Skip to main content
Erschienen in: Cardiovascular Toxicology 2/2007

01.06.2007 | Original Paper

Genotyping the risk of anthracycline-induced cardiotoxicity

verfasst von: Shiwei Deng, Leszek Wojnowski

Erschienen in: Cardiovascular Toxicology | Ausgabe 2/2007

Einloggen, um Zugang zu erhalten

Abstract

Anthracyclines belong to the most successful antineoplastic drugs, but they are cardiotoxic, which may result in congestive heart failure (CHF). The CHF risk increases with the cumulative anthracycline dose, but it seems also to be modified by individual factors. A role of the individual genetic background is consistent with the altered sensitivity to anthracyclines observed in many transgenic and knockout mouse strains. First clinical data obtained in humans suggest the existence of predisposing variants in genes involved in the oxidative stress, and in the metabolism and transport of anthracyclines. These data will have to be verified in further clinical trials before any attempts of their application in the individual cardiotoxicity prediction can be undertaken. In the meantime, anthracycline-induced cardiotoxicity can be best reduced by application of liposomal anthracycline formulations or by a co-medication with the cardioprotective iron chelator dexrazoxane.
Literatur
1.
Zurück zum Zitat Friedman, M. A., Bozdech, M. J., Billingham, M. E., & Rider, A. K. (1978). Doxorubicin cardiotoxicity. Serial endomyocardial biopsies and systolic time intervals. Jama, 240, 1603–1606.PubMedCrossRef Friedman, M. A., Bozdech, M. J., Billingham, M. E., & Rider, A. K. (1978). Doxorubicin cardiotoxicity. Serial endomyocardial biopsies and systolic time intervals. Jama, 240, 1603–1606.PubMedCrossRef
2.
Zurück zum Zitat Steinberg, J. S., Cohen, A. J., Wasserman, A. G., Cohen, P., & Ross, A. M. (1987). Acute arrhythmogenicity of doxorubicin administration. Cancer, 60, 1213–1218.PubMedCrossRef Steinberg, J. S., Cohen, A. J., Wasserman, A. G., Cohen, P., & Ross, A. M. (1987). Acute arrhythmogenicity of doxorubicin administration. Cancer, 60, 1213–1218.PubMedCrossRef
3.
Zurück zum Zitat Von Hoff, D. D., Layard, M. W., Basa, P., Davis, H. L Jr, Von Hoff, A. L., Rozencweig, M., & Muggia, F. M. (1979). Risk factors for doxorubicin-induced congestive heart failure. Annals of Internal Medicine, 91, 710–717. Von Hoff, D. D., Layard, M. W., Basa, P., Davis, H. L Jr, Von Hoff, A. L., Rozencweig, M., & Muggia, F. M. (1979). Risk factors for doxorubicin-induced congestive heart failure. Annals of Internal Medicine, 91, 710–717.
4.
Zurück zum Zitat van Dalen, E. C., van der Pal, H. J., Kok, W. E., Caron, H. N., & Kremer, L. C. (2006). Clinical heart failure in a cohort of children treated with anthracyclines: a long-term follow-up study. European Journal of Cancer, 42, 3191–3198.PubMedCrossRef van Dalen, E. C., van der Pal, H. J., Kok, W. E., Caron, H. N., & Kremer, L. C. (2006). Clinical heart failure in a cohort of children treated with anthracyclines: a long-term follow-up study. European Journal of Cancer, 42, 3191–3198.PubMedCrossRef
5.
Zurück zum Zitat Swain, S. M., Whaley, F. S., & Ewer, M. S. (2003). Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer, 97, 2869–2879.PubMedCrossRef Swain, S. M., Whaley, F. S., & Ewer, M. S. (2003). Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer, 97, 2869–2879.PubMedCrossRef
6.
Zurück zum Zitat Lipshultz, S. E., Colan, S. D., Gelber, R. D., Perez-Atayde, A. R., Sallan, S. E., & Sanders, S. P. (1991). Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. The New England Journal of Medicine, 324, 808–815.PubMedCrossRef Lipshultz, S. E., Colan, S. D., Gelber, R. D., Perez-Atayde, A. R., Sallan, S. E., & Sanders, S. P. (1991). Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. The New England Journal of Medicine, 324, 808–815.PubMedCrossRef
7.
