Skip to main content
Erschienen in: Current Oncology Reports 2/2012

01.04.2012 | Evolving Therapies (RM Bukowski, Section Editor)

PI3K and mTOR Signaling Pathways in Cancer: New Data on Targeted Therapies

verfasst von: Lise Willems, Jerome Tamburini, Nicolas Chapuis, Catherine Lacombe, Patrick Mayeux, Didier Bouscary

Erschienen in: Current Oncology Reports | Ausgabe 2/2012

Einloggen, um Zugang zu erhalten

Abstract

The mammalian target of rapamycin (mTOR) and the phosphoinositide 3-kinase (PI3K) signaling pathways are commonly deregulated in cancers and promote cellular growth, proliferation, and survival. mTOR is part of two complexes, mTORC1 and mTORC2, with different biochemical structures and substrates specificity. PI3K/AKT activation may result from genetic hits affecting different components of the pathway, whereas the mechanisms leading to constitutive mTORC1 activation remain globally unknown. The connections between the PI3K and mTOR kinases are multiple and complex, including common substrates, negative feedback loops, or direct activation mechanisms. First-generation allosteric mTOR inhibitors (eg, rapamycin) are mainly active on mTORC1 and mostly display cytostatic anti-tumor activity. Recently, second-generation catalytic mTOR inhibitors targeting both mTOR complexes 1 and 2 have been developed. Some of them also inhibit class IA PI3K. Here, we highlight recent data generated with these new inhibitors against cancer cells and their potential as anti-cancer drugs.
Literatur
1.
Zurück zum Zitat Engelman JA. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer. 2009;9:550–62.PubMedCrossRef Engelman JA. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer. 2009;9:550–62.PubMedCrossRef
2.
Zurück zum Zitat Yuan TL, Cantley LC. PI3K pathway alterations in cancer: variations on a theme. Oncogene. 2008;27:5497–510.PubMedCrossRef Yuan TL, Cantley LC. PI3K pathway alterations in cancer: variations on a theme. Oncogene. 2008;27:5497–510.PubMedCrossRef
3.
Zurück zum Zitat Alessi DR, Deak M, Casamayor A, et al. 3-Phosphoinositide-dependent protein kinase-1 (PDK1): structural and functional homology with the Drosophila DSTPK61 kinase. Curr Biol. 1997;7:776–89.PubMedCrossRef Alessi DR, Deak M, Casamayor A, et al. 3-Phosphoinositide-dependent protein kinase-1 (PDK1): structural and functional homology with the Drosophila DSTPK61 kinase. Curr Biol. 1997;7:776–89.PubMedCrossRef
4.
Zurück zum Zitat Sarbassov DD, Guertin DA, Ali SM, et al. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 2005;307:1098–101.PubMedCrossRef Sarbassov DD, Guertin DA, Ali SM, et al. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 2005;307:1098–101.PubMedCrossRef
5.
Zurück zum Zitat Liu P, Cheng H, Roberts TM, et al. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov. 2009;8:627–44.PubMedCrossRef Liu P, Cheng H, Roberts TM, et al. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov. 2009;8:627–44.PubMedCrossRef
6.
Zurück zum Zitat Stambolic V, Suzuki A, de la Pompa JL, et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell. 1998;95:29–39.PubMedCrossRef Stambolic V, Suzuki A, de la Pompa JL, et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell. 1998;95:29–39.PubMedCrossRef
7.
Zurück zum Zitat Gao T, Furnari F, Newton AC. PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol Cell. 2005;18:13–24.PubMedCrossRef Gao T, Furnari F, Newton AC. PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol Cell. 2005;18:13–24.PubMedCrossRef
8.
Zurück zum Zitat Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 2011;12:21–35.PubMedCrossRef Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 2011;12:21–35.PubMedCrossRef
9.
Zurück zum Zitat Blagden SP, Willis AE. The biological and therapeutic relevance of mRNA translation in cancer. Nat Rev. 2011;8:280–91. Blagden SP, Willis AE. The biological and therapeutic relevance of mRNA translation in cancer. Nat Rev. 2011;8:280–91.
10.
Zurück zum Zitat Chapuis N, Tamburini J, Green AS, et al. Perspectives on inhibiting mTOR as a future treatment strategy for hematological malignancies. Leukemia. 2010;24:1686–99.PubMedCrossRef Chapuis N, Tamburini J, Green AS, et al. Perspectives on inhibiting mTOR as a future treatment strategy for hematological malignancies. Leukemia. 2010;24:1686–99.PubMedCrossRef
11.
