Skip to main content
Erschienen in: Current Neurology and Neuroscience Reports 7/2015

01.07.2015 | Pediatric Neurology (P Pearl, Section Editor)

The Genetics of the Epilepsies

verfasst von: Christelle M. El Achkar, Heather E. Olson, Annapurna Poduri, Phillip L. Pearl

Erschienen in: Current Neurology and Neuroscience Reports | Ausgabe 7/2015

Einloggen, um Zugang zu erhalten

Abstract

While genetic causes of epilepsy have been hypothesized from the time of Hippocrates, the advent of new genetic technologies has played a tremendous role in elucidating a growing number of specific genetic causes for the epilepsies. This progress has contributed vastly to our recognition of the epilepsies as a diverse group of disorders, the genetic mechanisms of which are heterogeneous. Genotype-phenotype correlation, however, is not always clear. Nonetheless, the developments in genetic diagnosis raise the promise of a future of personalized medicine. Multiple genetic tests are now available, but there is no one test for all possible genetic mutations, and the balance between cost and benefit must be weighed. A genetic diagnosis, however, can provide valuable information regarding comorbidities, prognosis, and even treatment, as well as allow for genetic counseling. In this review, we will discuss the genetic mechanisms of the epilepsies as well as the specifics of particular genetic epilepsy syndromes. We will include an overview of the available genetic testing methods, the application of clinical knowledge into the selection of genetic testing, genotype-phenotype correlations of epileptic disorders, and therapeutic advances as well as a discussion of the importance of genetic counseling.
Literatur
1.
Zurück zum Zitat Lee BI, Heo K. Epilepsy: new genes, new technologies, new insights. Lancet Neurol. 2014;13(1):7–9.PubMed Lee BI, Heo K. Epilepsy: new genes, new technologies, new insights. Lancet Neurol. 2014;13(1):7–9.PubMed
2.
Zurück zum Zitat Hauser WA, Kurland LT. The epidemiology of epilepsy in Rochester, Minnesota, 1935 through 1967. Epilepsia. 1975;16(1):1–66.PubMed Hauser WA, Kurland LT. The epidemiology of epilepsy in Rochester, Minnesota, 1935 through 1967. Epilepsia. 1975;16(1):1–66.PubMed
3.
Zurück zum Zitat Thomas RH, Berkovic SF. The hidden genetics of epilepsy-a clinically important new paradigm. Nat Rev Neurol. 2014;10(5):283–92.PubMed Thomas RH, Berkovic SF. The hidden genetics of epilepsy-a clinically important new paradigm. Nat Rev Neurol. 2014;10(5):283–92.PubMed
4.
Zurück zum Zitat Buiting K. Prader-Willi syndrome and Angelman syndrome. Am J Med Genet C: Semin Med Genet. 2010;154C(3):365–76. Buiting K. Prader-Willi syndrome and Angelman syndrome. Am J Med Genet C: Semin Med Genet. 2010;154C(3):365–76.
5.
Zurück zum Zitat Buiting K et al. Inherited microdeletions in the Angelman and Prader-Willi syndromes define an imprinting centre on human chromosome 15. Nat Genet. 1995;9(4):395–400.PubMed Buiting K et al. Inherited microdeletions in the Angelman and Prader-Willi syndromes define an imprinting centre on human chromosome 15. Nat Genet. 1995;9(4):395–400.PubMed
6.
Zurück zum Zitat Evrony GD et al. Cell lineage analysis in human brain using endogenous retroelements. Neuron. 2015;85(1):49–59.PubMed Evrony GD et al. Cell lineage analysis in human brain using endogenous retroelements. Neuron. 2015;85(1):49–59.PubMed
7.
Zurück zum Zitat Lindhout D. Somatic mosaicism as a basic epileptogenic mechanism? Brain. 2008;131(Pt 4):900–1.PubMed Lindhout D. Somatic mosaicism as a basic epileptogenic mechanism? Brain. 2008;131(Pt 4):900–1.PubMed
8.
Zurück zum Zitat Shirley MD et al. Sturge-Weber syndrome and port-wine stains caused by somatic mutation in GNAQ. N Engl J Med. 2013;368(21):1971–9.PubMedCentralPubMed Shirley MD et al. Sturge-Weber syndrome and port-wine stains caused by somatic mutation in GNAQ. N Engl J Med. 2013;368(21):1971–9.PubMedCentralPubMed
9.
10.
Zurück zum Zitat Riviere JB et al. De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes. Nat Genet. 2012;44(8):934–40.PubMedCentralPubMed Riviere JB et al. De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes. Nat Genet. 2012;44(8):934–40.PubMedCentralPubMed
11.
Zurück zum Zitat Mirzaa GM, Poduri A. Megalencephaly and hemimegalencephaly: breakthroughs in molecular etiology. Am J Med Genet C: Semin Med Genet. 2014;166C(2):156–72. Mirzaa GM, Poduri A. Megalencephaly and hemimegalencephaly: breakthroughs in molecular etiology. Am J Med Genet C: Semin Med Genet. 2014;166C(2):156–72.
12.•
Zurück zum Zitat Poduri A et al. Somatic activation of AKT3 causes hemispheric developmental brain malformations. Neuron. 2012;74(1):41–8. This study was one of the earliest to demonstrate the role of somatic mutations limited to the brain and involving the AKT3 gene in the development of hemimgalencephaly.PubMedCentralPubMed Poduri A et al. Somatic activation of AKT3 causes hemispheric developmental brain malformations. Neuron. 2012;74(1):41–8. This study was one of the earliest to demonstrate the role of somatic mutations limited to the brain and involving the AKT3 gene in the development of hemimgalencephaly.PubMedCentralPubMed
13.
Zurück zum Zitat Gennaro E et al. Somatic and germline mosaicisms in severe myoclonic epilepsy of infancy. Biochem Biophys Res Commun. 2006;341(2):489–93.PubMed Gennaro E et al. Somatic and germline mosaicisms in severe myoclonic epilepsy of infancy. Biochem Biophys Res Commun. 2006;341(2):489–93.PubMed
14.
Zurück zum Zitat Depienne C et al. Mechanisms for variable expressivity of inherited SCN1A mutations causing Dravet syndrome. J Med Genet. 2010;47(6):404–10.PubMed Depienne C et al. Mechanisms for variable expressivity of inherited SCN1A mutations causing Dravet syndrome. J Med Genet. 2010;47(6):404–10.PubMed
15.
Zurück zum Zitat Martin MS et al. The voltage-gated sodium channel Scn8a is a genetic modifier of severe myoclonic epilepsy of infancy. Hum Mol Genet. 2007;16(23):2892–9.PubMed Martin MS et al. The voltage-gated sodium channel Scn8a is a genetic modifier of severe myoclonic epilepsy of infancy. Hum Mol Genet. 2007;16(23):2892–9.PubMed
16.
Zurück zum Zitat Doty CN. SCN9A: another sodium channel excited to play a role in human epilepsies. Clin Genet. 2010;77(4):326–8.PubMed Doty CN. SCN9A: another sodium channel excited to play a role in human epilepsies. Clin Genet. 2010;77(4):326–8.PubMed
17.
Zurück zum Zitat Meisler MH, O’Brien JE, Sharkey LM. Sodium channel gene family: epilepsy mutations, gene interactions and modifier effects. J Physiol. 2010;588(Pt 11):1841–8.PubMedCentralPubMed Meisler MH, O’Brien JE, Sharkey LM. Sodium channel gene family: epilepsy mutations, gene interactions and modifier effects. J Physiol. 2010;588(Pt 11):1841–8.PubMedCentralPubMed
18.