Zurück zum Zitat Wouters, K. A., Kremer, L. C., Miller, T. L., Herman, E. H., & Lipshultz, S. E. (2005). Protecting against anthracycline-induced myocardial damage: a review of the most promising strategies. British Journal of Haematology, 131, 561–578.PubMedCrossRef Wouters, K. A., Kremer, L. C., Miller, T. L., Herman, E. H., & Lipshultz, S. E. (2005). Protecting against anthracycline-induced myocardial damage: a review of the most promising strategies. British Journal of Haematology, 131, 561–578.PubMedCrossRef
8.
Zurück zum Zitat Otterness, D., Szumlanski, C., Lennard, L., Klemetsdal, B., Aarbakke, J., Park-Hah, J. O., Iven, H., Schmiegelow, K., Branum, E., O’Brien, J., & Weinshilboum, R. (1997). Human thiopurine methyltransferase pharmacogenetics: gene sequence polymorphisms. Clinical Pharmacology and Therapeutics, 62, 60–73.PubMedCrossRef Otterness, D., Szumlanski, C., Lennard, L., Klemetsdal, B., Aarbakke, J., Park-Hah, J. O., Iven, H., Schmiegelow, K., Branum, E., O’Brien, J., & Weinshilboum, R. (1997). Human thiopurine methyltransferase pharmacogenetics: gene sequence polymorphisms. Clinical Pharmacology and Therapeutics, 62, 60–73.PubMedCrossRef
9.
Zurück zum Zitat Yates, C. R., Krynetski, E. Y., Loennechen, T., Fessing, M. Y., Tai, H. L., Pui, C. H., Relling, M. V., & Evans, W. E. (1997). Molecular diagnosis of thiopurine S-methyltransferase deficiency: genetic basis for azathioprine and mercaptopurine intolerance. Annals of Internal Medicine, 126, 608–614.PubMed Yates, C. R., Krynetski, E. Y., Loennechen, T., Fessing, M. Y., Tai, H. L., Pui, C. H., Relling, M. V., & Evans, W. E. (1997). Molecular diagnosis of thiopurine S-methyltransferase deficiency: genetic basis for azathioprine and mercaptopurine intolerance. Annals of Internal Medicine, 126, 608–614.PubMed
10.
Zurück zum Zitat Evans, W. E., Hon, Y. Y., Bomgaars, L., Coutre, S., Holdsworth, M., Janco, R., Kalwinsky, D., Keller, F., Khatib, Z., Margolin, J., Murray, J., Quinn, J., Ravindranath, Y., Ritchey, K., Roberts, W., Rogers, Z. R., Schiff, D., Steuber, C., Tucci, F., Kornegay, N., Krynetski, E. Y., & Relling, M. V. (2001). Preponderance of thiopurine S-methyltransferase deficiency and heterozygosity among patients intolerant to mercaptopurine or azathioprine. Journal of Clinical Oncology, 19, 2293–2301.PubMed Evans, W. E., Hon, Y. Y., Bomgaars, L., Coutre, S., Holdsworth, M., Janco, R., Kalwinsky, D., Keller, F., Khatib, Z., Margolin, J., Murray, J., Quinn, J., Ravindranath, Y., Ritchey, K., Roberts, W., Rogers, Z. R., Schiff, D., Steuber, C., Tucci, F., Kornegay, N., Krynetski, E. Y., & Relling, M. V. (2001). Preponderance of thiopurine S-methyltransferase deficiency and heterozygosity among patients intolerant to mercaptopurine or azathioprine. Journal of Clinical Oncology, 19, 2293–2301.PubMed
11.
Zurück zum Zitat Schutz, E., Gummert, J., Mohr, F., & Oellerich, M. (1993). Azathioprine-induced myelosuppression in thiopurine methyltransferase deficient heart transplant recipient. Lancet, 341, 436.PubMedCrossRef Schutz, E., Gummert, J., Mohr, F., & Oellerich, M. (1993). Azathioprine-induced myelosuppression in thiopurine methyltransferase deficient heart transplant recipient. Lancet, 341, 436.PubMedCrossRef
12.
