syrota A, Lancon JP, et al. Cardiac beta-adrenergic receptor density measured in vivo using PET, CGP 12177, and a new graphical method. J Nucl Med. 1991;32:739–48.PubMed Delforge J, Syrota A, Lancon JP, et al. Cardiac beta-adrenergic receptor density measured in vivo using PET, CGP 12177, and a new graphical method. J Nucl Med. 1991;32:739–48.PubMed
33.
Zurück zum Zitat Delforge J, Mesangeau D, Dolle F, et al. In vivo quantification and parametric images of the cardiac β-adrenergic receptor density. J Nucl Med. 2002;43:215–26.PubMed Delforge J, Mesangeau D, Dolle F, et al. In vivo quantification and parametric images of the cardiac β-adrenergic receptor density. J Nucl Med. 2002;43:215–26.PubMed
34.
Zurück zum Zitat K-i N, Kuge Y, K-i S, et al. A simplified and improved synthesis of [11 C] phosgene with iron and iron (III) oxide. Nucl Med Biol. 2002;29:345–50.CrossRef K-i N, Kuge Y, K-i S, et al. A simplified and improved synthesis of [11 C] phosgene with iron and iron (III) oxide. Nucl Med Biol. 2002;29:345–50.CrossRef
35.
Zurück zum Zitat Nishijima K, Kuge Y, Seki K, et al. Preparation and pharmaceutical evaluation for clinical application of high specific activity S-(−)[11C] CGP-12177, a radioligand for β-adrenoreceptors. Nucl Med Commun. 2004;25:845–9.CrossRefPubMed Nishijima K, Kuge Y, Seki K, et al. Preparation and pharmaceutical evaluation for clinical application of high specific activity S-(−)[11C] CGP-12177, a radioligand for β-adrenoreceptors. Nucl Med Commun. 2004;25:845–9.CrossRefPubMed
36.
Zurück zum Zitat Momose M, Reder S, Raffel DM, et al. Evaluation of cardiac β-adrenoreceptors in the isolated perfused rat heart using (S)-11C-CGP12388. J Nucl Med. 2004;45:471–7.PubMed Momose M, Reder S, Raffel DM, et al. Evaluation of cardiac β-adrenoreceptors in the isolated perfused rat heart using (S)-11C-CGP12388. J Nucl Med. 2004;45:471–7.PubMed
37.
Zurück zum Zitat Elsinga PH, Doze P, van Waarde A, et al. Imaging of β-adrenoceptors in the human thorax using (S)-[11 C] CGP12388 and positron emission tomography. Eur J Pharmacol. 2001;433:173–6.CrossRefPubMed Elsinga PH, Doze P, van Waarde A, et al. Imaging of β-adrenoceptors in the human thorax using (S)-[11 C] CGP12388 and positron emission tomography. Eur J Pharmacol. 2001;433:173–6.CrossRefPubMed
38.
Zurück zum Zitat Dhein S, van Koppen CJ, Brodde OE. Muscarinic receptors in the mammalian heart. Pharmacol Res. 2001;44:161–82.CrossRefPubMed Dhein S, van Koppen CJ, Brodde OE. Muscarinic receptors in the mammalian heart. Pharmacol Res. 2001;44:161–82.CrossRefPubMed
39.
Zurück zum Zitat Pauza DH, Saburkina I, Rysevaite K, et al. Neuroanatomy of the murine cardiac conduction system: a combined stereomicroscopic and fluorescence immunohistochemical study. Auton Neurosci. 2013;176:32–47.CrossRefPubMed Pauza DH, Saburkina I, Rysevaite K, et al. Neuroanatomy of the murine cardiac conduction system: a combined stereomicroscopic and fluorescence immunohistochemical study. Auton Neurosci. 2013;176:32–47.CrossRefPubMed
40.
Zurück zum Zitat Okamura N, Funaki Y, Tashiro M, et al. In vivo visualization of donepezil binding in the brain of patients with Alzheimer’s disease. Br J Clin Pharmacol. 2008;65:472–9.CrossRefPubMed Okamura N, Funaki Y, Tashiro M, et al. In vivo visualization of donepezil binding in the brain of patients with Alzheimer’s disease. Br J Clin Pharmacol. 2008;65:472–9.CrossRefPubMed
41.
Zurück zum Zitat Hiraoka K, Okamura N, Funaki Y, et al. Cholinergic deficit and response to donepezil therapy in Parkinson’s disease with dementia. Eur Neurol. 2012;68:137–43.CrossRefPubMed Hiraoka K, Okamura N, Funaki Y, et al. Cholinergic deficit and response to donepezil therapy in Parkinson’s disease with dementia. Eur Neurol. 2012;68:137–43.CrossRefPubMed
42.