Zurück zum Zitat Singh NA et al. KCNQ2 and KCNQ3 potassium channel genes in benign familial neonatal convulsions: expansion of the functional and mutation spectrum. Brain. 2003;126(Pt 12):2726–37.PubMed Singh NA et al. KCNQ2 and KCNQ3 potassium channel genes in benign familial neonatal convulsions: expansion of the functional and mutation spectrum. Brain. 2003;126(Pt 12):2726–37.PubMed
19.
Zurück zum Zitat Kato M et al. Clinical spectrum of early onset epileptic encephalopathies caused by KCNQ2 mutation. Epilepsia. 2013;54(7):1282–7.PubMed Kato M et al. Clinical spectrum of early onset epileptic encephalopathies caused by KCNQ2 mutation. Epilepsia. 2013;54(7):1282–7.PubMed
20.
Zurück zum Zitat Scheffer IE et al. X-linked myoclonic epilepsy with spasticity and intellectual disability: mutation in the homeobox gene ARX. Neurology. 2002;59(3):348–56.PubMed Scheffer IE et al. X-linked myoclonic epilepsy with spasticity and intellectual disability: mutation in the homeobox gene ARX. Neurology. 2002;59(3):348–56.PubMed
21.
Zurück zum Zitat Depienne C et al. Sporadic infantile epileptic encephalopathy caused by mutations in PCDH19 resembles Dravet syndrome but mainly affects females. PLoS Genet. 2009;5(2), e1000381.PubMedCentralPubMed Depienne C et al. Sporadic infantile epileptic encephalopathy caused by mutations in PCDH19 resembles Dravet syndrome but mainly affects females. PLoS Genet. 2009;5(2), e1000381.PubMedCentralPubMed
22.
Zurück zum Zitat Saitsu H et al. De novo mutations in the gene encoding STXBP1 (MUNC18-1) cause early infantile epileptic encephalopathy. Nat Genet. 2008;40(6):782–8.PubMed Saitsu H et al. De novo mutations in the gene encoding STXBP1 (MUNC18-1) cause early infantile epileptic encephalopathy. Nat Genet. 2008;40(6):782–8.PubMed
23.
Zurück zum Zitat Euro, E.-R.E.S.C., P. Epilepsy Phenome/Genome, Epi KC. De novo mutations in synaptic transmission genes including DNM1 cause epileptic encephalopathies. Am J Hum Genet. 2014;95(4):360–70. Euro, E.-R.E.S.C., P. Epilepsy Phenome/Genome, Epi KC. De novo mutations in synaptic transmission genes including DNM1 cause epileptic encephalopathies. Am J Hum Genet. 2014;95(4):360–70.
24.
Zurück zum Zitat Mari F et al. CDKL5 belongs to the same molecular pathway of MeCP2 and it is responsible for the early-onset seizure variant of Rett syndrome. Hum Mol Genet. 2005;14(14):1935–46.PubMed Mari F et al. CDKL5 belongs to the same molecular pathway of MeCP2 and it is responsible for the early-onset seizure variant of Rett syndrome. Hum Mol Genet. 2005;14(14):1935–46.PubMed
25.
Zurück zum Zitat Poduri A et al. Homozygous PLCB1 deletion associated with malignant migrating partial seizures in infancy. Epilepsia. 2012;53(8):e146–50.PubMed Poduri A et al. Homozygous PLCB1 deletion associated with malignant migrating partial seizures in infancy. Epilepsia. 2012;53(8):e146–50.PubMed
26.
Zurück zum Zitat Shen J et al. Mutations in PNKP cause microcephaly, seizures and defects in DNA repair. Nat Genet. 2010;42(3):245–9.PubMedCentralPubMed Shen J et al. Mutations in PNKP cause microcephaly, seizures and defects in DNA repair. Nat Genet. 2010;42(3):245–9.PubMedCentralPubMed
27.
Zurück zum Zitat Mills PB et al. Epilepsy due to PNPO mutations: genotype, environment and treatment affect presentation and outcome. Brain. 2014;137(Pt 5):1350–60.PubMedCentralPubMed Mills PB et al. Epilepsy due to PNPO mutations: genotype, environment and treatment affect presentation and outcome. Brain. 2014;137(Pt 5):1350–60.PubMedCentralPubMed
28.
Zurück zum Zitat Pearl PL, Gospe SM. Pyridoxine or pyridoxal-5′-phosphate for neonatal epilepsy: the distinction just got murkier. Neurology. 2014;82(16):1392–4.PubMed Pearl PL, Gospe SM. Pyridoxine or pyridoxal-5′-phosphate for neonatal epilepsy: the distinction just got murkier. Neurology. 2014;82(16):1392–4.PubMed
29.
30.
Zurück zum Zitat Goto Y, Nonaka I, Horai S. A mutation in the tRNA(Leu)(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature. 1990;348(6302):651–3.PubMed Goto Y, Nonaka I, Horai S. A mutation in the tRNA(Leu)(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature. 1990;348(6302):651–3.PubMed
31.
Zurück zum Zitat Veeramah KR et al. Exome sequencing reveals new causal mutations in children with epileptic encephalopathies. Epilepsia. 2013;54(7):1270–81.PubMedCentralPubMed Veeramah KR et al. Exome sequencing reveals new causal mutations in children with epileptic encephalopathies. Epilepsia. 2013;54(7):1270–81.PubMedCentralPubMed
32.
Zurück zum Zitat Hortopan GA, Dinday MT, Baraban SC. Zebrafish as a model for studying genetic aspects of epilepsy. Dis Model Mech. 2010;3(3–4):144–8.PubMed Hortopan GA, Dinday MT, Baraban SC. Zebrafish as a model for studying genetic aspects of epilepsy. Dis Model Mech. 2010;3(3–4):144–8.PubMed
33.
Zurück zum Zitat Olivetti PR, Noebels JL. Interneuron, interrupted: molecular pathogenesis of ARX mutations and X-linked infantile spasms. Curr Opin Neurobiol. 2012;22(5):859–65.PubMedCentralPubMed Olivetti PR, Noebels JL. Interneuron, interrupted: molecular pathogenesis of ARX mutations and X-linked infantile spasms. Curr Opin Neurobiol. 2012;22(5):859–65.PubMedCentralPubMed
34.•
Zurück zum Zitat Liu Y et al. Dravet syndrome patient-derived neurons suggest a novel epilepsy mechanism. Ann Neurol. 2013;74(1):128–39. Data from this study uncovered a potential mechanism for Dravet syndrome that is cell autonomous, which was not described before. This study highlights the role of patient-specific iPSC-derived neurons in the understanding of pathogenesis of certain epilepsies.PubMedCentralPubMed Liu Y et al. Dravet syndrome patient-derived neurons suggest a novel epilepsy mechanism. Ann Neurol. 2013;74(1):128–39. Data from this study uncovered a potential mechanism for Dravet syndrome that is cell autonomous, which was not described before. This study highlights the role of patient-specific iPSC-derived neurons in the understanding of pathogenesis of certain epilepsies.PubMedCentralPubMed
35.
Zurück zum Zitat Scheffer IE et al. Dravet syndrome or genetic (generalized) epilepsy with febrile seizures plus? Brain Dev. 2009;31(5):394–400.PubMed Scheffer IE et al. Dravet syndrome or genetic (generalized) epilepsy with febrile seizures plus? Brain Dev. 2009;31(5):394–400.PubMed
36.
Zurück zum Zitat Orhan G et al. Dominant-negative effects of KCNQ2 mutations are associated with epileptic encephalopathy. Ann Neurol. 2014;75(3):382–94.PubMed Orhan G et al. Dominant-negative effects of KCNQ2 mutations are associated with epileptic encephalopathy. Ann Neurol. 2014;75(3):382–94.PubMed
37.
Zurück zum Zitat Berg AT et al. Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005–2009. Epilepsia. 2010;51(4):676–85.PubMed Berg AT et al. Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005–2009. Epilepsia. 2010;51(4):676–85.PubMed
38.
Zurück zum Zitat Mastrangelo M, Leuzzi V. Genes of early-onset epileptic encephalopathies: from genotype to phenotype. Pediatr Neurol. 2012;46(1):24–31.PubMed Mastrangelo M, Leuzzi V. Genes of early-onset epileptic encephalopathies: from genotype to phenotype. Pediatr Neurol. 2012;46(1):24–31.PubMed