Zurück zum Zitat Wang, L., & Weinshilboum, R. (2006). Thiopurine S-methyltransferase pharmacogenetics: insights, challenges and future directions. Oncogene, 25, 1629–1638.PubMedCrossRef Wang, L., & Weinshilboum, R. (2006). Thiopurine S-methyltransferase pharmacogenetics: insights, challenges and future directions. Oncogene, 25, 1629–1638.PubMedCrossRef
13.
Zurück zum Zitat Haga, S. B., Thummel, K. E., & Burke, W. (2006). Adding pharmacogenetics information to drug labels: lessons learned. Pharmacogenet Genomics, 16, 847–854.PubMed Haga, S. B., Thummel, K. E., & Burke, W. (2006). Adding pharmacogenetics information to drug labels: lessons learned. Pharmacogenet Genomics, 16, 847–854.PubMed
14.
Zurück zum Zitat Dell’Acqua, G., Polishchuck, R., Fallon, J. T., & Gordon, JW. (1999). Cardiac resistance to adriamycin in transgenic mice expressing a rat alpha-cardiac myosin heavy chain/human multiple drug resistance 1 fusion gene. Human Gene Therapy, 10, 1269–1279.PubMedCrossRef Dell’Acqua, G., Polishchuck, R., Fallon, J. T., & Gordon, JW. (1999). Cardiac resistance to adriamycin in transgenic mice expressing a rat alpha-cardiac myosin heavy chain/human multiple drug resistance 1 fusion gene. Human Gene Therapy, 10, 1269–1279.PubMedCrossRef
15.
Zurück zum Zitat Olson, L. E., Bedja, D., Alvey, S. J., Cardounel, A. J., Gabrielson, K. L., & Reeves, R. H. (2003). Protection from doxorubicin-induced cardiac toxicity in mice with a null allele of carbonyl reductase 1. Cancer Research, 63, 6602–6606.PubMed Olson, L. E., Bedja, D., Alvey, S. J., Cardounel, A. J., Gabrielson, K. L., & Reeves, R. H. (2003). Protection from doxorubicin-induced cardiac toxicity in mice with a null allele of carbonyl reductase 1. Cancer Research, 63, 6602–6606.PubMed
16.
Zurück zum Zitat Forrest, G. L., Gonzalez, B., Tseng, W., Li, X., & Mann, J. (2000). Human carbonyl reductase overexpression in the heart advances the development of doxorubicin-induced cardiotoxicity in transgenic mice. Cancer Research, 60, 5158–5164.PubMed Forrest, G. L., Gonzalez, B., Tseng, W., Li, X., & Mann, J. (2000). Human carbonyl reductase overexpression in the heart advances the development of doxorubicin-induced cardiotoxicity in transgenic mice. Cancer Research, 60, 5158–5164.PubMed
17.
Zurück zum Zitat Paulides, M., Kremers, A., Stohr, W., Bielack, S., Jurgens, H., Treuner, J., Beck, J. D., & Langer, T. (2006). German Late Effects Working Group in the Society of Pediatric Oncology, Haematology (GPOH). Prospective longitudinal evaluation of doxorubicin-induced cardiomyopathy in sarcoma patients: a report of the late effects surveillance system (LESS). Pediatric Blood and Cancer, 46, 489–495.PubMedCrossRef Paulides, M., Kremers, A., Stohr, W., Bielack, S., Jurgens, H., Treuner, J., Beck, J. D., & Langer, T. (2006). German Late Effects Working Group in the Society of Pediatric Oncology, Haematology (GPOH). Prospective longitudinal evaluation of doxorubicin-induced cardiomyopathy in sarcoma patients: a report of the late effects surveillance system (LESS). Pediatric Blood and Cancer, 46, 489–495.PubMedCrossRef
18.
Zurück zum Zitat Henderson, I. C., Allegra, J. C., Woodcock, T., Wolff, S., Bryan, S., Cartwright, K., Dukart, G., & Henry, D. (1989). Randomized clinical trial comparing mitoxantrone with doxorubicin in previously treated patients with metastatic breast cancer. J Clin Oncol, 7, 560–571.PubMed Henderson, I. C., Allegra, J. C., Woodcock, T., Wolff, S., Bryan, S., Cartwright, K., Dukart, G., & Henry, D. (1989). Randomized clinical trial comparing mitoxantrone with doxorubicin in previously treated patients with metastatic breast cancer. J Clin Oncol, 7, 560–571.PubMed
19.