Zurück zum Zitat Gjerløff T, Fedorova T, Knudsen K et al. Imaging acetylcholinesterase density in peripheral organs in Parkinson’s disease with 11C-donepezil PET. Brain 2014:awu369. Gjerløff T, Fedorova T, Knudsen K et al. Imaging acetylcholinesterase density in peripheral organs in Parkinson’s disease with 11C-donepezil PET. Brain 2014:awu369.
43.
Zurück zum Zitat •• Gjerløff T, Jakobsen S, Nahimi A et al. In vivo imaging of human acetylcholinesterase density in peripheral organs using 11C-donepezil: dosimetry, biodistribution, and kinetic analyses. J Nucl Med. 2014;55:1818-24. This was the first-in-human study to assess the biodistribution and radiation dosimetry of 11 C- donepezil, a radiotracer that binds to acetylcholinesterase, in peripheral organs including the heart and liver. Cardiac PNS presynaptic imaging has been unsuccessful to date. This study provides promising data for future cardiac PNS presynaptic imaging, including high cardiac specific binding, high cardiac uptake, and the ability to accurately quantify cardiac images without arterial blood sampling and complex modeling. •• Gjerløff T, Jakobsen S, Nahimi A et al. In vivo imaging of human acetylcholinesterase density in peripheral organs using 11C-donepezil: dosimetry, biodistribution, and kinetic analyses. J Nucl Med. 2014;55:1818-24. This was the first-in-human study to assess the biodistribution and radiation dosimetry of 11 C- donepezil, a radiotracer that binds to acetylcholinesterase, in peripheral organs including the heart and liver. Cardiac PNS presynaptic imaging has been unsuccessful to date. This study provides promising data for future cardiac PNS presynaptic imaging, including high cardiac specific binding, high cardiac uptake, and the ability to accurately quantify cardiac images without arterial blood sampling and complex modeling.
44.
Zurück zum Zitat Le Guludec D, Delforge J, Dollé F. Chapter 6: Imaging the parasympathetic cardiac innervation with PET. In: Autonomic Innervation of the Heart: New York City: Springer Publishing. 2015:111-135. Le Guludec D, Delforge J, Dollé F. Chapter 6: Imaging the parasympathetic cardiac innervation with PET. In: Autonomic Innervation of the Heart: New York City: Springer Publishing. 2015:111-135.
45.
Zurück zum Zitat Delforge J, Janier M, Syrota A, et al. Noninvasive quantification of muscarinic receptors in vivo with positron emission tomography in the dog heart. Circulation. 1990;82:1494–504.CrossRefPubMed Delforge J, Janier M, Syrota A, et al. Noninvasive quantification of muscarinic receptors in vivo with positron emission tomography in the dog heart. Circulation. 1990;82:1494–504.CrossRefPubMed
46.
Zurück zum Zitat Delforge J, Syrota A, Mazoyer B. Identifiability analysis and parameter identification of an in vivo ligand-receptor model from PET data. IEEE Trans Biomed Eng. 1990;37:653–61.CrossRefPubMed Delforge J, Syrota A, Mazoyer B. Identifiability analysis and parameter identification of an in vivo ligand-receptor model from PET data. IEEE Trans Biomed Eng. 1990;37:653–61.CrossRefPubMed
47.
Zurück zum Zitat Delforge J, Le Guludec D, Syrota A, et al. Quantification of myocardial muscarinic receptors with PET in humans. J Nucl Med. 1993;34:981–91.PubMed Delforge J, Le Guludec D, Syrota A, et al. Quantification of myocardial muscarinic receptors with PET in humans. J Nucl Med. 1993;34:981–91.PubMed
48.
Zurück zum Zitat Le Guludec D, Delforge J, Syrota A, et al. In vivo quantification of myocardial muscarinic receptors in heart transplant patients. Circulation. 1994;90:172–8.CrossRefPubMed Le Guludec D, Delforge J, Syrota A, et al. In vivo quantification of myocardial muscarinic receptors in heart transplant patients. Circulation. 1994;90:172–8.CrossRefPubMed
49.
Zurück zum Zitat Bucerius J, Joe AY, Schmaljohann J, et al. Feasibility of 2–deoxy–2–[18F] fluoro–D–glucose–A85380–PET for imaging of human cardiac nicotinic acetylcholine receptors in vivo. Clin Res Cardiol. 2006;95:105–9.CrossRefPubMed Bucerius J, Joe AY, Schmaljohann J, et al. Feasibility of 2–deoxy–2–[18F] fluoro–D–glucose–A85380–PET for imaging of human cardiac nicotinic acetylcholine receptors in vivo. Clin Res Cardiol. 2006;95:105–9.CrossRefPubMed
50.