39.•
Zurück zum Zitat Allen AS et al. De novo mutations in epileptic encephalopathies. Nature. 2013;501(7466):217–21. This large scale study confirmed and identified multiple new genes causative of epileptic encephalopathies, via exome sequencing of 264 probands and their parents.PubMed Allen AS et al. De novo mutations in epileptic encephalopathies. Nature. 2013;501(7466):217–21. This large scale study confirmed and identified multiple new genes causative of epileptic encephalopathies, via exome sequencing of 264 probands and their parents.PubMed
40.
Zurück zum Zitat Olson HE et al. Genetic mechanisms of ohtahara syndrome, a cohort study. 2014: Annals of neurology. p. S178-S178. Olson HE et al. Genetic mechanisms of ohtahara syndrome, a cohort study. 2014: Annals of neurology. p. S178-S178.
41.
Zurück zum Zitat Ohtahara S, Yamatogi Y. Ohtahara syndrome: with special reference to its developmental aspects for differentiating from early myoclonic encephalopathy. Epilepsy Res. 2006;70 Suppl 1:S58–67.PubMed Ohtahara S, Yamatogi Y. Ohtahara syndrome: with special reference to its developmental aspects for differentiating from early myoclonic encephalopathy. Epilepsy Res. 2006;70 Suppl 1:S58–67.PubMed
42.
Zurück zum Zitat Saitsu H et al. Whole exome sequencing identifies KCNQ2 mutations in Ohtahara syndrome. Ann Neurol. 2012;72(2):298–300.PubMed Saitsu H et al. Whole exome sequencing identifies KCNQ2 mutations in Ohtahara syndrome. Ann Neurol. 2012;72(2):298–300.PubMed
43.
Zurück zum Zitat Nakamura K et al. Clinical spectrum of SCN2A mutations expanding to Ohtahara syndrome. Neurology. 2013;81(11):992–8.PubMed Nakamura K et al. Clinical spectrum of SCN2A mutations expanding to Ohtahara syndrome. Neurology. 2013;81(11):992–8.PubMed
44.
Zurück zum Zitat Kato M et al. Frameshift mutations of the ARX gene in familial Ohtahara syndrome. Epilepsia. 2010;51(9):1679–84.PubMed Kato M et al. Frameshift mutations of the ARX gene in familial Ohtahara syndrome. Epilepsia. 2010;51(9):1679–84.PubMed
45.
Zurück zum Zitat Molinari F et al. Mutations in the mitochondrial glutamate carrier SLC25A22 in neonatal epileptic encephalopathy with suppression bursts. Clin Genet. 2009;76(2):188–94.PubMed Molinari F et al. Mutations in the mitochondrial glutamate carrier SLC25A22 in neonatal epileptic encephalopathy with suppression bursts. Clin Genet. 2009;76(2):188–94.PubMed
46.
Zurück zum Zitat Saitsu H et al. Compound heterozygous BRAT1 mutations cause familial Ohtahara syndrome with hypertonia and microcephaly. J Hum Genet. 2014;59(12):687–90.PubMed Saitsu H et al. Compound heterozygous BRAT1 mutations cause familial Ohtahara syndrome with hypertonia and microcephaly. J Hum Genet. 2014;59(12):687–90.PubMed
47.
Zurück zum Zitat Saitsu H et al. CASK aberrations in male patients with Ohtahara syndrome and cerebellar hypoplasia. Epilepsia. 2012;53(8):1441–9.PubMed Saitsu H et al. CASK aberrations in male patients with Ohtahara syndrome and cerebellar hypoplasia. Epilepsia. 2012;53(8):1441–9.PubMed
48.
Zurück zum Zitat Kato M et al. PIGA mutations cause early-onset epileptic encephalopathies and distinctive features. Neurology. 2014;82(18):1587–96.PubMed Kato M et al. PIGA mutations cause early-onset epileptic encephalopathies and distinctive features. Neurology. 2014;82(18):1587–96.PubMed
49.
Zurück zum Zitat Dravet C, Oguni H. Dravet syndrome (severe myoclonic epilepsy in infancy). Handb Clin Neurol. 2013;111:627–33.PubMed Dravet C, Oguni H. Dravet syndrome (severe myoclonic epilepsy in infancy). Handb Clin Neurol. 2013;111:627–33.PubMed
50.
Zurück zum Zitat Patino GA et al. A functional null mutation of SCN1B in a patient with Dravet syndrome. J Neurosci. 2009;29(34):10764–78.PubMedCentralPubMed Patino GA et al. A functional null mutation of SCN1B in a patient with Dravet syndrome. J Neurosci. 2009;29(34):10764–78.PubMedCentralPubMed
51.
52.
Zurück zum Zitat Carvill GL et al. Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1. Nat Genet. 2013;45(7):825–30.PubMed Carvill GL et al. Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1. Nat Genet. 2013;45(7):825–30.PubMed
53.
Zurück zum Zitat Nava C et al. De novo mutations in HCN1 cause early infantile epileptic encephalopathy. Nat Genet. 2014;46(6):640–5.PubMed Nava C et al. De novo mutations in HCN1 cause early infantile epileptic encephalopathy. Nat Genet. 2014;46(6):640–5.PubMed
54.
Zurück zum Zitat Shi X et al. Mutational analysis of GABRG2 in a Japanese cohort with childhood epilepsies. J Hum Genet. 2010;55(6):375–8.PubMed Shi X et al. Mutational analysis of GABRG2 in a Japanese cohort with childhood epilepsies. J Hum Genet. 2010;55(6):375–8.PubMed
55.
Zurück zum Zitat Barcia G et al. De novo gain-of-function KCNT1 channel mutations cause malignant migrating partial seizures of infancy. Nat Genet. 2012;44(11):1255–9.PubMedCentralPubMed Barcia G et al. De novo gain-of-function KCNT1 channel mutations cause malignant migrating partial seizures of infancy. Nat Genet. 2012;44(11):1255–9.PubMedCentralPubMed
56.
Zurück zum Zitat Carranza Rojo D et al. De novo SCN1A mutations in migrating partial seizures of infancy. Neurology. 2011;77(4):380–3.PubMedCentralPubMed Carranza Rojo D et al. De novo SCN1A mutations in migrating partial seizures of infancy. Neurology. 2011;77(4):380–3.PubMedCentralPubMed
57.
Zurück zum Zitat Poduri A et al. SLC25A22 is a novel gene for migrating partial seizures in infancy. Ann Neurol. 2013;74(6):873–82.PubMedCentralPubMed Poduri A et al. SLC25A22 is a novel gene for migrating partial seizures in infancy. Ann Neurol. 2013;74(6):873–82.PubMedCentralPubMed
58.
Zurück zum Zitat Milh M et al. Novel compound heterozygous mutations in TBC1D24 cause familial malignant migrating partial seizures of infancy. Hum Mutat. 2013;34(6):869–72.PubMed Milh M et al. Novel compound heterozygous mutations in TBC1D24 cause familial malignant migrating partial seizures of infancy. Hum Mutat. 2013;34(6):869–72.PubMed
59.
Zurück zum Zitat Dhamija R et al. Novel de novo SCN2A mutation in a child with migrating focal seizures of infancy. Pediatr Neurol. 2013;49(6):486–8.PubMed Dhamija R et al. Novel de novo SCN2A mutation in a child with migrating focal seizures of infancy. Pediatr Neurol. 2013;49(6):486–8.PubMed
60.
Zurück zum Zitat Zhang X et al. Mutations in QARS, encoding glutaminyl-tRNA synthetase, cause progressive microcephaly, cerebral-cerebellar atrophy, and intractable seizures. Am J Hum Genet. 2014;94(4):547–58.PubMedCentralPubMed Zhang X et al. Mutations in QARS, encoding glutaminyl-tRNA synthetase, cause progressive microcephaly, cerebral-cerebellar atrophy, and intractable seizures. Am J Hum Genet. 2014;94(4):547–58.PubMedCentralPubMed
61.
Zurück zum Zitat Ohba C et al. Early onset epileptic encephalopathy caused by de novo SCN8A mutations. Epilepsia. 2014;55(7):994–1000.PubMed Ohba C et al. Early onset epileptic encephalopathy caused by de novo SCN8A mutations. Epilepsia. 2014;55(7):994–1000.PubMed