Zurück zum Zitat Aplenc, R., Blanco, J., Leiisenring, W., Davies, S., Relling, M., Robinson, L., Sklar, C., Stovall, M., & Bathia, S. (2006). Polymorphisms in candidate genes in patients with congestive heart failure (CHF) after childhood cancer: A report from the Childhood Cancer Survivor Study (CCSS). Journal of Clinical Oncology, 2418S, 9004A. Aplenc, R., Blanco, J., Leiisenring, W., Davies, S., Relling, M., Robinson, L., Sklar, C., Stovall, M., & Bathia, S. (2006). Polymorphisms in candidate genes in patients with congestive heart failure (CHF) after childhood cancer: A report from the Childhood Cancer Survivor Study (CCSS). Journal of Clinical Oncology, 2418S, 9004A.
20.
Zurück zum Zitat Wojnowski, L., Kulle, B., Schirmer, M., Schluter, G., Schmidt, A., Rosenberger, A., Vonhof, S., Bickeboller, H., Toliat, M. R., Suk, E. K., Tzvetkov, M., Kruger, A., Seifert, S., Kloess, M., Hahn, H., Loeffler, M., Nurnberg, P., Pfreundschuh, M., Trumper, L., Brockmoller, J., & Hasenfuss, G. (2005). NADPH oxidase and multidrug resistance protein genetic polymorphisms are associated with doxorubicin-induced cardiotoxicity. Circulation, 112, 3754–3762.PubMedCrossRef Wojnowski, L., Kulle, B., Schirmer, M., Schluter, G., Schmidt, A., Rosenberger, A., Vonhof, S., Bickeboller, H., Toliat, M. R., Suk, E. K., Tzvetkov, M., Kruger, A., Seifert, S., Kloess, M., Hahn, H., Loeffler, M., Nurnberg, P., Pfreundschuh, M., Trumper, L., Brockmoller, J., & Hasenfuss, G. (2005). NADPH oxidase and multidrug resistance protein genetic polymorphisms are associated with doxorubicin-induced cardiotoxicity. Circulation, 112, 3754–3762.PubMedCrossRef
21.
Zurück zum Zitat Heymes, C., Bendall, J. K., Ratajczak, P., Cave, A. C., Samuel, J. L., Hasenfuss, G., & Shah, A. M. (2003). Increased myocardial NADPH oxidase activity in human heart failure. Journal of the American College of Cardiology, 41, 2164–2171.PubMedCrossRef Heymes, C., Bendall, J. K., Ratajczak, P., Cave, A. C., Samuel, J. L., Hasenfuss, G., & Shah, A. M. (2003). Increased myocardial NADPH oxidase activity in human heart failure. Journal of the American College of Cardiology, 41, 2164–2171.PubMedCrossRef
22.
Zurück zum Zitat Soccio, M., Toniato, E., Evangelista, V., Carluccio, M., & De Caterina, R. (2005). Oxidative stress and cardiovascular risk: the role of vascular NADPH oxidase and its genetic variants. European Journal of Clinical Investigation, 35, 305–314.PubMedCrossRef Soccio, M., Toniato, E., Evangelista, V., Carluccio, M., & De Caterina, R. (2005). Oxidative stress and cardiovascular risk: the role of vascular NADPH oxidase and its genetic variants. European Journal of Clinical Investigation, 35, 305–314.PubMedCrossRef
23.
Zurück zum Zitat Deng, S., Kruger, A., Kleschyov, A. L., Kalinowski, L., Daiber, A., Wojnowski, L. (2007). Gp91phox-containing NADPH oxidase increases superoxide formation by doxorubicin and NADPH. Journal of Free Radical Biology and Medicine, 42, 466–473. Deng, S., Kruger, A., Kleschyov, A. L., Kalinowski, L., Daiber, A., Wojnowski, L. (2007). Gp91phox-containing NADPH oxidase increases superoxide formation by doxorubicin and NADPH. Journal of Free Radical Biology and Medicine, 42, 466–473.
24.