Zurück zum Zitat Dos Santos C, Demur C, Bardet V, et al. A critical role for Lyn in acute myeloid leukemia. Blood. 2008;111:2269–79.PubMedCrossRef Dos Santos C, Demur C, Bardet V, et al. A critical role for Lyn in acute myeloid leukemia. Blood. 2008;111:2269–79.PubMedCrossRef
12.
Zurück zum Zitat Leseux L, Hamdi SM, Al Saati T. Syk-dependent mTOR activation in follicular lymphoma cells. Blood. 2006;108:4156–62.PubMedCrossRef Leseux L, Hamdi SM, Al Saati T. Syk-dependent mTOR activation in follicular lymphoma cells. Blood. 2006;108:4156–62.PubMedCrossRef
13.
Zurück zum Zitat Garcia-Martinez JM, Alessi DR. mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1). Biochem J. 2008;416:375–85.PubMedCrossRef Garcia-Martinez JM, Alessi DR. mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1). Biochem J. 2008;416:375–85.PubMedCrossRef
14.
Zurück zum Zitat Guertin DA, Stevens DM, Thoreen CC, et al. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell. 2006;11:859–71.PubMedCrossRef Guertin DA, Stevens DM, Thoreen CC, et al. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell. 2006;11:859–71.PubMedCrossRef
15.
Zurück zum Zitat • Guertin DA, Stevens DM, Saitoh M, et al. mTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice. Cancer Cell. 2009;15:148–59. This work underlines the function of mTORC2 in tumor development, suggesting that mTORC2 inhibitors may be efficient in cancer.PubMedCrossRef • Guertin DA, Stevens DM, Saitoh M, et al. mTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice. Cancer Cell. 2009;15:148–59. This work underlines the function of mTORC2 in tumor development, suggesting that mTORC2 inhibitors may be efficient in cancer.PubMedCrossRef
16.
Zurück zum Zitat Smrz D, Kim MS, Zhang S, et al. MTORC1 and mTORC2 differentially regulate homeostasis of neoplastic and non-neoplastic human mast cells. Blood. 2011, in press. Smrz D, Kim MS, Zhang S, et al. MTORC1 and mTORC2 differentially regulate homeostasis of neoplastic and non-neoplastic human mast cells. Blood. 2011, in press.
17.
Zurück zum Zitat Maiso P, Liu Y, Morgan B, et al. Defining the role of TORC1 and TORC2 in multiple myeloma. Blood. 2011, in press. Maiso P, Liu Y, Morgan B, et al. Defining the role of TORC1 and TORC2 in multiple myeloma. Blood. 2011, in press.
18.
Zurück zum Zitat Sarbassov DD, Ali SM, Sengupta S, et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell. 2006;22:159–68.PubMedCrossRef Sarbassov DD, Ali SM, Sengupta S, et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell. 2006;22:159–68.PubMedCrossRef
19.
Zurück zum Zitat •• Zinzalla V, Stracka D, Oppliger W, et al. Activation of mTORC2 by association with the ribosome. Cell. 2011;144:757–68. This study provides evidence about the mechanisms of mTORC2 regulation downstream PI3K. PI3K activates mTORC2 by promoting its association with ribosomes.PubMedCrossRef •• Zinzalla V, Stracka D, Oppliger W, et al. Activation of mTORC2 by association with the ribosome. Cell. 2011;144:757–68. This study provides evidence about the mechanisms of mTORC2 regulation downstream PI3K. PI3K activates mTORC2 by promoting its association with ribosomes.PubMedCrossRef
20.
Zurück zum Zitat Um SH, Frigerio F, Watanabe M, et al. Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature. 2004;431:200–5.PubMedCrossRef Um SH, Frigerio F, Watanabe M, et al. Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature. 2004;431:200–5.PubMedCrossRef
21.
Zurück zum Zitat Yu Y, Yoon SO, Poulogiannis G, et al. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science. 2011;332:1322–6.PubMedCrossRef Yu Y, Yoon SO, Poulogiannis G, et al. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science. 2011;332:1322–6.PubMedCrossRef
22.
Zurück zum Zitat Hsu PP, Kang SA, Rameseder J, et al. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science. 2011;332:1317–22.PubMedCrossRef Hsu PP, Kang SA, Rameseder J, et al. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science. 2011;332:1317–22.PubMedCrossRef
23.
Zurück zum Zitat Dancey J. mTOR signaling and drug development in cancer. Nat Rev Clin Oncol. 2010;7:209–19.PubMedCrossRef Dancey J. mTOR signaling and drug development in cancer. Nat Rev Clin Oncol. 2010;7:209–19.PubMedCrossRef
24.
Zurück zum Zitat Kurmasheva RT, Huang S, Houghton PJ. Predicted mechanisms of resistance to mTOR inhibitors. Br J Cancer. 2006;95:955–60.PubMedCrossRef Kurmasheva RT, Huang S, Houghton PJ. Predicted mechanisms of resistance to mTOR inhibitors. Br J Cancer. 2006;95:955–60.PubMedCrossRef