62.
Zurück zum Zitat Paciorkowski AR, Thio LL, Dobyns WB. Genetic and biologic classification of infantile spasms. Pediatr Neurol. 2011;45(6):355–67.PubMedCentralPubMed Paciorkowski AR, Thio LL, Dobyns WB. Genetic and biologic classification of infantile spasms. Pediatr Neurol. 2011;45(6):355–67.PubMedCentralPubMed
63.
Zurück zum Zitat Mefford HC et al. Rare copy number variants are an important cause of epileptic encephalopathies. Ann Neurol. 2011;70(6):974–85.PubMedCentralPubMed Mefford HC et al. Rare copy number variants are an important cause of epileptic encephalopathies. Ann Neurol. 2011;70(6):974–85.PubMedCentralPubMed
64.
Zurück zum Zitat Consortium EK. Epi4K: gene discovery in 4,000 genomes. Epilepsia. 2012;53(8):1457–67. Consortium EK. Epi4K: gene discovery in 4,000 genomes. Epilepsia. 2012;53(8):1457–67.
65.
Zurück zum Zitat Chu-Shore CJ et al. The natural history of epilepsy in tuberous sclerosis complex. Epilepsia. 2010;51(7):1236–41.PubMedCentralPubMed Chu-Shore CJ et al. The natural history of epilepsy in tuberous sclerosis complex. Epilepsia. 2010;51(7):1236–41.PubMedCentralPubMed
66.
Zurück zum Zitat Guerrini R et al. Nonsyndromic mental retardation and cryptogenic epilepsy in women with doublecortin gene mutations. Ann Neurol. 2003;54(1):30–7.PubMed Guerrini R et al. Nonsyndromic mental retardation and cryptogenic epilepsy in women with doublecortin gene mutations. Ann Neurol. 2003;54(1):30–7.PubMed
67.
Zurück zum Zitat Romaniello R et al. Brain malformations and mutations in α- and β-tubulin genes: a review of the literature and description of two new cases. Dev Med Child Neurol. 2014;56(4):354–60.PubMed Romaniello R et al. Brain malformations and mutations in α- and β-tubulin genes: a review of the literature and description of two new cases. Dev Med Child Neurol. 2014;56(4):354–60.PubMed
68.
Zurück zum Zitat Dobyns WB. The clinical patterns and molecular genetics of lissencephaly and subcortical band heterotopia. Epilepsia. 2010;51 Suppl 1:5–9.PubMed Dobyns WB. The clinical patterns and molecular genetics of lissencephaly and subcortical band heterotopia. Epilepsia. 2010;51 Suppl 1:5–9.PubMed
69.
Zurück zum Zitat Matalon D et al. Confirming an expanded spectrum of SCN2A mutations: a case series. Epileptic Disord. 2014;16(1):13–8.PubMed Matalon D et al. Confirming an expanded spectrum of SCN2A mutations: a case series. Epileptic Disord. 2014;16(1):13–8.PubMed
70.
Zurück zum Zitat Allen NM et al. The variable phenotypes of KCNQ-related epilepsy. Epilepsia. 2014;55(9):e99–e105.PubMed Allen NM et al. The variable phenotypes of KCNQ-related epilepsy. Epilepsia. 2014;55(9):e99–e105.PubMed
71.
Zurück zum Zitat Bahi-Buisson N et al. Recurrent mutations in the CDKL5 gene: genotype-phenotype relationships. Am J Med Genet A. 2012;158A(7):1612–9.PubMed Bahi-Buisson N et al. Recurrent mutations in the CDKL5 gene: genotype-phenotype relationships. Am J Med Genet A. 2012;158A(7):1612–9.PubMed
72.
Zurück zum Zitat Mignot C et al. STXBP1-related encephalopathy presenting as infantile spasms and generalized tremor in three patients. Epilepsia. 2011;52(10):1820–7.PubMed Mignot C et al. STXBP1-related encephalopathy presenting as infantile spasms and generalized tremor in three patients. Epilepsia. 2011;52(10):1820–7.PubMed
73.
Zurück zum Zitat Kortüm F et al. The core FOXG1 syndrome phenotype consists of postnatal microcephaly, severe mental retardation, absent language, dyskinesia, and corpus callosum hypogenesis. J Med Genet. 2011;48(6):396–406.PubMed Kortüm F et al. The core FOXG1 syndrome phenotype consists of postnatal microcephaly, severe mental retardation, absent language, dyskinesia, and corpus callosum hypogenesis. J Med Genet. 2011;48(6):396–406.PubMed
74.
Zurück zum Zitat Sherr EH. The ARX story (epilepsy, mental retardation, autism, and cerebral malformations): one gene leads to many phenotypes. Curr Opin Pediatr. 2003;15(6):567–71.PubMed Sherr EH. The ARX story (epilepsy, mental retardation, autism, and cerebral malformations): one gene leads to many phenotypes. Curr Opin Pediatr. 2003;15(6):567–71.PubMed
75.
Zurück zum Zitat Hartmann H et al. Agenesis of the corpus callosum, abnormal genitalia and intractable epilepsy due to a novel familial mutation in the Aristaless-related homeobox gene. Neuropediatrics. 2004;35(3):157–60.PubMed Hartmann H et al. Agenesis of the corpus callosum, abnormal genitalia and intractable epilepsy due to a novel familial mutation in the Aristaless-related homeobox gene. Neuropediatrics. 2004;35(3):157–60.PubMed
76.
Zurück zum Zitat Guerrini R et al. Expansion of the first PolyA tract of ARX causes infantile spasms and status dystonicus. Neurology. 2007;69(5):427–33.PubMed Guerrini R et al. Expansion of the first PolyA tract of ARX causes infantile spasms and status dystonicus. Neurology. 2007;69(5):427–33.PubMed
77.
Zurück zum Zitat Saitsu H et al. Dominant-negative mutations in alpha-II spectrin cause West syndrome with severe cerebral hypomyelination, spastic quadriplegia, and developmental delay. Am J Hum Genet. 2010;86(6):881–91.PubMedCentralPubMed Saitsu H et al. Dominant-negative mutations in alpha-II spectrin cause West syndrome with severe cerebral hypomyelination, spastic quadriplegia, and developmental delay. Am J Hum Genet. 2010;86(6):881–91.PubMedCentralPubMed
78.
Zurück zum Zitat Kurian MA et al. Phospholipase C beta 1 deficiency is associated with early-onset epileptic encephalopathy. Brain. 2010;133(10):2964–70.PubMed Kurian MA et al. Phospholipase C beta 1 deficiency is associated with early-onset epileptic encephalopathy. Brain. 2010;133(10):2964–70.PubMed
79.
Zurück zum Zitat Ruggieri M et al. Neurofibromatosis type 1 and infantile spasms. Childs Nerv Syst. 2009;25(2):211–6.PubMed Ruggieri M et al. Neurofibromatosis type 1 and infantile spasms. Childs Nerv Syst. 2009;25(2):211–6.PubMed
80.
Zurück zum Zitat Bahi-Buisson N et al. Spectrum of epilepsy in terminal 1p36 deletion syndrome. Epilepsia. 2008;49(3):509–15.PubMed Bahi-Buisson N et al. Spectrum of epilepsy in terminal 1p36 deletion syndrome. Epilepsia. 2008;49(3):509–15.PubMed
81.
Zurück zum Zitat Saito Y et al. Polymicrogyria and infantile spasms in a patient with 1p36 deletion syndrome. Brain Dev. 2011;33(5):437–41.PubMed Saito Y et al. Polymicrogyria and infantile spasms in a patient with 1p36 deletion syndrome. Brain Dev. 2011;33(5):437–41.PubMed
82.
Zurück zum Zitat Verrotti A et al. Electroclinical features and long-term outcome of cryptogenic epilepsy in children with Down syndrome. J Pediatr. 2013;163(6):1754–8.PubMed Verrotti A et al. Electroclinical features and long-term outcome of cryptogenic epilepsy in children with Down syndrome. J Pediatr. 2013;163(6):1754–8.PubMed
83.