Zurück zum Zitat Bartoszek, A., & Wolf, C. R. (1992). Enhancement of doxorubicin toxicity following activation by NADPH cytochrome P450 reductase. Biochemical Pharmacology, 43, 1449–1457.PubMedCrossRef Bartoszek, A., & Wolf, C. R. (1992). Enhancement of doxorubicin toxicity following activation by NADPH cytochrome P450 reductase. Biochemical Pharmacology, 43, 1449–1457.PubMedCrossRef
25.
Zurück zum Zitat Vasquez-Vivar, J., Martasek, P., Hogg, N., Masters, B. S., Pritchard, K. A Jr, & Kalyanaraman, B. (1997). Endothelial nitric oxide synthase-dependent superoxide generation from adriamycin. Biochemistry, 36, 11293–11297.PubMedCrossRef Vasquez-Vivar, J., Martasek, P., Hogg, N., Masters, B. S., Pritchard, K. A Jr, & Kalyanaraman, B. (1997). Endothelial nitric oxide synthase-dependent superoxide generation from adriamycin. Biochemistry, 36, 11293–11297.PubMedCrossRef
26.
Zurück zum Zitat Doroshow, J. H. (1983). Anthracycline antibiotic-stimulated superoxide, hydrogen peroxide, and hydroxyl radical production by NADH dehydrogenase. Cancer Research, 43, 4543–4551.PubMed Doroshow, J. H. (1983). Anthracycline antibiotic-stimulated superoxide, hydrogen peroxide, and hydroxyl radical production by NADH dehydrogenase. Cancer Research, 43, 4543–4551.PubMed
27.
Zurück zum Zitat van Dalen, E. C., Caron, H. N., Dickinson, H. O., & Kremer, L. C. (2005). Cardioprotective interventions for cancer patients receiving anthracyclines. Cochrane Database of Systematic Reviews, 1, CD003917. van Dalen, E. C., Caron, H. N., Dickinson, H. O., & Kremer, L. C. (2005). Cardioprotective interventions for cancer patients receiving anthracyclines. Cochrane Database of Systematic Reviews, 1, CD003917.
28.
Zurück zum Zitat Cole, S. P., Bhardwaj, G., Gerlach, J. H., Mackie, J. E., Grant, C. E., Almquist, K. C., Stewart, A. J., Kurz, E. U., Duncan, A. M., & Deeley, R. G. (1992). Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science, 258, 1650–1654.PubMedCrossRef Cole, S. P., Bhardwaj, G., Gerlach, J. H., Mackie, J. E., Grant, C. E., Almquist, K. C., Stewart, A. J., Kurz, E. U., Duncan, A. M., & Deeley, R. G. (1992). Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science, 258, 1650–1654.PubMedCrossRef
29.
Zurück zum Zitat Cui, Y., Konig, J., Buchholz, J. K., Spring, H., Leier, I., & Keppler, D. (1999). Drug resistance and ATP-dependent conjugate transport mediated by the apical multidrug resistance protein, MRP2, permanently expressed in human and canine cells. Molecular Pharmacology, 55, 929–937.PubMed Cui, Y., Konig, J., Buchholz, J. K., Spring, H., Leier, I., & Keppler, D. (1999). Drug resistance and ATP-dependent conjugate transport mediated by the apical multidrug resistance protein, MRP2, permanently expressed in human and canine cells. Molecular Pharmacology, 55, 929–937.PubMed
30.
Zurück zum Zitat Flens, M. J., Zaman, G. J., van der Valk P., Izquierdo, M. A., Schroeijers, A. B., Scheffer, G. L., van der Groep, P., de Haas, M., Meijer, C. J., & Scheper, R. J. (1997). Tissue distribution of the multidrug resistance protein. The American Journal of Pathology, 148, 1237–1247. Flens, M. J., Zaman, G. J., van der Valk P., Izquierdo, M. A., Schroeijers, A. B., Scheffer, G. L., van der Groep, P., de Haas, M., Meijer, C. J., & Scheper, R. J. (1997). Tissue distribution of the multidrug resistance protein. The American Journal of Pathology, 148, 1237–1247.
31.