25.
Zurück zum Zitat Tamburini J, Green AS, Bardet V, et al. Protein synthesis is resistant to rapamycin and constitutes a promising therapeutic target in acute myeloid leukemia. Blood. 2009;114:1618–27.PubMedCrossRef Tamburini J, Green AS, Bardet V, et al. Protein synthesis is resistant to rapamycin and constitutes a promising therapeutic target in acute myeloid leukemia. Blood. 2009;114:1618–27.PubMedCrossRef
26.
Zurück zum Zitat Thoreen CC, Kang SA, Chang JW, et al. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem. 2009;284:8023–32.PubMedCrossRef Thoreen CC, Kang SA, Chang JW, et al. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem. 2009;284:8023–32.PubMedCrossRef
27.
Zurück zum Zitat Wendel HG, De Stanchina E, Fridman JS, et al. Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature. 2004;428:332–7.PubMedCrossRef Wendel HG, De Stanchina E, Fridman JS, et al. Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature. 2004;428:332–7.PubMedCrossRef
28.
Zurück zum Zitat Zindy P, Berge Y, Allal B, et al. Formation of the eIF4F Translation-Initiation Complex Determines Sensitivity to Anticancer Drugs Targeting the EGFR and HER2 Receptors. Cancer Res. 2011;71:4068–73.PubMedCrossRef Zindy P, Berge Y, Allal B, et al. Formation of the eIF4F Translation-Initiation Complex Determines Sensitivity to Anticancer Drugs Targeting the EGFR and HER2 Receptors. Cancer Res. 2011;71:4068–73.PubMedCrossRef
29.
Zurück zum Zitat O'Reilly KE, Rojo F, She QB, et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 2006;66:1500–8.PubMedCrossRef O'Reilly KE, Rojo F, She QB, et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 2006;66:1500–8.PubMedCrossRef
30.
Zurück zum Zitat Tamburini J, Chapuis N, Bardet V, et al. Mammalian target of rapamycin (mTOR) inhibition activates phosphatidylinositol 3-kinase/Akt by up-regulating insulin-like growth factor-1 receptor signaling in acute myeloid leukemia: rationale for therapeutic inhibition of both pathways. Blood. 2008;111:379–82.PubMedCrossRef Tamburini J, Chapuis N, Bardet V, et al. Mammalian target of rapamycin (mTOR) inhibition activates phosphatidylinositol 3-kinase/Akt by up-regulating insulin-like growth factor-1 receptor signaling in acute myeloid leukemia: rationale for therapeutic inhibition of both pathways. Blood. 2008;111:379–82.PubMedCrossRef
31.
Zurück zum Zitat Banerji U, Aghajanian C, Raymond E, et al. First results from a phase I trial of AZD8055, a dual mTORC1 and mTORC2 inhibitor. J Clin Oncol. 2011;29 (suppl; abstr 3096). Banerji U, Aghajanian C, Raymond E, et al. First results from a phase I trial of AZD8055, a dual mTORC1 and mTORC2 inhibitor. J Clin Oncol. 2011;29 (suppl; abstr 3096).
32.
Zurück zum Zitat Tan D, Dumez H, Olmos D, et al. First-in-human phase I study exploring three schedules of OSI-027, a novel small molecule TORC1/TORC2 inhibitor, in patients with advanced solid tumors and lymphoma. J Clin Oncol. 2010;28:15s. suppl; abstr 3006. Tan D, Dumez H, Olmos D, et al. First-in-human phase I study exploring three schedules of OSI-027, a novel small molecule TORC1/TORC2 inhibitor, in patients with advanced solid tumors and lymphoma. J Clin Oncol. 2010;28:15s. suppl; abstr 3006.
33.
Zurück zum Zitat Patnaik, A., Appleman, LJ, Mountz, JM, et al. A first-in-human phase I study of intravenous PI3K inhibitor BAY 80–6946 in patients with advanced solid tumors: results of dose-escalation phase. J Clin Oncol. 2011;29 (suppl; abstr 3035). Patnaik, A., Appleman, LJ, Mountz, JM, et al. A first-in-human phase I study of intravenous PI3K inhibitor BAY 80–6946 in patients with advanced solid tumors: results of dose-escalation phase. J Clin Oncol. 2011;29 (suppl; abstr 3035).
34.
Zurück zum Zitat Moreno Garcia V, Baird RD, Shah KJ, et al. A phase I study evaluating GDC-0941, an oral phosphoinositide-3 kinase (PI3K) inhibitor, in patients with advanced solid tumors or multiple myeloma. J Clin Oncol. 2011;29 (suppl; abstr 3021). Moreno Garcia V, Baird RD, Shah KJ, et al. A phase I study evaluating GDC-0941, an oral phosphoinositide-3 kinase (PI3K) inhibitor, in patients with advanced solid tumors or multiple myeloma. J Clin Oncol. 2011;29 (suppl; abstr 3021).
35.