Zurück zum Zitat Giordano L et al. Seizures and EEG patterns in Pallister-Killian syndrome: 13 new Italian patients. Eur J Paediatr Neurol. 2012;16(6):636–41.PubMed Giordano L et al. Seizures and EEG patterns in Pallister-Killian syndrome: 13 new Italian patients. Eur J Paediatr Neurol. 2012;16(6):636–41.PubMed
84.
Zurück zum Zitat Conant KD et al. A survey of seizures and current treatments in 15q duplication syndrome. Epilepsia. 2014;55(3):396–402.PubMed Conant KD et al. A survey of seizures and current treatments in 15q duplication syndrome. Epilepsia. 2014;55(3):396–402.PubMed
85.
Zurück zum Zitat Méneret A et al. PRRT2 mutations and paroxysmal disorders. Eur J Neurol. 2013;20(6):872–8.PubMed Méneret A et al. PRRT2 mutations and paroxysmal disorders. Eur J Neurol. 2013;20(6):872–8.PubMed
86.
Zurück zum Zitat Girard JM et al. Progressive myoclonus epilepsy. Handb Clin Neurol. 2013;113:1731–6.PubMed Girard JM et al. Progressive myoclonus epilepsy. Handb Clin Neurol. 2013;113:1731–6.PubMed
87.
Zurück zum Zitat Lalioti MD et al. Dodecamer repeat expansion in cystatin B gene in progressive myoclonus epilepsy. Nature. 1997;386(6627):847–51.PubMed Lalioti MD et al. Dodecamer repeat expansion in cystatin B gene in progressive myoclonus epilepsy. Nature. 1997;386(6627):847–51.PubMed
88.
Zurück zum Zitat Berkovic SF et al. Array-based gene discovery with three unrelated subjects shows SCARB2/LIMP-2 deficiency causes myoclonus epilepsy and glomerulosclerosis. Am J Hum Genet. 2008;82(3):673–84.PubMedCentralPubMed Berkovic SF et al. Array-based gene discovery with three unrelated subjects shows SCARB2/LIMP-2 deficiency causes myoclonus epilepsy and glomerulosclerosis. Am J Hum Genet. 2008;82(3):673–84.PubMedCentralPubMed
89.
Zurück zum Zitat Corbett MA et al. A mutation in the Golgi Qb-SNARE gene GOSR2 causes progressive myoclonus epilepsy with early ataxia. Am J Hum Genet. 2011;88(5):657–63.PubMedCentralPubMed Corbett MA et al. A mutation in the Golgi Qb-SNARE gene GOSR2 causes progressive myoclonus epilepsy with early ataxia. Am J Hum Genet. 2011;88(5):657–63.PubMedCentralPubMed
90.
Zurück zum Zitat Trujillo-Tiebas MJ et al. Novel human pathological mutations. Gene symbol: EPM2A. Disease: Lafora progressive myoclonus epilepsy. Hum Genet. 2007;121(5):651.PubMed Trujillo-Tiebas MJ et al. Novel human pathological mutations. Gene symbol: EPM2A. Disease: Lafora progressive myoclonus epilepsy. Hum Genet. 2007;121(5):651.PubMed
91.
Zurück zum Zitat Chan EM et al. Mutations in NHLRC1 cause progressive myoclonus epilepsy. Nat Genet. 2003;35(2):125–7.PubMed Chan EM et al. Mutations in NHLRC1 cause progressive myoclonus epilepsy. Nat Genet. 2003;35(2):125–7.PubMed
92.
Zurück zum Zitat Ferlazzo E, et al. Mild Lafora disease: Clinical, neurophysiologic, and genetic findings. Epilepsia, 2014. Ferlazzo E, et al. Mild Lafora disease: Clinical, neurophysiologic, and genetic findings. Epilepsia, 2014.
93.
Zurück zum Zitat Mink JW et al. Classification and natural history of the neuronal ceroid lipofuscinoses. J Child Neurol. 2013;28(9):1101–5.PubMedCentralPubMed Mink JW et al. Classification and natural history of the neuronal ceroid lipofuscinoses. J Child Neurol. 2013;28(9):1101–5.PubMedCentralPubMed
94.
Zurück zum Zitat Steinfeld R et al. Late infantile neuronal ceroid lipofuscinosis: quantitative description of the clinical course in patients with CLN2 mutations. Am J Med Genet. 2002;112(4):347–54.PubMed Steinfeld R et al. Late infantile neuronal ceroid lipofuscinosis: quantitative description of the clinical course in patients with CLN2 mutations. Am J Med Genet. 2002;112(4):347–54.PubMed
95.
Zurück zum Zitat Steinfeld R et al. Cathepsin D deficiency is associated with a human neurodegenerative disorder. Am J Hum Genet. 2006;78(6):988–98.PubMedCentralPubMed Steinfeld R et al. Cathepsin D deficiency is associated with a human neurodegenerative disorder. Am J Hum Genet. 2006;78(6):988–98.PubMedCentralPubMed
96.
Zurück zum Zitat Muona M et al. A recurrent de novo mutation in KCNC1 causes progressive myoclonus epilepsy. Nat Genet, 2014. Muona M et al. A recurrent de novo mutation in KCNC1 causes progressive myoclonus epilepsy. Nat Genet, 2014.
97.
Zurück zum Zitat Pearson TS et al. Phenotypic spectrum of glucose transporter type 1 deficiency syndrome (Glut1 DS). Curr Neurol Neurosci Rep. 2013;13(4):342.PubMed Pearson TS et al. Phenotypic spectrum of glucose transporter type 1 deficiency syndrome (Glut1 DS). Curr Neurol Neurosci Rep. 2013;13(4):342.PubMed
98.
Zurück zum Zitat Mefford HC et al. Genome-wide copy number variation in epilepsy: novel susceptibility loci in idiopathic generalized and focal epilepsies. PLoS Genet. 2010;6(5), e1000962.PubMedCentralPubMed Mefford HC et al. Genome-wide copy number variation in epilepsy: novel susceptibility loci in idiopathic generalized and focal epilepsies. PLoS Genet. 2010;6(5), e1000962.PubMedCentralPubMed
99.
Zurück zum Zitat Olson H et al. Copy number variation plays an important role in clinical epilepsy. Ann Neurol. 2014;75(6):943–58. This study analyzed 323 patients who have CNVs and epilepsy, and concluded that CNVs explained the epilepsy phenotype in at least 5% of the cases. It emphasizes the diagnostic yield of CMA in epilepsy.PubMed Olson H et al. Copy number variation plays an important role in clinical epilepsy. Ann Neurol. 2014;75(6):943–58. This study analyzed 323 patients who have CNVs and epilepsy, and concluded that CNVs explained the epilepsy phenotype in at least 5% of the cases. It emphasizes the diagnostic yield of CMA in epilepsy.PubMed
100.
Zurück zum Zitat Heinzen EL et al. Rare deletions at 16p13.11 predispose to a diverse spectrum of sporadic epilepsy syndromes. Am J Hum Genet. 2010;86(5):707–18.PubMedCentralPubMed Heinzen EL et al. Rare deletions at 16p13.11 predispose to a diverse spectrum of sporadic epilepsy syndromes. Am J Hum Genet. 2010;86(5):707–18.PubMedCentralPubMed
101.
Zurück zum Zitat Helbig I et al. 15q13.3 microdeletions increase risk of idiopathic generalized epilepsy. Nat Genet. 2009;41(2):160–2.PubMedCentralPubMed Helbig I et al. 15q13.3 microdeletions increase risk of idiopathic generalized epilepsy. Nat Genet. 2009;41(2):160–2.PubMedCentralPubMed
102.
Zurück zum Zitat de Kovel CG et al. Recurrent microdeletions at 15q11.2 and 16p13.11 predispose to idiopathic generalized epilepsies. Brain. 2010;133(Pt 1):23–32.PubMedCentralPubMed de Kovel CG et al. Recurrent microdeletions at 15q11.2 and 16p13.11 predispose to idiopathic generalized epilepsies. Brain. 2010;133(Pt 1):23–32.PubMedCentralPubMed
103.
Zurück zum Zitat Mullen SA et al. Copy number variants are frequent in genetic generalized epilepsy with intellectual disability. Neurology. 2013;81(17):1507–14.PubMedCentralPubMed Mullen SA et al. Copy number variants are frequent in genetic generalized epilepsy with intellectual disability. Neurology. 2013;81(17):1507–14.PubMedCentralPubMed
104.