Zurück zum Zitat Wijnholds, J., Evers, R., van Leusden, M. R., Mol, C. A., Zaman, G. J., Mayer, U., Beijnen, J. H., van der Valk, M., Krimpenfort, P., & Borst, P. (1997). Increased sensitivity to anticancer drugs and decreased inflammatory response in mice lacking the multidrug resistance-associated protein. Nature Medicine, 3, 1275–1279.PubMedCrossRef Wijnholds, J., Evers, R., van Leusden, M. R., Mol, C. A., Zaman, G. J., Mayer, U., Beijnen, J. H., van der Valk, M., Krimpenfort, P., & Borst, P. (1997). Increased sensitivity to anticancer drugs and decreased inflammatory response in mice lacking the multidrug resistance-associated protein. Nature Medicine, 3, 1275–1279.PubMedCrossRef
32.
Zurück zum Zitat Rajagopal, A., & Simon, S. M. (2003). Subcellular localization and activity of multidrug resistance proteins. Molecular Biology of the Cell, 14, 3389–3399.PubMedCrossRef Rajagopal, A., & Simon, S. M. (2003). Subcellular localization and activity of multidrug resistance proteins. Molecular Biology of the Cell, 14, 3389–3399.PubMedCrossRef
33.
Zurück zum Zitat Hidemura, K., Zhao, Y. L., Ito, K., Nakao, A., Tatsumi, Y., Kanazawa, H., Takagi, K., Ohta, M., & Hasegawa, T. (2003). Shiga-like toxin II impairs hepatobiliary transport of doxorubicin in rats by down-regulation of hepatic P glycoprotein and multidrug resistance-associated protein Mrp2. Antimicrobial Agents and Chemotherapy, 47, 1636–1642.PubMedCrossRef Hidemura, K., Zhao, Y. L., Ito, K., Nakao, A., Tatsumi, Y., Kanazawa, H., Takagi, K., Ohta, M., & Hasegawa, T. (2003). Shiga-like toxin II impairs hepatobiliary transport of doxorubicin in rats by down-regulation of hepatic P glycoprotein and multidrug resistance-associated protein Mrp2. Antimicrobial Agents and Chemotherapy, 47, 1636–1642.PubMedCrossRef
34.
Zurück zum Zitat Jacquet, J. M., Bressolle, F., Galtier, M., Bourrier, M., Donadio, D., Jourdan, J., & Rossi, J. F. (1990). Doxorubicin and doxorubicinol: intra- and inter-individual variations of pharmacokinetic parameters. Cancer Chemotherapy and Pharmacology, 27, 219–225.PubMedCrossRef Jacquet, J. M., Bressolle, F., Galtier, M., Bourrier, M., Donadio, D., Jourdan, J., & Rossi, J. F. (1990). Doxorubicin and doxorubicinol: intra- and inter-individual variations of pharmacokinetic parameters. Cancer Chemotherapy and Pharmacology, 27, 219–225.PubMedCrossRef
35.
Zurück zum Zitat Piscitelli, S. C., Rodvold, K. A., Rushing, D. A., & Tewksbury, D. A. (1993). Pharmacokinetics and pharmacodynamics of doxorubicin in patients with small cell lung cancer. Clinical Pharmacology and Therapeutics, 53, 555–561.PubMedCrossRef Piscitelli, S. C., Rodvold, K. A., Rushing, D. A., & Tewksbury, D. A. (1993). Pharmacokinetics and pharmacodynamics of doxorubicin in patients with small cell lung cancer. Clinical Pharmacology and Therapeutics, 53, 555–561.PubMedCrossRef
36.
Zurück zum Zitat Yen, H. C., Oberley, T. D., Vichitbandha, S., Ho, Y. S., & St Clair, D. K. (1996). The protective role of manganese superoxide dismutase against adriamycin-induced acute cardiac toxicity in transgenic mice. The Journal of Clinical Investigation, 98, 1253–1260.PubMedCrossRef Yen, H. C., Oberley, T. D., Vichitbandha, S., Ho, Y. S., & St Clair, D. K. (1996). The protective role of manganese superoxide dismutase against adriamycin-induced acute cardiac toxicity in transgenic mice. The Journal of Clinical Investigation, 98, 1253–1260.PubMedCrossRef
37.