Zurück zum Zitat Jacobson AF, Senior R, Cerqueira MD, et al. Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure: results of the prospective ADMIRE-HF (AdreView Myocardial Imaging for Risk Evaluation in Heart Failure) study. J Am Coll Cardiol. 2010;55:2212–21.CrossRefPubMed Jacobson AF, Senior R, Cerqueira MD, et al. Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure: results of the prospective ADMIRE-HF (AdreView Myocardial Imaging for Risk Evaluation in Heart Failure) study. J Am Coll Cardiol. 2010;55:2212–21.CrossRefPubMed
51.
Zurück zum Zitat •• Fallavollita JA, Heavey BM, Luisi AJ, Jr. et al. Regional myocardial sympathetic denervation predicts the risk of sudden cardiac arrest in ischemic cardiomyopathy. J Am Coll Cardiol. 2014;63:141-9. This is the first study showing the prognostic value of 11 C-hydroxyephdrine in predicting time to sudden cardiac arrest in patients with ischemic cardiomyopathy and reduced left ventricular ejection fraction. •• Fallavollita JA, Heavey BM, Luisi AJ, Jr. et al. Regional myocardial sympathetic denervation predicts the risk of sudden cardiac arrest in ischemic cardiomyopathy. J Am Coll Cardiol. 2014;63:141-9. This is the first study showing the prognostic value of 11 C-hydroxyephdrine in predicting time to sudden cardiac arrest in patients with ischemic cardiomyopathy and reduced left ventricular ejection fraction.
52.
Zurück zum Zitat Di Carli MF, Tobes MC, Mangner T, et al. Effects of cardiac sympathetic innervation on coronary blood flow. N Engl J Med. 1997;336:1208–16.CrossRefPubMed Di Carli MF, Tobes MC, Mangner T, et al. Effects of cardiac sympathetic innervation on coronary blood flow. N Engl J Med. 1997;336:1208–16.CrossRefPubMed
53.
Zurück zum Zitat Bengel FM, Ueberfuhr P, Schiepel N, Nekolla SG, Reichart B, Schwaiger M. Effect of sympathetic reinnervation on cardiac performance after heart transplantation. N Engl J Med. 2001;345:731–8.CrossRefPubMed Bengel FM, Ueberfuhr P, Schiepel N, Nekolla SG, Reichart B, Schwaiger M. Effect of sympathetic reinnervation on cardiac performance after heart transplantation. N Engl J Med. 2001;345:731–8.CrossRefPubMed
54.
Zurück zum Zitat Bengel FM, Ueberfuhr P, Ziegler SI, Nekolla S, Reichart B, Schwaiger M. Serial assessment of sympathetic reinnervation after orthotopic heart transplantation. A longitudinal study using PET and C-11 hydroxyephedrine. Circulation. 1999;99:1866–71.CrossRefPubMed Bengel FM, Ueberfuhr P, Ziegler SI, Nekolla S, Reichart B, Schwaiger M. Serial assessment of sympathetic reinnervation after orthotopic heart transplantation. A longitudinal study using PET and C-11 hydroxyephedrine. Circulation. 1999;99:1866–71.CrossRefPubMed
55.
Zurück zum Zitat Schwaiger M, Hutchins GD, Kalff V, et al. Evidence for regional catecholamine uptake and storage sites in the transplanted human heart by positron emission tomography. J Clin Investig. 1991;87:1681.CrossRefPubMedPubMedCentral Schwaiger M, Hutchins GD, Kalff V, et al. Evidence for regional catecholamine uptake and storage sites in the transplanted human heart by positron emission tomography. J Clin Investig. 1991;87:1681.CrossRefPubMedPubMedCentral
56.
Zurück zum Zitat Bengel FM, Ueberfuhr P, Hesse T, et al. Clinical determinants of ventricular sympathetic reinnervation after orthotopic heart transplantation. Circulation. 2002;106:831–5.CrossRefPubMed Bengel FM, Ueberfuhr P, Hesse T, et al. Clinical determinants of ventricular sympathetic reinnervation after orthotopic heart transplantation. Circulation. 2002;106:831–5.CrossRefPubMed
57.
Zurück zum Zitat Bengel FM, Ueberfuhr P, Schäfer D, Nekolla SG, Reichart B, Schwaiger M. Effect of diabetes mellitus on sympathetic neuronal regeneration studied in the model of transplant reinnervation. J Nucl Med. 2006;47:1413–9.PubMed Bengel FM, Ueberfuhr P, Schäfer D, Nekolla SG, Reichart B, Schwaiger M. Effect of diabetes mellitus on sympathetic neuronal regeneration studied in the model of transplant reinnervation. J Nucl Med. 2006;47:1413–9.PubMed
58.