Zurück zum Zitat Lü JJ et al. T-type calcium channel gene-CACNA1H is a susceptibility gene to childhood absence epilepsy. Zhonghua Er Ke Za Zhi. 2005;43(2):133–6.PubMed Lü JJ et al. T-type calcium channel gene-CACNA1H is a susceptibility gene to childhood absence epilepsy. Zhonghua Er Ke Za Zhi. 2005;43(2):133–6.PubMed
105.
Zurück zum Zitat Escayg A et al. Coding and noncoding variation of the human calcium-channel beta4-subunit gene CACNB4 in patients with idiopathic generalized epilepsy and episodic ataxia. Am J Hum Genet. 2000;66(5):1531–9.PubMedCentralPubMed Escayg A et al. Coding and noncoding variation of the human calcium-channel beta4-subunit gene CACNB4 in patients with idiopathic generalized epilepsy and episodic ataxia. Am J Hum Genet. 2000;66(5):1531–9.PubMedCentralPubMed
106.
Zurück zum Zitat D’Agostino D et al. Mutations and polymorphisms of the CLCN2 gene in idiopathic epilepsy. Neurology. 2004;63(8):1500–2.PubMed D’Agostino D et al. Mutations and polymorphisms of the CLCN2 gene in idiopathic epilepsy. Neurology. 2004;63(8):1500–2.PubMed
107.
Zurück zum Zitat Chioza B et al. Association between the alpha(1a) calcium channel gene CACNA1A and idiopathic generalized epilepsy. Neurology. 2001;56(9):1245–6.PubMed Chioza B et al. Association between the alpha(1a) calcium channel gene CACNA1A and idiopathic generalized epilepsy. Neurology. 2001;56(9):1245–6.PubMed
108.
Zurück zum Zitat Bonanni P et al. Generalized epilepsy with febrile seizures plus (GEFS+): clinical spectrum in seven Italian families unrelated to SCN1A, SCN1B, and GABRG2 gene mutations. Epilepsia. 2004;45(2):149–58.PubMed Bonanni P et al. Generalized epilepsy with febrile seizures plus (GEFS+): clinical spectrum in seven Italian families unrelated to SCN1A, SCN1B, and GABRG2 gene mutations. Epilepsia. 2004;45(2):149–58.PubMed
109.
Zurück zum Zitat Díaz-Otero F et al. Autosomal dominant nocturnal frontal lobe epilepsy with a mutation in the CHRNB2 gene. Epilepsia. 2008;49(3):516–20.PubMed Díaz-Otero F et al. Autosomal dominant nocturnal frontal lobe epilepsy with a mutation in the CHRNB2 gene. Epilepsia. 2008;49(3):516–20.PubMed
110.
Zurück zum Zitat Ottman R et al. Genetic testing in the epilepsies–report of the ILAE Genetics Commission. Epilepsia. 2010;51(4):655–70.PubMedCentralPubMed Ottman R et al. Genetic testing in the epilepsies–report of the ILAE Genetics Commission. Epilepsia. 2010;51(4):655–70.PubMedCentralPubMed
111.
Zurück zum Zitat Heron SE et al. Missense mutations in the sodium-gated potassium channel gene KCNT1 cause severe autosomal dominant nocturnal frontal lobe epilepsy. Nat Genet. 2012;44(11):1188–90.PubMed Heron SE et al. Missense mutations in the sodium-gated potassium channel gene KCNT1 cause severe autosomal dominant nocturnal frontal lobe epilepsy. Nat Genet. 2012;44(11):1188–90.PubMed
112.
Zurück zum Zitat Fanciulli M et al. LGI1 microdeletion in autosomal dominant lateral temporal epilepsy. Neurology. 2012;78(17):1299–303.PubMedCentralPubMed Fanciulli M et al. LGI1 microdeletion in autosomal dominant lateral temporal epilepsy. Neurology. 2012;78(17):1299–303.PubMedCentralPubMed
113.
Zurück zum Zitat Pizzuti A et al. Epilepsy with auditory features: a LGI1 gene mutation suggests a loss-of-function mechanism. Ann Neurol. 2003;53(3):396–9.PubMed Pizzuti A et al. Epilepsy with auditory features: a LGI1 gene mutation suggests a loss-of-function mechanism. Ann Neurol. 2003;53(3):396–9.PubMed
114.
Zurück zum Zitat Lee JH et al. De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly. Nat Genet. 2012;44(8):941–5.PubMedCentralPubMed Lee JH et al. De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly. Nat Genet. 2012;44(8):941–5.PubMedCentralPubMed
115.
Zurück zum Zitat Scheffer IE et al. Mutations in mammalian target of rapamycin regulator DEPDC5 cause focal epilepsy with brain malformations. Ann Neurol. 2014;75(5):782–7.PubMed Scheffer IE et al. Mutations in mammalian target of rapamycin regulator DEPDC5 cause focal epilepsy with brain malformations. Ann Neurol. 2014;75(5):782–7.PubMed
116.•
Zurück zum Zitat Dibbens LM et al. Mutations in DEPDC5 cause familial focal epilepsy with variable foci. Nat Genet. 2013;45(5):546–51. This study was fundamental in identifying DEPDC5 as a not only a cause, but the most common known cause of familial focal epilepsy, thus substantially improving our understanding of the pathophysiology of epilepsy but also shedding light on treatment strategies and prognosis.PubMed Dibbens LM et al. Mutations in DEPDC5 cause familial focal epilepsy with variable foci. Nat Genet. 2013;45(5):546–51. This study was fundamental in identifying DEPDC5 as a not only a cause, but the most common known cause of familial focal epilepsy, thus substantially improving our understanding of the pathophysiology of epilepsy but also shedding light on treatment strategies and prognosis.PubMed
117.
Zurück zum Zitat Ishida S et al. Mutations of DEPDC5 cause autosomal dominant focal epilepsies. Nat Genet. 2013;45(5):552–5.PubMed Ishida S et al. Mutations of DEPDC5 cause autosomal dominant focal epilepsies. Nat Genet. 2013;45(5):552–5.PubMed
118.
Zurück zum Zitat Lal D et al. DEPDC5 mutations in genetic focal epilepsies of childhood. Ann Neurol. 2014;75(5):788–92.PubMed Lal D et al. DEPDC5 mutations in genetic focal epilepsies of childhood. Ann Neurol. 2014;75(5):788–92.PubMed
119.
Zurück zum Zitat Picard F et al. DEPDC5 mutations in families presenting as autosomal dominant nocturnal frontal lobe epilepsy. Neurology. 2014;82(23):2101–6.PubMed Picard F et al. DEPDC5 mutations in families presenting as autosomal dominant nocturnal frontal lobe epilepsy. Neurology. 2014;82(23):2101–6.PubMed
120.
Zurück zum Zitat D’Gama AM et al. mTOR pathway mutations cause hemimegalencephaly and focal cortical dysplasia. Ann Neurol, 2015. D’Gama AM et al. mTOR pathway mutations cause hemimegalencephaly and focal cortical dysplasia. Ann Neurol, 2015.
121.
Zurück zum Zitat Carvill GL et al. GRIN2A mutations cause epilepsy-aphasia spectrum disorders. Nat Genet. 2013;45(9):1073–6.PubMed Carvill GL et al. GRIN2A mutations cause epilepsy-aphasia spectrum disorders. Nat Genet. 2013;45(9):1073–6.PubMed
122.
Zurück zum Zitat Endele S et al. Mutations in GRIN2A and GRIN2B encoding regulatory subunits of NMDA receptors cause variable neurodevelopmental phenotypes. Nat Genet. 2010;42(11):1021–6.PubMed Endele S et al. Mutations in GRIN2A and GRIN2B encoding regulatory subunits of NMDA receptors cause variable neurodevelopmental phenotypes. Nat Genet. 2010;42(11):1021–6.PubMed
123.
Zurück zum Zitat Lemke JR et al. Mutations in GRIN2A cause idiopathic focal epilepsy with rolandic spikes. Nat Genet. 2013;45(9):1067–72.PubMed Lemke JR et al. Mutations in GRIN2A cause idiopathic focal epilepsy with rolandic spikes. Nat Genet. 2013;45(9):1067–72.PubMed
124.
Zurück zum Zitat Lesca G et al. GRIN2A mutations in acquired epileptic aphasia and related childhood focal epilepsies and encephalopathies with speech and language dysfunction. Nat Genet. 2013;45(9):1061–6.PubMed Lesca G et al. GRIN2A mutations in acquired epileptic aphasia and related childhood focal epilepsies and encephalopathies with speech and language dysfunction. Nat Genet. 2013;45(9):1061–6.PubMed