Zurück zum Zitat Von Hoff D, LoRusso P, Demetri GD, et al. A phase I dose-escalation study to evaluate GDC-0941, a pan-PI3K inhibitor, administered QD or BID in patients with advanced or metastatic solid tumors. J Clin Oncol. 2011;29 (suppl; abstr 3052^). Von Hoff D, LoRusso P, Demetri GD, et al. A phase I dose-escalation study to evaluate GDC-0941, a pan-PI3K inhibitor, administered QD or BID in patients with advanced or metastatic solid tumors. J Clin Oncol. 2011;29 (suppl; abstr 3052^).
36.
Zurück zum Zitat Munster P, van der Noll R, Voest EE, et al. Phase I first-in-human study of the PI3 kinase inhibitor GSK2126458 (GSK458) in patients with advanced solid tumors (study P3K112826). J Clin Oncol. 2011;29 (suppl; abstr 3018). Munster P, van der Noll R, Voest EE, et al. Phase I first-in-human study of the PI3 kinase inhibitor GSK2126458 (GSK458) in patients with advanced solid tumors (study P3K112826). J Clin Oncol. 2011;29 (suppl; abstr 3018).
37.
Zurück zum Zitat Jimeno A, Herbst RS, Falchook GS, et al. Final results from a phase I, dose-escalation study of PX-866, an irreversible, pan-isoform inhibitor of PI3 kinase. J Clin Oncol. 2010;28:15s. suppl; abstr 3089. Jimeno A, Herbst RS, Falchook GS, et al. Final results from a phase I, dose-escalation study of PX-866, an irreversible, pan-isoform inhibitor of PI3 kinase. J Clin Oncol. 2010;28:15s. suppl; abstr 3089.
38.
Zurück zum Zitat Edelman G, Bedell C, Shapiro GSS, et al. J Clin Oncol. 2010;28:15s. suppl; abstr 3004. Edelman G, Bedell C, Shapiro GSS, et al. J Clin Oncol. 2010;28:15s. suppl; abstr 3004.
39.
Zurück zum Zitat Grana B, Burris HA, Rodon Ahnert J, et al. Oral PI3 kinase inhibitor BKM120 monotherapy in patients (pts) with advanced solid tumors: an update on safety and efficacy. J Clin Oncol. 2011;29 (suppl; abstr 3043). Grana B, Burris HA, Rodon Ahnert J, et al. Oral PI3 kinase inhibitor BKM120 monotherapy in patients (pts) with advanced solid tumors: an update on safety and efficacy. J Clin Oncol. 2011;29 (suppl; abstr 3043).
40.
Zurück zum Zitat Coutre S, Byrd JC, Furman RR, et al. Phase I study of CAL-101, an isoform-selective inhibitor of phosphatidylinositol 3kinase P110d, in patients with previously treated chronic lymphocytic leukemia. J Clin Oncol. 2011;29 (suppl; abstr 6631). Coutre S, Byrd JC, Furman RR, et al. Phase I study of CAL-101, an isoform-selective inhibitor of phosphatidylinositol 3kinase P110d, in patients with previously treated chronic lymphocytic leukemia. J Clin Oncol. 2011;29 (suppl; abstr 6631).
41.
Zurück zum Zitat Wagner A, Bendell JC, Dolly S, et al. A first-in-human phase I study to evaluate GDC-0980, an oral PI3K/mTOR inhibitor, administered QD in patients with advanced solid tumors. J Clin Oncol. 2011;29 (suppl; abstr 3020). Wagner A, Bendell JC, Dolly S, et al. A first-in-human phase I study to evaluate GDC-0980, an oral PI3K/mTOR inhibitor, administered QD in patients with advanced solid tumors. J Clin Oncol. 2011;29 (suppl; abstr 3020).
42.
Zurück zum Zitat Peyton J, Rodon Ahnert J, Burris H, et al. A dose-escalation study with the novel formulation of the oral pan-class I PI3K inhibitor BEZ235, solid dispersion system (SDS) sachet, in patients with advanced solid tumors. J Clin Oncol. 2011;29 (suppl; abstr 3066). Peyton J, Rodon Ahnert J, Burris H, et al. A dose-escalation study with the novel formulation of the oral pan-class I PI3K inhibitor BEZ235, solid dispersion system (SDS) sachet, in patients with advanced solid tumors. J Clin Oncol. 2011;29 (suppl; abstr 3066).
43.
Zurück zum Zitat Burris H, Rodon J, Sharma S, et al. First-in-human phase I study of the oral PI3K inhibitor BEZ235 in patients (pts) with advanced solid tumors. J Clin Oncol. 2010;28:15s. suppl; abstr 3005. Burris H, Rodon J, Sharma S, et al. First-in-human phase I study of the oral PI3K inhibitor BEZ235 in patients (pts) with advanced solid tumors. J Clin Oncol. 2010;28:15s. suppl; abstr 3005.
44.
Zurück zum Zitat Brana I, LoRusso P, Baselga J, et al. A phase I dose-escalation study of the safety, pharmacokinetics (PK), and pharmacodynamics of XL765 (SAR245409), a PI3K/TORC1/TORC2 inhibitor administered orally to patients (pts) with advanced malignancies. J Clin Oncol. 2010;28:15s. suppl; abstr 3030. Brana I, LoRusso P, Baselga J, et al. A phase I dose-escalation study of the safety, pharmacokinetics (PK), and pharmacodynamics of XL765 (SAR245409), a PI3K/TORC1/TORC2 inhibitor administered orally to patients (pts) with advanced malignancies. J Clin Oncol. 2010;28:15s. suppl; abstr 3030.
45.