Zurück zum Zitat Bengel FM, Ueberfuhr P, Ziegler SI, et al. Non-invasive assessment of the effect of cardiac sympathetic innervation on metabolism of the human heart. Eur J Nucl Med. 2000;27:1650–7.CrossRefPubMed Bengel FM, Ueberfuhr P, Ziegler SI, et al. Non-invasive assessment of the effect of cardiac sympathetic innervation on metabolism of the human heart. Eur J Nucl Med. 2000;27:1650–7.CrossRefPubMed
59.
Zurück zum Zitat Barber MJ, Mueller TM, Henry DP, Felten S, Zipes DP. Transmural myocardial infarction in the dog produces sympathectomy in noninfarcted myocardium. Circulation. 1983;67:787–96.CrossRefPubMed Barber MJ, Mueller TM, Henry DP, Felten S, Zipes DP. Transmural myocardial infarction in the dog produces sympathectomy in noninfarcted myocardium. Circulation. 1983;67:787–96.CrossRefPubMed
60.
Zurück zum Zitat Lautamaki R, Sasano T, Higuchi T, et al. Multiparametric molecular imaging provides mechanistic insights into sympathetic innervation impairment in the viable infarct border zone. J Nucl Med. 2015;56:457–63.CrossRefPubMed Lautamaki R, Sasano T, Higuchi T, et al. Multiparametric molecular imaging provides mechanistic insights into sympathetic innervation impairment in the viable infarct border zone. J Nucl Med. 2015;56:457–63.CrossRefPubMed
61.
Zurück zum Zitat Allman KC, Wieland DM, Muzik O, Degrado TR, Wolfe ER, Schwaiger M. Carbon-11 hydroxyephedrine with positron emission tomography for serial assessment of cardiac adrenergic neuronal function after acute myocardial infarction in humans. J Am Coll Cardiol. 1993;22:368–75.CrossRefPubMed Allman KC, Wieland DM, Muzik O, Degrado TR, Wolfe ER, Schwaiger M. Carbon-11 hydroxyephedrine with positron emission tomography for serial assessment of cardiac adrenergic neuronal function after acute myocardial infarction in humans. J Am Coll Cardiol. 1993;22:368–75.CrossRefPubMed
62.
Zurück zum Zitat Fricke E, Eckert S, Dongas A, et al. Myocardial sympathetic innervation in patients with symptomatic coronary artery disease: follow-up after 1 year with neurostimulation. J Nucl Med. 2008;49:1458–64.CrossRefPubMed Fricke E, Eckert S, Dongas A, et al. Myocardial sympathetic innervation in patients with symptomatic coronary artery disease: follow-up after 1 year with neurostimulation. J Nucl Med. 2008;49:1458–64.CrossRefPubMed
63.
Zurück zum Zitat Fallen EL, Coates G, Nahmias C, et al. Recovery rates of regional sympathetic reinnervation and myocardial blood flow after acute myocardial infarction. Am Heart J. 1999;137:863–9.CrossRefPubMed Fallen EL, Coates G, Nahmias C, et al. Recovery rates of regional sympathetic reinnervation and myocardial blood flow after acute myocardial infarction. Am Heart J. 1999;137:863–9.CrossRefPubMed
64.
Zurück zum Zitat Ohte N, Narita H, Iida A, et al. Cardiac β-adrenergic receptor density and myocardial systolic function in the remote noninfarcted region after prior myocardial infarction with left ventricular remodelling. Eur J Nucl Med Mol Imaging. 2012;39:1246–53.CrossRefPubMed Ohte N, Narita H, Iida A, et al. Cardiac β-adrenergic receptor density and myocardial systolic function in the remote noninfarcted region after prior myocardial infarction with left ventricular remodelling. Eur J Nucl Med Mol Imaging. 2012;39:1246–53.CrossRefPubMed
65.
Zurück zum Zitat John AS, Mongillo M, Depre C, et al. Pre-and post-synaptic sympathetic function in human hibernating myocardium. Eur J Nucl Med Mol Imaging. 2007;34:1973–80.CrossRefPubMed John AS, Mongillo M, Depre C, et al. Pre-and post-synaptic sympathetic function in human hibernating myocardium. Eur J Nucl Med Mol Imaging. 2007;34:1973–80.CrossRefPubMed
66.