Zurück zum Zitat Kang, Y. J., Chen, Y., & Epstein, P. N. (1996). Suppression of doxorubicin cardiotoxicity by overexpression of catalase in the heart of transgenic mice. The Journal of Biological Chemistry, 271, 12610–12616.PubMedCrossRef Kang, Y. J., Chen, Y., & Epstein, P. N. (1996). Suppression of doxorubicin cardiotoxicity by overexpression of catalase in the heart of transgenic mice. The Journal of Biological Chemistry, 271, 12610–12616.PubMedCrossRef
38.
Zurück zum Zitat Badary, O. A., Awad, A. S., Abdel-Maksoud, S., & Hamada, F. M. (2004). Cardiac DT-diaphorase contributes to the detoxification system against doxorubicin-induced positive inotropic effects in guinea-pig isolated atria. Clinical and Experimental Pharmacology and Physiology, 31, 856–861.PubMedCrossRef Badary, O. A., Awad, A. S., Abdel-Maksoud, S., & Hamada, F. M. (2004). Cardiac DT-diaphorase contributes to the detoxification system against doxorubicin-induced positive inotropic effects in guinea-pig isolated atria. Clinical and Experimental Pharmacology and Physiology, 31, 856–861.PubMedCrossRef
39.
Zurück zum Zitat Gutierrez, P. L. (2000). The role of NADPH oxidoreductase (DT-Diaphorase) in the bioactivation of quinone-containing antitumor agents: a review. Free Radical Biology and Medicine, 29, 263–275.PubMedCrossRef Gutierrez, P. L. (2000). The role of NADPH oxidoreductase (DT-Diaphorase) in the bioactivation of quinone-containing antitumor agents: a review. Free Radical Biology and Medicine, 29, 263–275.PubMedCrossRef
40.
Zurück zum Zitat L’Ecuyer, T., Allebban, Z., Thomas, R., & Vander Heide, R. (2004). Glutathione S-transferase overexpression protects against anthracycline-induced H9C2 cell death. American Journal of Physiology. Heart and Circulatory Physiology, 286, H2057–2064.PubMedCrossRef L’Ecuyer, T., Allebban, Z., Thomas, R., & Vander Heide, R. (2004). Glutathione S-transferase overexpression protects against anthracycline-induced H9C2 cell death. American Journal of Physiology. Heart and Circulatory Physiology, 286, H2057–2064.PubMedCrossRef
41.
Zurück zum Zitat Harbottle, A., Daly, A. K., Atherton, K., & Campbell, F. C. (2001). Role of glutathione S-transferase P1, P-glycoprotein and multidrug resistance-associated protein 1 in acquired doxorubicin resistance. International Journal of Cancer, 92, 777–783.CrossRef Harbottle, A., Daly, A. K., Atherton, K., & Campbell, F. C. (2001). Role of glutathione S-transferase P1, P-glycoprotein and multidrug resistance-associated protein 1 in acquired doxorubicin resistance. International Journal of Cancer, 92, 777–783.CrossRef
42.
Zurück zum Zitat Wang, K., Ramji, S., Bhathena, A., Lee, C., & Riddick, D. S. (1999). Glutathione S-transferases in wild-type and doxorubicin-resistant MCF-7 human breast cancer cell lines. Xenobiotica, 29, 155–170.PubMedCrossRef Wang, K., Ramji, S., Bhathena, A., Lee, C., & Riddick, D. S. (1999). Glutathione S-transferases in wild-type and doxorubicin-resistant MCF-7 human breast cancer cell lines. Xenobiotica, 29, 155–170.PubMedCrossRef
43.
Zurück zum Zitat Gaudiano, G., Koch, T. H., Lo Bello, M., Nuccetelli, M., Ravagnan, G., Serafino, A., & Sinibaldi-Vallebona, P. (2000). Lack of glutathione conjugation to adriamycin in human breast cancer MCF-7/DOX cells. Inhibition of glutathione S-transferase p1–1 by glutathione conjugates from anthracyclines. Biochemical Pharmacology, 60, 1915–1923.PubMedCrossRef Gaudiano, G., Koch, T. H., Lo Bello, M., Nuccetelli, M., Ravagnan, G., Serafino, A., & Sinibaldi-Vallebona, P. (2000). Lack of glutathione conjugation to adriamycin in human breast cancer MCF-7/DOX cells. Inhibition of glutathione S-transferase p1–1 by glutathione conjugates from anthracyclines. Biochemical Pharmacology, 60, 1915–1923.PubMedCrossRef
44.