Zurück zum Zitat Garlich J, Becker MD, SheltonCF, et al. Phase I study of novel prodrug dual PI3K/mTOR inhibitor SF1126 in B-cell malignancies. Blood. 2010;116:Abstract 1783. Garlich J, Becker MD, SheltonCF, et al. Phase I study of novel prodrug dual PI3K/mTOR inhibitor SF1126 in B-cell malignancies. Blood. 2010;116:Abstract 1783.
46.
Zurück zum Zitat Mahadevan D, Chiorean EG, Harris W, et al. Phase I study of the multikinase prodrug SF1126 in solid tumors and B-cell malignancies. J Clin Oncol. 2011;29 (suppl; abstr 3015). Mahadevan D, Chiorean EG, Harris W, et al. Phase I study of the multikinase prodrug SF1126 in solid tumors and B-cell malignancies. J Clin Oncol. 2011;29 (suppl; abstr 3015).
47.
Zurück zum Zitat Bowles DW, Jimeno A. New phosphatidylinositol 3-kinase inhibitors for cancer. Expert Opin Invest Drugs. 2011;20:507–18.CrossRef Bowles DW, Jimeno A. New phosphatidylinositol 3-kinase inhibitors for cancer. Expert Opin Invest Drugs. 2011;20:507–18.CrossRef
48.
Zurück zum Zitat Flinn I, Schreeder MT, Coutre SE et al. A phase I study of CAL-101, an isoform-selective inhibitor of phosphatidylinositol 3kinase P110δ, in combination with anti-CD20 monoclonal antibody therapy and/or bendamustine in patients with previously treated B-cell malignancies. J Clin Oncol. 2011;29 (suppl; abstr 3064). Flinn I, Schreeder MT, Coutre SE et al. A phase I study of CAL-101, an isoform-selective inhibitor of phosphatidylinositol 3kinase P110δ, in combination with anti-CD20 monoclonal antibody therapy and/or bendamustine in patients with previously treated B-cell malignancies. J Clin Oncol. 2011;29 (suppl; abstr 3064).
49.
Zurück zum Zitat Garcia-Martinez JM, Moran J, Clarke RG, et al. Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR). Biochem J. 2009;421:29–42.PubMedCrossRef Garcia-Martinez JM, Moran J, Clarke RG, et al. Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR). Biochem J. 2009;421:29–42.PubMedCrossRef
50.
Zurück zum Zitat Chresta CM, Davies BR, Hickson I, et al. AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res. 2010;70:288–98.PubMedCrossRef Chresta CM, Davies BR, Hickson I, et al. AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res. 2010;70:288–98.PubMedCrossRef
51.
Zurück zum Zitat Feldman ME, Apsel B, Uotila A, et al. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol. 2009;7:e38.PubMedCrossRef Feldman ME, Apsel B, Uotila A, et al. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol. 2009;7:e38.PubMedCrossRef
52.
Zurück zum Zitat • Janes MR, Limon JJ, So L, et al. Effective and selective targeting of leukemia cells using a TORC1/2 kinase inhibitor. Nature Med. 2010;16:205–13. The comparison of rapamycin and TORKinib in mouse models of acute leukemia with Philadelphia chromosome showed a better efficacy (PP242) to induce cell death.PubMedCrossRef • Janes MR, Limon JJ, So L, et al. Effective and selective targeting of leukemia cells using a TORC1/2 kinase inhibitor. Nature Med. 2010;16:205–13. The comparison of rapamycin and TORKinib in mouse models of acute leukemia with Philadelphia chromosome showed a better efficacy (PP242) to induce cell death.PubMedCrossRef
53.
Zurück zum Zitat Altman JK, Sassano A, Kaur S, et al. Dual mTORC2/mTORC1 targeting results in potent suppressive effects on acute myeloid leukemia (AML) progenitors. Clin Cancer Res. 2011;17:4378–88.PubMedCrossRef Altman JK, Sassano A, Kaur S, et al. Dual mTORC2/mTORC1 targeting results in potent suppressive effects on acute myeloid leukemia (AML) progenitors. Clin Cancer Res. 2011;17:4378–88.PubMedCrossRef
54.
Zurück zum Zitat Willems L, Chapuis N, Puissant A, et al. The dual mTORC1 and mTORC2 inhibitor AZD8055 has anti-tumor activity in acute myeloid leukemia. Leukaemia. 2011 in press. Willems L, Chapuis N, Puissant A, et al. The dual mTORC1 and mTORC2 inhibitor AZD8055 has anti-tumor activity in acute myeloid leukemia. Leukaemia. 2011 in press.
55.
Zurück zum Zitat Evangelisti C, Ricci F, Tazzari P, et al. Targeted inhibition of mTORC1 and mTORC2 by active-site mTOR inhibitors has cytotoxic effects in T-cell acute lymphoblastic leukemia. Leukemia. 2011;25:781–91.PubMedCrossRef Evangelisti C, Ricci F, Tazzari P, et al. Targeted inhibition of mTORC1 and mTORC2 by active-site mTOR inhibitors has cytotoxic effects in T-cell acute lymphoblastic leukemia. Leukemia. 2011;25:781–91.PubMedCrossRef
56.