Zurück zum Zitat Spyrou N, Rosen SD, Fath-Ordoubadi F, et al. Myocardial beta-adrenoceptor density one month after acute myocardial infarction predicts left ventricular volumes at six months. J Am Coll Cardiol. 2002;40:1216–24.CrossRefPubMed Spyrou N, Rosen SD, Fath-Ordoubadi F, et al. Myocardial beta-adrenoceptor density one month after acute myocardial infarction predicts left ventricular volumes at six months. J Am Coll Cardiol. 2002;40:1216–24.CrossRefPubMed
67.
Zurück zum Zitat Mazzadi AN, Pineau J, Costes N, et al. Muscarinic receptor upregulation in patients with myocardial infarction: a new paradigm. Circ Cardiovasc Imaging. 2009;2:365–72.CrossRefPubMed Mazzadi AN, Pineau J, Costes N, et al. Muscarinic receptor upregulation in patients with myocardial infarction: a new paradigm. Circ Cardiovasc Imaging. 2009;2:365–72.CrossRefPubMed
68.
Zurück zum Zitat Fox K, Borer JS, Camm AJ, et al. Resting heart rate in cardiovascular disease. J Am Coll Cardiol. 2007;50:823–30.CrossRefPubMed Fox K, Borer JS, Camm AJ, et al. Resting heart rate in cardiovascular disease. J Am Coll Cardiol. 2007;50:823–30.CrossRefPubMed
69.
Zurück zum Zitat Luisi AJ, Suzuki G, Haka MS, Toorongian SA, Canty JM, Fallavollita JA. Regional 11C-hydroxyephedrine retention in hibernating myocardium: chronic inhomogeneity of sympathetic innervation in the absence of infarction. J Nucl Med. 2005;46:1368–74.PubMed Luisi AJ, Suzuki G, Haka MS, Toorongian SA, Canty JM, Fallavollita JA. Regional 11C-hydroxyephedrine retention in hibernating myocardium: chronic inhomogeneity of sympathetic innervation in the absence of infarction. J Nucl Med. 2005;46:1368–74.PubMed
70.
Zurück zum Zitat Fallavollita JA, Banas MD, Suzuki G, Sajjad M, Canty Jr JM. 11C-meta-hydroxyephedrine defects persist despite functional improvement in hibernating myocardium. J Nucl Cardiol. 2010;17:85–96.CrossRefPubMed Fallavollita JA, Banas MD, Suzuki G, Sajjad M, Canty Jr JM. 11C-meta-hydroxyephedrine defects persist despite functional improvement in hibernating myocardium. J Nucl Cardiol. 2010;17:85–96.CrossRefPubMed
71.
Zurück zum Zitat Bülow H, Stahl F, Lauer B, et al. Alterations of myocardial presynaptic sympathetic innervation in patients with multi-vessel coronary artery disease but without history of myocardial infarction. Nucl Med Commun. 2003;24:233–9.CrossRefPubMed Bülow H, Stahl F, Lauer B, et al. Alterations of myocardial presynaptic sympathetic innervation in patients with multi-vessel coronary artery disease but without history of myocardial infarction. Nucl Med Commun. 2003;24:233–9.CrossRefPubMed
72.
Zurück zum Zitat Haider N, Baliga RR, Chandrashekhar Y, Narula J. Adrenergic excess, hNET1 down-regulation, and compromised mIBG uptake in heart failure: poverty in the presence of plenty. J Am Coll Cardiol Img. 2010;3:71–5.CrossRef Haider N, Baliga RR, Chandrashekhar Y, Narula J. Adrenergic excess, hNET1 down-regulation, and compromised mIBG uptake in heart failure: poverty in the presence of plenty. J Am Coll Cardiol Img. 2010;3:71–5.CrossRef
73.
Zurück zum Zitat Cohn JN, Levine TB, Olivari MT, et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med. 1984;311:819–23.CrossRefPubMed Cohn JN, Levine TB, Olivari MT, et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med. 1984;311:819–23.CrossRefPubMed
74.
Zurück zum Zitat Kaye DM, Lambert GW, Lefkovits J, Morris M, Jennings G, Esler MD. Neurochemical evidence of cardiac sympathetic activation and increased central nervous system norepinephrine turnover in severe congestive heart failure. J Am Coll Cardiol. 1994;23:570–8.CrossRefPubMed Kaye DM, Lambert GW, Lefkovits J, Morris M, Jennings G, Esler MD. Neurochemical evidence of cardiac sympathetic activation and increased central nervous system norepinephrine turnover in severe congestive heart failure. J Am Coll Cardiol. 1994;23:570–8.CrossRefPubMed
75.