Zurück zum Zitat Herbert, A., Gerry, N. P., McQueen, M. B., Heid, I. M., Pfeufer, A., Illig, T., Wichmann, H. E., Meitinger, T., Hunter, D., Hu, F. B., Colditz, G., Hinney, A., Hebebrand, J., Koberwitz, K., Zhu, X., Cooper, R., Ardlie, K., Lyon, H., Hirschhorn, J. N., Laird, N. M., Lenburg, M. E., Lange, C., & Christman, M. F. (2006). A common genetic variant is associated with adult and childhood obesity. Science, 312, 279–283.PubMedCrossRef Herbert, A., Gerry, N. P., McQueen, M. B., Heid, I. M., Pfeufer, A., Illig, T., Wichmann, H. E., Meitinger, T., Hunter, D., Hu, F. B., Colditz, G., Hinney, A., Hebebrand, J., Koberwitz, K., Zhu, X., Cooper, R., Ardlie, K., Lyon, H., Hirschhorn, J. N., Laird, N. M., Lenburg, M. E., Lange, C., & Christman, M. F. (2006). A common genetic variant is associated with adult and childhood obesity. Science, 312, 279–283.PubMedCrossRef
45.
Zurück zum Zitat van Dalen, E. C., Michiels, E. M., Caron, H. N., & Kremer, L. C. (2006). Different anthracycline derivates for reducing cardiotoxicity in cancer patients. Cochrane Database of Systematic Reviews, 4, CD005006. van Dalen, E. C., Michiels, E. M., Caron, H. N., & Kremer, L. C. (2006). Different anthracycline derivates for reducing cardiotoxicity in cancer patients. Cochrane Database of Systematic Reviews, 4, CD005006.
46.
Zurück zum Zitat Moghrabi, A., Levy, D. E., Asselin, B., Barr, R., Clavell, L., Hurwitz, C., Samson, Y., Schorin, M., Dalton, V. K., Lipshultz, S. E., Neuberg, D. S., Gelber, R. D., Cohen, H. J., Sallan, S. E., & Silverman, L. B. (2007). Results of the Dana-Farber Cancer Institute ALL Consortium Protocol 95-01 for children with acute lymphoblastic leukemia. Blood, 109, 896–904.PubMedCrossRef Moghrabi, A., Levy, D. E., Asselin, B., Barr, R., Clavell, L., Hurwitz, C., Samson, Y., Schorin, M., Dalton, V. K., Lipshultz, S. E., Neuberg, D. S., Gelber, R. D., Cohen, H. J., Sallan, S. E., & Silverman, L. B. (2007). Results of the Dana-Farber Cancer Institute ALL Consortium Protocol 95-01 for children with acute lymphoblastic leukemia. Blood, 109, 896–904.PubMedCrossRef
47.
Zurück zum Zitat Marty, M., Espie, M., Llombart, A., Monnier, A., Rapoport, B. L., & Stahalova, V. (2006). Dexrazoxane Study Group. Multicenter randomized phase III study of the cardioprotective effect of dexrazoxane (Cardioxane) in advanced/metastatic breast cancer patients treated with anthracycline-based chemotherapy. Annals of Oncology, 17, 614–622.PubMedCrossRef Marty, M., Espie, M., Llombart, A., Monnier, A., Rapoport, B. L., & Stahalova, V. (2006). Dexrazoxane Study Group. Multicenter randomized phase III study of the cardioprotective effect of dexrazoxane (Cardioxane) in advanced/metastatic breast cancer patients treated with anthracycline-based chemotherapy. Annals of Oncology, 17, 614–622.PubMedCrossRef
Metadaten
Titel
Genotyping the risk of anthracycline-induced cardiotoxicity
verfasst von
Shiwei Deng
Leszek Wojnowski
Publikationsdatum
01.06.2007
Verlag
Humana Press Inc
Erschienen in
Cardiovascular Toxicology / Ausgabe 2/2007
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-007-0024-2

Weitere Artikel der Ausgabe 2/2007

Cardiovascular Toxicology 2/2007 Zur Ausgabe