Zurück zum Zitat Bhagwat SV, Gokhale PC, Crew AP, et al. Preclinical characterization of OSI-027, a potent and selective inhibitor of mTORC1 and mTORC2: distinct from rapamycin. Mol Cancer ther. 2011;10:1394–406.PubMedCrossRef Bhagwat SV, Gokhale PC, Crew AP, et al. Preclinical characterization of OSI-027, a potent and selective inhibitor of mTORC1 and mTORC2: distinct from rapamycin. Mol Cancer ther. 2011;10:1394–406.PubMedCrossRef
57.
Zurück zum Zitat Rodrik-Outmezguine V, Chandarlapaty S, Pagano NC, et al. Biphasic regulation of AKT signaling. Cancer Discovery. 2011;1:248–59.PubMedCrossRef Rodrik-Outmezguine V, Chandarlapaty S, Pagano NC, et al. Biphasic regulation of AKT signaling. Cancer Discovery. 2011;1:248–59.PubMedCrossRef
58.
Zurück zum Zitat Jacinto E, Facchinetti V, Liu D, et al. SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell. 2006;127:125–37.PubMedCrossRef Jacinto E, Facchinetti V, Liu D, et al. SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell. 2006;127:125–37.PubMedCrossRef
59.
Zurück zum Zitat Moore SF, Hunter RW, Hers I. mTORC2 protein-mediated protein kinase B (Akt) serine 473 phosphorylation is not required for Akt1 activity in human platelets. J Biol Chem. 2011;286:24553–60.PubMedCrossRef Moore SF, Hunter RW, Hers I. mTORC2 protein-mediated protein kinase B (Akt) serine 473 phosphorylation is not required for Akt1 activity in human platelets. J Biol Chem. 2011;286:24553–60.PubMedCrossRef
60.
Zurück zum Zitat Raynaud FI, Eccles S, Clarke PA, et al. Pharmacologic characterization of a potent inhibitor of class I phosphatidylinositide 3-kinases. Cancer Res. 2007;67:5840–50.PubMedCrossRef Raynaud FI, Eccles S, Clarke PA, et al. Pharmacologic characterization of a potent inhibitor of class I phosphatidylinositide 3-kinases. Cancer Res. 2007;67:5840–50.PubMedCrossRef
61.
Zurück zum Zitat Park S, Chapuis N, Bardet V, et al. PI-103, a dual inhibitor of Class IA phosphatidylinositide 3-kinase and mTOR, has antileukemic activity in AML. Leukemia. 2008;22:1698–706.PubMedCrossRef Park S, Chapuis N, Bardet V, et al. PI-103, a dual inhibitor of Class IA phosphatidylinositide 3-kinase and mTOR, has antileukemic activity in AML. Leukemia. 2008;22:1698–706.PubMedCrossRef
62.
Zurück zum Zitat Chiarini F, Fala F, Tazzari PL, et al. Dual inhibition of class IA phosphatidylinositol 3-kinase and mammalian target of rapamycin as a new therapeutic option for T-cell acute lymphoblastic leukemia. Cancer Res. 2009;69:3520–8.PubMedCrossRef Chiarini F, Fala F, Tazzari PL, et al. Dual inhibition of class IA phosphatidylinositol 3-kinase and mammalian target of rapamycin as a new therapeutic option for T-cell acute lymphoblastic leukemia. Cancer Res. 2009;69:3520–8.PubMedCrossRef
63.
Zurück zum Zitat Maira SM, Stauffer F, Brueggen J, et al. Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol Cancer Ther. 2008;7:1851–63.PubMedCrossRef Maira SM, Stauffer F, Brueggen J, et al. Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol Cancer Ther. 2008;7:1851–63.PubMedCrossRef
64.
Zurück zum Zitat Serra V, Markman B, Scaltriti M, et al. NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations. Cancer Res. 2008;68:8022–30.PubMedCrossRef Serra V, Markman B, Scaltriti M, et al. NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations. Cancer Res. 2008;68:8022–30.PubMedCrossRef
65.
Zurück zum Zitat Chapuis N, Tamburini J, Green AS, et al. Dual inhibition of PI3K and mTORC1/2 signaling by NVP-BEZ235 as a new therapeutic strategy for acute myeloid leukemia. Clin Cancer Res. 2010;16:5424–35.PubMedCrossRef Chapuis N, Tamburini J, Green AS, et al. Dual inhibition of PI3K and mTORC1/2 signaling by NVP-BEZ235 as a new therapeutic strategy for acute myeloid leukemia. Clin Cancer Res. 2010;16:5424–35.PubMedCrossRef
66.
Zurück zum Zitat Xu CX, Li Y, Yue P, et al. The combination of RAD001 and NVP-BEZ235 exerts synergistic anticancer activity against non-small cell lung cancer in vitro and in vivo. PloS One. 2011;6:e20899.PubMedCrossRef Xu CX, Li Y, Yue P, et al. The combination of RAD001 and NVP-BEZ235 exerts synergistic anticancer activity against non-small cell lung cancer in vitro and in vivo. PloS One. 2011;6:e20899.PubMedCrossRef
67.
Zurück zum Zitat Mazzoletti M, Bortolin F, Brunelli L, et al. Combination of PI3K/mTOR inhibitors: antitumor activity and molecular correlates. Cancer Res. 2011;71:4573–84.PubMedCrossRef Mazzoletti M, Bortolin F, Brunelli L, et al. Combination of PI3K/mTOR inhibitors: antitumor activity and molecular correlates. Cancer Res. 2011;71:4573–84.PubMedCrossRef