Zurück zum Zitat Matsunari I, Aoki H, Nomura Y, et al. Iodine-123 metaiodobenzylguanidine imaging and carbon-11 hydroxyephedrine positron emission tomography compared in patients with left ventricular dysfunction. Circ Cardiovasc Imaging. 2010;3:595–603.CrossRefPubMed Matsunari I, Aoki H, Nomura Y, et al. Iodine-123 metaiodobenzylguanidine imaging and carbon-11 hydroxyephedrine positron emission tomography compared in patients with left ventricular dysfunction. Circ Cardiovasc Imaging. 2010;3:595–603.CrossRefPubMed
76.
Zurück zum Zitat Bengel F, Permanetter B, Ungerer M, Nekolla S, Schwaiger M. Relationship between altered sympathetic innervation, oxidative metabolism and contractile function in the cardiomyopathic human heart; a non-invasive study using positron emission tomography. Eur Heart J. 2001;22:1594–600.CrossRefPubMed Bengel F, Permanetter B, Ungerer M, Nekolla S, Schwaiger M. Relationship between altered sympathetic innervation, oxidative metabolism and contractile function in the cardiomyopathic human heart; a non-invasive study using positron emission tomography. Eur Heart J. 2001;22:1594–600.CrossRefPubMed
77.
Zurück zum Zitat Rijnierse MT, Allaart CP, de Haan S et al. Sympathetic denervation is associated with microvascular dysfunction in non-infarcted myocardium in patients with cardiomyopathy. Eur Heart J Cardiovasc Imaging. 2015:jev013. Rijnierse MT, Allaart CP, de Haan S et al. Sympathetic denervation is associated with microvascular dysfunction in non-infarcted myocardium in patients with cardiomyopathy. Eur Heart J Cardiovasc Imaging. 2015:jev013.
78.
Zurück zum Zitat Caldwell JH, Link JM, Levy WC, Poole JE, Stratton JR. Evidence for pre-to postsynaptic mismatch of the cardiac sympathetic nervous system in ischemic congestive heart failure. J Nucl Med. 2008;49:234–41.CrossRefPubMed Caldwell JH, Link JM, Levy WC, Poole JE, Stratton JR. Evidence for pre-to postsynaptic mismatch of the cardiac sympathetic nervous system in ischemic congestive heart failure. J Nucl Med. 2008;49:234–41.CrossRefPubMed
79.
Zurück zum Zitat •• Aikawa T, Naya M, Tomiyama Y et al. Impairment of myocardial sympathetic innervation and its heterogeneity are associated with diastolic dysfunction in patients with heart failure and preserved ejection fraction: C11-hydroxyephedrine PET study. J Nucl Med. 2016;57:231. This is the first study showing that global 11 C-hydroxyephdrine retention index is reduced and 11 C-hydroxyephdrine uptake heterogeneity is increased in patients with heart failure and preserved ejection fraction (HFpEF). •• Aikawa T, Naya M, Tomiyama Y et al. Impairment of myocardial sympathetic innervation and its heterogeneity are associated with diastolic dysfunction in patients with heart failure and preserved ejection fraction: C11-hydroxyephedrine PET study. J Nucl Med. 2016;57:231. This is the first study showing that global 11 C-hydroxyephdrine retention index is reduced and 11 C-hydroxyephdrine uptake heterogeneity is increased in patients with heart failure and preserved ejection fraction (HFpEF).
80.
Zurück zum Zitat Schäfers M, Dutka D, Rhodes CG, et al. Myocardial presynaptic and postsynaptic autonomic dysfunction in hypertrophic cardiomyopathy. Circ Res. 1998;82:57–62.CrossRefPubMed Schäfers M, Dutka D, Rhodes CG, et al. Myocardial presynaptic and postsynaptic autonomic dysfunction in hypertrophic cardiomyopathy. Circ Res. 1998;82:57–62.CrossRefPubMed
81.
Zurück zum Zitat Fujita W, Matsunari I, Aoki H, Nekolla SG, Kajinami K. Prediction of all-cause death using 11C-hydroxyephedrine positron emission tomography in Japanese patients with left ventricular dysfunction. Ann Nucl Med. 2016;1–7. Fujita W, Matsunari I, Aoki H, Nekolla SG, Kajinami K. Prediction of all-cause death using 11C-hydroxyephedrine positron emission tomography in Japanese patients with left ventricular dysfunction. Ann Nucl Med. 2016;1–7.
82.
Zurück zum Zitat Pietilä M, Malminiemi K, Ukkonen H, et al. Reduced myocardial carbon-11 hydroxyephedrine retention is associated with poor prognosis in chronic heart failure. Eur J Nucl Med. 2001;28:373–6.CrossRefPubMed Pietilä M, Malminiemi K, Ukkonen H, et al. Reduced myocardial carbon-11 hydroxyephedrine retention is associated with poor prognosis in chronic heart failure. Eur J Nucl Med. 2001;28:373–6.CrossRefPubMed
83.