125.
Zurück zum Zitat Barba C et al. Co-occurring malformations of cortical development and SCN1A gene mutations. Epilepsia. 2014;55(7):1009–19.PubMed Barba C et al. Co-occurring malformations of cortical development and SCN1A gene mutations. Epilepsia. 2014;55(7):1009–19.PubMed
126.
Zurück zum Zitat Auerbach DS et al. Altered cardiac electrophysiology and SUDEP in a model of Dravet syndrome. PLoS One. 2013;8(10), e77843.PubMedCentralPubMed Auerbach DS et al. Altered cardiac electrophysiology and SUDEP in a model of Dravet syndrome. PLoS One. 2013;8(10), e77843.PubMedCentralPubMed
127.
Zurück zum Zitat Delogu AB et al. Electrical and autonomic cardiac function in patients with Dravet syndrome. Epilepsia. 2011;52 Suppl 2:55–8.PubMed Delogu AB et al. Electrical and autonomic cardiac function in patients with Dravet syndrome. Epilepsia. 2011;52 Suppl 2:55–8.PubMed
128.
Zurück zum Zitat Kalume F et al. Sudden unexpected death in a mouse model of Dravet syndrome. J Clin Invest. 2013;123(4):1798–808.PubMedCentralPubMed Kalume F et al. Sudden unexpected death in a mouse model of Dravet syndrome. J Clin Invest. 2013;123(4):1798–808.PubMedCentralPubMed
129.
Zurück zum Zitat Le Gal F et al. A case of SUDEP in a patient with Dravet syndrome with SCN1A mutation. Epilepsia. 2010;51(9):1915–8.PubMed Le Gal F et al. A case of SUDEP in a patient with Dravet syndrome with SCN1A mutation. Epilepsia. 2010;51(9):1915–8.PubMed
130.
Zurück zum Zitat Nabbout R. Can SCN1A mutations account for SUDEP?–Commentary on Hindocha et al. Epilepsia. 2008;49(2):367–8.PubMed Nabbout R. Can SCN1A mutations account for SUDEP?–Commentary on Hindocha et al. Epilepsia. 2008;49(2):367–8.PubMed
131.
Zurück zum Zitat Veeramah KR et al. De novo pathogenic SCN8A mutation identified by whole-genome sequencing of a family quartet affected by infantile epileptic encephalopathy and SUDEP. Am J Hum Genet. 2012;90(3):502–10.PubMedCentralPubMed Veeramah KR et al. De novo pathogenic SCN8A mutation identified by whole-genome sequencing of a family quartet affected by infantile epileptic encephalopathy and SUDEP. Am J Hum Genet. 2012;90(3):502–10.PubMedCentralPubMed
132.
Zurück zum Zitat Wagnon JL et al., Convulsive seizures and SUDEP in a mouse model of SCN8A epileptic encephalopathy. Hum Mol Genet. 2014. Wagnon JL et al., Convulsive seizures and SUDEP in a mouse model of SCN8A epileptic encephalopathy. Hum Mol Genet. 2014.
133.
Zurück zum Zitat Larsen J. et al. The phenotypic spectrum of SCN8A encephalopathy. Neurology, 2015. Larsen J. et al. The phenotypic spectrum of SCN8A encephalopathy. Neurology, 2015.
134.
Zurück zum Zitat Liebrechts-Akkerman G et al. PHOX2B polyalanine repeat length is associated with sudden infant death syndrome and unclassified sudden infant death in the Dutch population. Int J Legal Med. 2014;128(4):621–9.PubMed Liebrechts-Akkerman G et al. PHOX2B polyalanine repeat length is associated with sudden infant death syndrome and unclassified sudden infant death in the Dutch population. Int J Legal Med. 2014;128(4):621–9.PubMed
135.•
Zurück zum Zitat Bagnall RD et al. Genetic analysis of PHOX2B in sudden unexpected death in epilepsy cases. Neurology. 2014;83(11):1018–21. In this study, genetic sequencing of PHOX2B, was performed on 68 patients who succombed to SUDEP, with no mutations found, showing that unlike sudden infant death syndrome, PHOX2B is unlikely to be associated with SUDEP.PubMed Bagnall RD et al. Genetic analysis of PHOX2B in sudden unexpected death in epilepsy cases. Neurology. 2014;83(11):1018–21. In this study, genetic sequencing of PHOX2B, was performed on 68 patients who succombed to SUDEP, with no mutations found, showing that unlike sudden infant death syndrome, PHOX2B is unlikely to be associated with SUDEP.PubMed
136.
Zurück zum Zitat Thibert RL et al. Neurologic manifestations of Angelman syndrome. Pediatr Neurol. 2013;48(4):271–9.PubMed Thibert RL et al. Neurologic manifestations of Angelman syndrome. Pediatr Neurol. 2013;48(4):271–9.PubMed
137.
Zurück zum Zitat Pescosolido MF et al. Genetic and phenotypic diversity of NHE6 mutations in Christianson syndrome. Ann Neurol. 2014;76(4):581–93.PubMed Pescosolido MF et al. Genetic and phenotypic diversity of NHE6 mutations in Christianson syndrome. Ann Neurol. 2014;76(4):581–93.PubMed
138.
Zurück zum Zitat Tan WH et al. If not Angelman, what is it? A review of Angelman-like syndromes. Am J Med Genet A. 2014;164A(4):975–92.PubMed Tan WH et al. If not Angelman, what is it? A review of Angelman-like syndromes. Am J Med Genet A. 2014;164A(4):975–92.PubMed
139.
Zurück zum Zitat Cordelli DM et al. Epilepsy in Mowat-Wilson syndrome: delineation of the electroclinical phenotype. Am J Med Genet A. 2013;161A(2):273–84.PubMed Cordelli DM et al. Epilepsy in Mowat-Wilson syndrome: delineation of the electroclinical phenotype. Am J Med Genet A. 2013;161A(2):273–84.PubMed
140.
Zurück zum Zitat de Pontual L et al. Mutational, functional, and expression studies of the TCF4 gene in Pitt-Hopkins syndrome. Hum Mutat. 2009;30(4):669–76.PubMed de Pontual L et al. Mutational, functional, and expression studies of the TCF4 gene in Pitt-Hopkins syndrome. Hum Mutat. 2009;30(4):669–76.PubMed
141.
Zurück zum Zitat Bao X et al. Using a large international sample to investigate epilepsy in Rett syndrome. Dev Med Child Neurol. 2013;55(6):553–8.PubMed Bao X et al. Using a large international sample to investigate epilepsy in Rett syndrome. Dev Med Child Neurol. 2013;55(6):553–8.PubMed
142.
143.
Zurück zum Zitat Nissenkorn A et al. Epilepsy in Rett syndrome–-the experience of a National Rett Center. Epilepsia. 2010;51(7):1252–8.PubMed Nissenkorn A et al. Epilepsy in Rett syndrome–-the experience of a National Rett Center. Epilepsia. 2010;51(7):1252–8.PubMed
144.
Zurück zum Zitat Pintaudi M et al. Epilepsy in Rett syndrome: clinical and genetic features. Epilepsy Behav. 2010;19(3):296–300.PubMed Pintaudi M et al. Epilepsy in Rett syndrome: clinical and genetic features. Epilepsy Behav. 2010;19(3):296–300.PubMed
145.
Zurück zum Zitat Fehr S et al. The CDKL5 disorder is an independent clinical entity associated with early-onset encephalopathy. Eur J Hum Genet. 2013;21(3):266–73.PubMedCentralPubMed Fehr S et al. The CDKL5 disorder is an independent clinical entity associated with early-onset encephalopathy. Eur J Hum Genet. 2013;21(3):266–73.PubMedCentralPubMed
146.
Zurück zum Zitat Cardoza B et al. Epilepsy in Rett syndrome: association between phenotype and genotype, and implications for practice. Seizure. 2011;20(8):646–9.PubMed Cardoza B et al. Epilepsy in Rett syndrome: association between phenotype and genotype, and implications for practice. Seizure. 2011;20(8):646–9.PubMed
147.