68.
Zurück zum Zitat Werzowa J, Koehrer S, Strommer S, et al. Vertical inhibition of the mTORC1/mTORC2/PI3K pathway shows synergistic effects against melanoma in vitro and in vivo. J Invest Dermatol. 2011;131:495–503.PubMedCrossRef Werzowa J, Koehrer S, Strommer S, et al. Vertical inhibition of the mTORC1/mTORC2/PI3K pathway shows synergistic effects against melanoma in vitro and in vivo. J Invest Dermatol. 2011;131:495–503.PubMedCrossRef
69.
Zurück zum Zitat Garlich JR, De P, Dey N, et al. A vascular targeted pan phosphoinositide 3-kinase inhibitor prodrug, SF1126, with antitumor and antiangiogenic activity. Cancer Res. 2008;68:206–15.PubMedCrossRef Garlich JR, De P, Dey N, et al. A vascular targeted pan phosphoinositide 3-kinase inhibitor prodrug, SF1126, with antitumor and antiangiogenic activity. Cancer Res. 2008;68:206–15.PubMedCrossRef
70.
Zurück zum Zitat Carracedo A, Ma L, Teruya-Feldstein J, et al. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest. 2008;118:3065–74.PubMed Carracedo A, Ma L, Teruya-Feldstein J, et al. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest. 2008;118:3065–74.PubMed
71.
Zurück zum Zitat Di Nicolantonio F, Arena S, Tabernero J, et al. Deregulation of the PI3K and KRAS signaling pathways in human cancer cells determines their response to everolimus. J Clin Invest. 2010;120:2858–66.PubMedCrossRef Di Nicolantonio F, Arena S, Tabernero J, et al. Deregulation of the PI3K and KRAS signaling pathways in human cancer cells determines their response to everolimus. J Clin Invest. 2010;120:2858–66.PubMedCrossRef
72.
Zurück zum Zitat Steelman LS, Franklin RA, Abrams SL, et al. Roles of the Ras/Raf/MEK/ERK pathway in leukemia therapy. Leukemia. 2011;25:1080–94.PubMedCrossRef Steelman LS, Franklin RA, Abrams SL, et al. Roles of the Ras/Raf/MEK/ERK pathway in leukemia therapy. Leukemia. 2011;25:1080–94.PubMedCrossRef
73.
Zurück zum Zitat Serra V, Scaltriti M, Prudkin L, et al. PI3K inhibition results in enhanced HER signaling and acquired ERK dependency in HER2-overexpressing breast cancer. Oncogene. 2011;30:2547–57.PubMedCrossRef Serra V, Scaltriti M, Prudkin L, et al. PI3K inhibition results in enhanced HER signaling and acquired ERK dependency in HER2-overexpressing breast cancer. Oncogene. 2011;30:2547–57.PubMedCrossRef
74.
Zurück zum Zitat Shapiro G, LoRusso P, Kwak EL, et al. Clinical combination of the MEK inhibitor GDC-0973 and the PI3K inhibitor GDC-0941: a first-in-human phase Ib study testing daily and intermittent dosing schedules in patients with advanced solid tumors. In 2011 ASCO Annual Meeting. J Clin Oncol. 2011;29 (suppl; abstr 3005^). Shapiro G, LoRusso P, Kwak EL, et al. Clinical combination of the MEK inhibitor GDC-0973 and the PI3K inhibitor GDC-0941: a first-in-human phase Ib study testing daily and intermittent dosing schedules in patients with advanced solid tumors. In 2011 ASCO Annual Meeting. J Clin Oncol. 2011;29 (suppl; abstr 3005^).
75.
Zurück zum Zitat Chandarlapaty S, Sawai A, Scaltriti M, Rodrik-Outmezguine V, Grbovic-Huezo O, Serra V, Majumder PK, Baselga J, Rosen N. AKT inhibition relieves feedback suppression of receptor tyrosine kinase expression and activity. Cancer Cell. 2011;19:58–71.PubMedCrossRef Chandarlapaty S, Sawai A, Scaltriti M, Rodrik-Outmezguine V, Grbovic-Huezo O, Serra V, Majumder PK, Baselga J, Rosen N. AKT inhibition relieves feedback suppression of receptor tyrosine kinase expression and activity. Cancer Cell. 2011;19:58–71.PubMedCrossRef
76.
Zurück zum Zitat Moldovan C, Soria J, LoRusso PT, et al. A phase I safety and pharmacokinetic (PK) study of the PI3K inhibitor XL147 (SAR245408) in combination with erlotinib in patients (pts) with advanced solid tumors. In 2010 ASCO Annual Meeting. J Clin Oncol. 2010;28:15s. suppl; abstr 3070. Moldovan C, Soria J, LoRusso PT, et al. A phase I safety and pharmacokinetic (PK) study of the PI3K inhibitor XL147 (SAR245408) in combination with erlotinib in patients (pts) with advanced solid tumors. In 2010 ASCO Annual Meeting. J Clin Oncol. 2010;28:15s. suppl; abstr 3070.
77.
Zurück zum Zitat Lee Jr JT, Steelman LS, McCubrey JA. Phosphatidylinositol 3′-kinase activation leads to multidrug resistance protein-1 expression and subsequent chemoresistance in advanced prostate cancer cells. Cancer Res. 2004;64:8397–404.PubMedCrossRef Lee Jr JT, Steelman LS, McCubrey JA. Phosphatidylinositol 3′-kinase activation leads to multidrug resistance protein-1 expression and subsequent chemoresistance in advanced prostate cancer cells. Cancer Res. 2004;64:8397–404.PubMedCrossRef