Zurück zum Zitat Tsukamoto T, Morita K, Naya M, et al. Decreased myocardial β-adrenergic receptor density in relation to increased sympathetic tone in patients with nonischemic cardiomyopathy. J Nucl Med. 2007;48:1777–82.CrossRefPubMed Tsukamoto T, Morita K, Naya M, et al. Decreased myocardial β-adrenergic receptor density in relation to increased sympathetic tone in patients with nonischemic cardiomyopathy. J Nucl Med. 2007;48:1777–82.CrossRefPubMed
84.
Zurück zum Zitat Naya M, Tsukamoto T, Morita K, et al. Myocardial β-adrenergic receptor density assessed by 11C-CGP12177 PET predicts improvement of cardiac function after carvedilol treatment in patients with idiopathic dilated cardiomyopathy. J Nucl Med. 2009;50:220–5.CrossRefPubMed Naya M, Tsukamoto T, Morita K, et al. Myocardial β-adrenergic receptor density assessed by 11C-CGP12177 PET predicts improvement of cardiac function after carvedilol treatment in patients with idiopathic dilated cardiomyopathy. J Nucl Med. 2009;50:220–5.CrossRefPubMed
85.
Zurück zum Zitat de Jong RM, Willemsen AT, Slart RH, et al. Myocardial β-adrenoceptor downregulation in idiopathic dilated cardiomyopathy measured in vivo with PET using the new radioligand (S)-[11C] CGP12388. Eur J Nucl Med Mol Imaging. 2005;32:443–7.CrossRefPubMed de Jong RM, Willemsen AT, Slart RH, et al. Myocardial β-adrenoceptor downregulation in idiopathic dilated cardiomyopathy measured in vivo with PET using the new radioligand (S)-[11C] CGP12388. Eur J Nucl Med Mol Imaging. 2005;32:443–7.CrossRefPubMed
86.
Zurück zum Zitat Le Guludec D, Cohen-Solal A, Delforge J, Delahaye N, Syrota A, Merlet P. Increased myocardial muscarinic receptor density in idiopathic dilated cardiomyopathy: an in vivo PET study. Circulation. 1997;96:3416–22.CrossRefPubMed Le Guludec D, Cohen-Solal A, Delforge J, Delahaye N, Syrota A, Merlet P. Increased myocardial muscarinic receptor density in idiopathic dilated cardiomyopathy: an in vivo PET study. Circulation. 1997;96:3416–22.CrossRefPubMed
87.
Zurück zum Zitat Russo AM, Stainback RF, Bailey SR, et al. ACCF/HRS/AHA/ASE/HFSA/SCAI/SCCT/SCMR 2013 appropriate use criteria for implantable cardioverter-defibrillators and cardiac resynchronization therapy: a report of the American College of Cardiology Foundation appropriate use criteria task force, Heart Rhythm Society, American Heart Association, American Society of Echocardiography, Heart Failure Society of America, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic Resonance. J Am Coll Cardiol. 2013;61:1318–68.CrossRefPubMed Russo AM, Stainback RF, Bailey SR, et al. ACCF/HRS/AHA/ASE/HFSA/SCAI/SCCT/SCMR 2013 appropriate use criteria for implantable cardioverter-defibrillators and cardiac resynchronization therapy: a report of the American College of Cardiology Foundation appropriate use criteria task force, Heart Rhythm Society, American Heart Association, American Society of Echocardiography, Heart Failure Society of America, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic Resonance. J Am Coll Cardiol. 2013;61:1318–68.CrossRefPubMed
88.
Zurück zum Zitat Daubert C, Behar N, Martins RP, Mabo P, Leclercq C. Avoiding non-responders to cardiac resynchronization therapy: a practical guide. Eur Heart J. 2016:ehw270. Daubert C, Behar N, Martins RP, Mabo P, Leclercq C. Avoiding non-responders to cardiac resynchronization therapy: a practical guide. Eur Heart J. 2016:ehw270.
89.
Zurück zum Zitat Boriani G, Regoli F, Saporito D, et al. Neurohormones and inflammatory mediators in patients with heart failure undergoing cardiac resynchronization therapy: time courses and prediction of response. Peptides. 2006;27:1776–86.CrossRefPubMed Boriani G, Regoli F, Saporito D, et al. Neurohormones and inflammatory mediators in patients with heart failure undergoing cardiac resynchronization therapy: time courses and prediction of response. Peptides. 2006;27:1776–86.CrossRefPubMed
90.