Zurück zum Zitat Guerrini R, Parrini E. Epilepsy in Rett syndrome, and CDKL5- and FOXG1-gene-related encephalopathies. Epilepsia. 2012;53(12):2067–78.PubMed Guerrini R, Parrini E. Epilepsy in Rett syndrome, and CDKL5- and FOXG1-gene-related encephalopathies. Epilepsia. 2012;53(12):2067–78.PubMed
148.
Zurück zum Zitat Klein KM et al. A distinctive seizure type in patients with CDKL5 mutations: Hypermotor-tonic-spasms sequence. Neurology. 2011;76(16):1436–8.PubMed Klein KM et al. A distinctive seizure type in patients with CDKL5 mutations: Hypermotor-tonic-spasms sequence. Neurology. 2011;76(16):1436–8.PubMed
149.
Zurück zum Zitat Seltzer LE et al. Epilepsy and outcome in FOXG1-related disorders. Epilepsia. 2014;55(8):1292–300.PubMed Seltzer LE et al. Epilepsy and outcome in FOXG1-related disorders. Epilepsia. 2014;55(8):1292–300.PubMed
150.
Zurück zum Zitat Striano P et al. West syndrome associated with 14q12 duplications harboring FOXG1. Neurology. 2011;76(18):1600–2.PubMed Striano P et al. West syndrome associated with 14q12 duplications harboring FOXG1. Neurology. 2011;76(18):1600–2.PubMed
151.
Zurück zum Zitat Pearl PL, Gospe SM. Pyridoxal phosphate dependency, a newly recognized treatable catastrophic epileptic encephalopathy. J Inherit Metab Dis. 2007;30(1):2–4.PubMed Pearl PL, Gospe SM. Pyridoxal phosphate dependency, a newly recognized treatable catastrophic epileptic encephalopathy. J Inherit Metab Dis. 2007;30(1):2–4.PubMed
152.
Zurück zum Zitat Giovannini S et al. Epilepsy in ring 14 syndrome: a clinical and EEG study of 22 patients. Epilepsia. 2013;54(12):2204–13.PubMed Giovannini S et al. Epilepsy in ring 14 syndrome: a clinical and EEG study of 22 patients. Epilepsia. 2013;54(12):2204–13.PubMed
153.
Zurück zum Zitat Elens I et al. Ring chromosome 20 syndrome: electroclinical description of six patients and review of the literature. Epilepsy Behav. 2012;23(4):409–14.PubMed Elens I et al. Ring chromosome 20 syndrome: electroclinical description of six patients and review of the literature. Epilepsy Behav. 2012;23(4):409–14.PubMed
154.
155.
Zurück zum Zitat Scheffer IE. Epilepsy genetics revolutionizes clinical practice. Neuropediatrics. 2014;45(2):70–4.PubMed Scheffer IE. Epilepsy genetics revolutionizes clinical practice. Neuropediatrics. 2014;45(2):70–4.PubMed
156.
Zurück zum Zitat Leuzzi V et al. Inborn errors of creatine metabolism and epilepsy. Epilepsia. 2013;54(2):217–27.PubMed Leuzzi V et al. Inborn errors of creatine metabolism and epilepsy. Epilepsia. 2013;54(2):217–27.PubMed
157.
Zurück zum Zitat Mikati AG et al. Epileptic and electroencephalographic manifestations of guanidinoacetate-methyltransferase deficiency. Epileptic Disord. 2013;15(4):407–16.PubMed Mikati AG et al. Epileptic and electroencephalographic manifestations of guanidinoacetate-methyltransferase deficiency. Epileptic Disord. 2013;15(4):407–16.PubMed
158.
Zurück zum Zitat Leen WG et al. Glucose transporter-1 deficiency syndrome: the expanding clinical and genetic spectrum of a treatable disorder. Brain. 2010;133(Pt 3):655–70.PubMed Leen WG et al. Glucose transporter-1 deficiency syndrome: the expanding clinical and genetic spectrum of a treatable disorder. Brain. 2010;133(Pt 3):655–70.PubMed
159.
Zurück zum Zitat Mills PB et al. Genotypic and phenotypic spectrum of pyridoxine-dependent epilepsy (ALDH7A1 deficiency). Brain. 2010;133(Pt 7):2148–59.PubMedCentralPubMed Mills PB et al. Genotypic and phenotypic spectrum of pyridoxine-dependent epilepsy (ALDH7A1 deficiency). Brain. 2010;133(Pt 7):2148–59.PubMedCentralPubMed
160.
Zurück zum Zitat Elterman RD et al. Randomized trial of vigabatrin in patients with infantile spasms. Neurology. 2001;57(8):1416–21.PubMed Elterman RD et al. Randomized trial of vigabatrin in patients with infantile spasms. Neurology. 2001;57(8):1416–21.PubMed
161.
Zurück zum Zitat Krueger DA et al. Everolimus long-term safety and efficacy in subependymal giant cell astrocytoma. Neurology. 2013;80(6):574–80.PubMedCentralPubMed Krueger DA et al. Everolimus long-term safety and efficacy in subependymal giant cell astrocytoma. Neurology. 2013;80(6):574–80.PubMedCentralPubMed
162.
Zurück zum Zitat Guerrini R et al. Lamotrigine and seizure aggravation in severe myoclonic epilepsy. Epilepsia. 1998;39(5):508–12.PubMed Guerrini R et al. Lamotrigine and seizure aggravation in severe myoclonic epilepsy. Epilepsia. 1998;39(5):508–12.PubMed
163.
Zurück zum Zitat Chiron C, Dulac O. The pharmacologic treatment of Dravet syndrome. Epilepsia. 2011;52 Suppl 2:72–5.PubMed Chiron C, Dulac O. The pharmacologic treatment of Dravet syndrome. Epilepsia. 2011;52 Suppl 2:72–5.PubMed
164.
Zurück zum Zitat Touma M et al. Whole genome sequencing identifies SCN2A mutation in monozygotic twins with Ohtahara syndrome and unique neuropathologic findings. Epilepsia. 2013;54(5):e81–5.PubMedCentralPubMed Touma M et al. Whole genome sequencing identifies SCN2A mutation in monozygotic twins with Ohtahara syndrome and unique neuropathologic findings. Epilepsia. 2013;54(5):e81–5.PubMedCentralPubMed
165.
Zurück zum Zitat Walleigh DJ, Legido A, Valencia I. Ring chromosome 20: a pediatric potassium channelopathy responsive to treatment with ezogabine. Pediatr Neurol. 2013;49(5):368–9.PubMed Walleigh DJ, Legido A, Valencia I. Ring chromosome 20: a pediatric potassium channelopathy responsive to treatment with ezogabine. Pediatr Neurol. 2013;49(5):368–9.PubMed
166.•
Zurück zum Zitat Pierson TM et al. Mutation and early-onset epileptic encephalopathy: personalized therapy with memantine. Ann Clin Transl Neurol. 2014;1(3):190–8. This study provides a remarkable example of targeted therapy based on the knowledge of the genetic mutation causing epilepsy and its functional consequences.PubMedCentralPubMed Pierson TM et al. Mutation and early-onset epileptic encephalopathy: personalized therapy with memantine. Ann Clin Transl Neurol. 2014;1(3):190–8. This study provides a remarkable example of targeted therapy based on the knowledge of the genetic mutation causing epilepsy and its functional consequences.PubMedCentralPubMed
Metadaten
Titel
The Genetics of the Epilepsies
verfasst von
Christelle M. El Achkar
Heather E. Olson
Annapurna Poduri
Phillip L. Pearl
Publikationsdatum
01.07.2015
Verlag
Springer US
Erschienen in
Current Neurology and Neuroscience Reports / Ausgabe 7/2015
Print ISSN: 1528-4042
Elektronische ISSN: 1534-6293
DOI
https://doi.org/10.1007/s11910-015-0559-8

Weitere Artikel der Ausgabe 7/2015

Current Neurology and Neuroscience Reports 7/2015 Zur Ausgabe

Neuro-Ophthalmology (A Kawasaki, Section Editor)

Retinal Vascular Changes are a Marker for Cerebral Vascular Diseases

Behavior (HS Kirshner, Section Editor)

Psychotic Symptoms in Frontotemporal Dementia

Nerve and Muscle (LH Weimer, Section Editor)

Treatment of Chronic Inflammatory Demyelinating Polyneuropathy

Genetics (V Bonifati, Section Editor)

LRRK2 Pathways Leading to Neurodegeneration

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.