78.
Zurück zum Zitat Sokolosky ML, Stadelman KM, Chappell WH, et al. Involvement of Akt-1 and mTOR in Sensitivity of Breast Cancer to Targeted Therapy. Oncotarget. 2011;2:538–50.PubMed Sokolosky ML, Stadelman KM, Chappell WH, et al. Involvement of Akt-1 and mTOR in Sensitivity of Breast Cancer to Targeted Therapy. Oncotarget. 2011;2:538–50.PubMed
79.
Zurück zum Zitat Wallin JJ, Guan J, Prior WW, et al. Nuclear phospho-Akt increase predicts synergy of PI3K inhibition and doxorubicin in breast and ovarian cancer. Sci Trans Med. 2010;2:48ra66.CrossRef Wallin JJ, Guan J, Prior WW, et al. Nuclear phospho-Akt increase predicts synergy of PI3K inhibition and doxorubicin in breast and ovarian cancer. Sci Trans Med. 2010;2:48ra66.CrossRef
80.
Zurück zum Zitat Bender A, Opel D, Naumann I, et al. PI3K inhibitors prime neuroblastoma cells for chemotherapy by shifting the balance towards pro-apoptotic Bcl-2 proteins and enhanced mitochondrial apoptosis. Oncogene. 2011;30:494–503.PubMedCrossRef Bender A, Opel D, Naumann I, et al. PI3K inhibitors prime neuroblastoma cells for chemotherapy by shifting the balance towards pro-apoptotic Bcl-2 proteins and enhanced mitochondrial apoptosis. Oncogene. 2011;30:494–503.PubMedCrossRef
81.
Zurück zum Zitat Shao H, Gao C, Tang H, et al. Dual targeting of mTORC1/C2 complexes enhances histone deacetylase inhibitor-mediated anti-tumor efficacy in primary HCC cancer in vitro and in vivo. J Hepatol. 2011, in press. Shao H, Gao C, Tang H, et al. Dual targeting of mTORC1/C2 complexes enhances histone deacetylase inhibitor-mediated anti-tumor efficacy in primary HCC cancer in vitro and in vivo. J Hepatol. 2011, in press.
82.
Zurück zum Zitat Gravina GL, Marampon F, Petini F, et al. The TORC1/TORC2 inhibitor, Palomid 529, reduces tumor growth and sensitizes to docetaxel and cisplatin in aggressive and hormone-refractory prostate cancer cells. Endoc Relat Cancer. 2011;18:385–400.CrossRef Gravina GL, Marampon F, Petini F, et al. The TORC1/TORC2 inhibitor, Palomid 529, reduces tumor growth and sensitizes to docetaxel and cisplatin in aggressive and hormone-refractory prostate cancer cells. Endoc Relat Cancer. 2011;18:385–400.CrossRef
83.
Zurück zum Zitat Xu CX, Zhao L, Yue P, et al. Augmentation of NVP-BEZ235's anticancer activity against human lung cancer cells by blockage of autophagy. Cancer Biol Ther. 2011;12:549–55.PubMedCrossRef Xu CX, Zhao L, Yue P, et al. Augmentation of NVP-BEZ235's anticancer activity against human lung cancer cells by blockage of autophagy. Cancer Biol Ther. 2011;12:549–55.PubMedCrossRef
84.
Zurück zum Zitat Fan QW, Cheng C, Hackett C, et al. Akt and autophagy cooperate to promote survival of drug-resistant glioma. Sci Signal. 2010;3:ra81.PubMedCrossRef Fan QW, Cheng C, Hackett C, et al. Akt and autophagy cooperate to promote survival of drug-resistant glioma. Sci Signal. 2010;3:ra81.PubMedCrossRef
85.
Zurück zum Zitat Huang S, Yang ZJ, Yu C, et al. Inhibition of mTOR kinase by AZD8055 can antagonize chemotherapy-induced cell death through autophagy induction and downregulation of p62/sequestosome 1. J Biol Chem. 2011, in press. Huang S, Yang ZJ, Yu C, et al. Inhibition of mTOR kinase by AZD8055 can antagonize chemotherapy-induced cell death through autophagy induction and downregulation of p62/sequestosome 1. J Biol Chem. 2011, in press.
Metadaten
Titel
PI3K and mTOR Signaling Pathways in Cancer: New Data on Targeted Therapies
verfasst von
Lise Willems
Jerome Tamburini
Nicolas Chapuis
Catherine Lacombe
Patrick Mayeux
Didier Bouscary
Publikationsdatum
01.04.2012
Verlag
Current Science Inc.
Erschienen in
Current Oncology Reports / Ausgabe 2/2012
Print ISSN: 1523-3790
Elektronische ISSN: 1534-6269
DOI
https://doi.org/10.1007/s11912-012-0227-y

Weitere Artikel der Ausgabe 2/2012

Current Oncology Reports 2/2012 Zur Ausgabe

Pediatric Oncology (S Epelman, Section Editor)

Late Effects in Cancer Survivors: “The Shared Care Model”

Evolving Therapies (RM Bukowski, Section Editor)

Survivin in Solid Tumors: Rationale for Development of Inhibitors

Head and Neck Cancers (EY Hanna, Section Editor)

Salivary Gland Cancers: Biology and Molecular Targets for Therapy

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.