Zurück zum Zitat •• Martignani C, Diemberger I, Nanni C et al. Cardiac resynchronization therapy and cardiac sympathetic function. Eur J Clin Invest. 2015;45:792-9. This is the first study showing that global 11 C-hydroxyephdrine uptake and 11 C-hydroxyephdrine uptake heterogeneity may be able to predict response to cardiac resynchronization therapy in patients with heart failure and reduced left ventricular ejection fraction. •• Martignani C, Diemberger I, Nanni C et al. Cardiac resynchronization therapy and cardiac sympathetic function. Eur J Clin Invest. 2015;45:792-9. This is the first study showing that global 11 C-hydroxyephdrine uptake and 11 C-hydroxyephdrine uptake heterogeneity may be able to predict response to cardiac resynchronization therapy in patients with heart failure and reduced left ventricular ejection fraction.
91.
Zurück zum Zitat Capitanio S, Nanni C, Marini C, et al. Heterogeneous response of cardiac sympathetic function to cardiac resynchronization therapy in heart failure documented by 11 [C]-hydroxy-ephedrine and PET/CT. Nucl Med Biol. 2015;42:858–63.CrossRefPubMed Capitanio S, Nanni C, Marini C, et al. Heterogeneous response of cardiac sympathetic function to cardiac resynchronization therapy in heart failure documented by 11 [C]-hydroxy-ephedrine and PET/CT. Nucl Med Biol. 2015;42:858–63.CrossRefPubMed
92.
Zurück zum Zitat Epstein AE, Dimarco JP, Ellenbogen KA, et al. ACC/AHA/HRS 2008 guidelines for Device-Based Therapy of Cardiac Rhythm Abnormalities: executive summary. Heart Rhythm. 2008;5:934–55.CrossRefPubMed Epstein AE, Dimarco JP, Ellenbogen KA, et al. ACC/AHA/HRS 2008 guidelines for Device-Based Therapy of Cardiac Rhythm Abnormalities: executive summary. Heart Rhythm. 2008;5:934–55.CrossRefPubMed
93.
Zurück zum Zitat Wellens HJ, Schwartz PJ, Lindemans FW, et al. Risk stratification for sudden cardiac death: current status and challenges for the future. Eur Heart J. 2014;35:1642–51.CrossRefPubMedPubMedCentral Wellens HJ, Schwartz PJ, Lindemans FW, et al. Risk stratification for sudden cardiac death: current status and challenges for the future. Eur Heart J. 2014;35:1642–51.CrossRefPubMedPubMedCentral
95.
Zurück zum Zitat Sasano T, Abraham MR, Chang KC, et al. Abnormal sympathetic innervation of viable myocardium and the substrate of ventricular tachycardia after myocardial infarction. J Am Coll Cardiol. 2008;51:2266–75.CrossRefPubMed Sasano T, Abraham MR, Chang KC, et al. Abnormal sympathetic innervation of viable myocardium and the substrate of ventricular tachycardia after myocardial infarction. J Am Coll Cardiol. 2008;51:2266–75.CrossRefPubMed
96.
Zurück zum Zitat Rijnierse MT, Allaart CP, de Haan S, et al. Non-invasive imaging to identify susceptibility for ventricular arrhythmias in ischaemic left ventricular dysfunction. Heart. 2016;102:832–40.CrossRefPubMed Rijnierse MT, Allaart CP, de Haan S, et al. Non-invasive imaging to identify susceptibility for ventricular arrhythmias in ischaemic left ventricular dysfunction. Heart. 2016;102:832–40.CrossRefPubMed
Metadaten
Titel
Recent Advances and Clinical Applications of PET Cardiac Autonomic Nervous System Imaging
verfasst von
Nabil E. Boutagy
Albert J. Sinusas
Publikationsdatum
01.04.2017
Verlag
Springer US
Erschienen in
Current Cardiology Reports / Ausgabe 4/2017
Print ISSN: 1523-3782
Elektronische ISSN: 1534-3170
DOI
https://doi.org/10.1007/s11886-017-0843-0

Weitere Artikel der Ausgabe 4/2017

Current Cardiology Reports 4/2017 Zur Ausgabe

Cardio-Oncology (SA Francis, Section Editor)

Cardio-oncology: the Nuclear Option

Ischemic Heart Disease (D Mukherjee, Section Editor)

Coronary Stents in Diabetic Patients: State of the Knowledge

Management of Acute Coronary Syndromes (AS Jaffe, Section Editor)

Prognostic Biomarkers in Acute Coronary Syndromes: Risk Stratification Beyond Cardiac Troponins

Pericardial Disease (AL Klein, Section Editor)

Multi-modality Imaging Assessment of Pericardial Masses

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.