Skip to main content
Erschienen in: Cardiovascular Toxicology 4/2013

01.12.2013

Inhibitory Effect of Gallic Acid on Advanced Glycation End Products Induced Up-Regulation of Inflammatory Cytokines and Matrix Proteins in H9C2 (2-1) Cells

verfasst von: Subramanian Umadevi, Venkatachalam Gopi, Elangovan Vellaichamy

Erschienen in: Cardiovascular Toxicology | Ausgabe 4/2013

Einloggen, um Zugang zu erhalten

Abstract

Accumulating evidences have demonstrated that increased production of advanced glycation end products (AGEs) contributes to etiology of cardiac complications in diabetes. However, the underlying mechanism of AGE-induced effects is not well understood. Recent studies evince the beneficial role of phytochemicals in reducing the risk of cardiovascular morbidity and mortality in patients with cardiovascular diseases and diabetes mellitus. Hence, in the present study, the cardio protective role of gallic acid (GA) against in vitro synthesized AGE in H9C2 (2-1) cells was elucidated. H9C2 (2-1) cells exposed to AGE (100 μg/ml) with/without GA pre-treatment (10 μM) and the release of reactive oxygen species (ROS), expression of oxidative stress markers, matrix proteins, and cytokines were analyzed. Cells exposed to AGE demonstrate a significant increase in ROS release with augmented expression (P < 0.01) of receptor for AGE (RAGE) and NOX-p47 phox (P < 0.001) proteins compared to untreated control cells. Moreover, an increased expression of matrix proteins and cytokines such as TNF-α (P < 0.01), TGF-β (P < 0.001), and iNOS (P < 0.001) was also found in AGE-treated cells, whereas, cells pre-treated with N-acetyl cysteine or RAGE neutralizing antibody notably (P < 0.01) impede the ROS release. Further, cells pre-treated with GA significantly attenuated the expression of NOX, RAGE, and other cytokines. In addition, the abnormal expressions of matrix proteins were also decreased especially in GA-treated cells. Thus, the results of the present study demonstrated the deleterious effect of AGEs that directly induce oxidative stress and matrix derangement and, on the other way, the “pleiotropic” activity of GA in reducing the risk of AGE-mediated cellular complications.
Literatur
1.
Zurück zum Zitat Thornalley, J. P. (1996). Advanced glycation and the development of diabetic complications: Unifying the involvement of glucose, methylglyoxal and oxidative stress. Endocrinology and Metabolism-London, 3, 149–166. Thornalley, J. P. (1996). Advanced glycation and the development of diabetic complications: Unifying the involvement of glucose, methylglyoxal and oxidative stress. Endocrinology and Metabolism-London, 3, 149–166.
2.
Zurück zum Zitat Singh, R., Barden, A., Mori, T., & Beilin, L. (2001). Advanced glycation end-products: A review. Diabetologia, 44, 129–146.PubMedCrossRef Singh, R., Barden, A., Mori, T., & Beilin, L. (2001). Advanced glycation end-products: A review. Diabetologia, 44, 129–146.PubMedCrossRef
3.
Zurück zum Zitat Aronson, D. (2003). Cross-linking of glycated collagen in the pathogenesis of arterial and myocardial stiffening of aging and diabetes. Journal of Hypertension, 21, 3–12.PubMedCrossRef Aronson, D. (2003). Cross-linking of glycated collagen in the pathogenesis of arterial and myocardial stiffening of aging and diabetes. Journal of Hypertension, 21, 3–12.PubMedCrossRef
4.
Zurück zum Zitat Thallas-Bonke, V., Lindschau, C., Rizkalla, B., Bach, L. A., Boner, G., Meier, M., et al. (2004). Attenuation of extracellular matrix accumulation in diabetic nephropathy by the advanced glycation end product cross-link breaker ALT-711 via a protein kinase C-alpha-dependent pathway. Diabetes, 53, 2921–2930.PubMedCrossRef Thallas-Bonke, V., Lindschau, C., Rizkalla, B., Bach, L. A., Boner, G., Meier, M., et al. (2004). Attenuation of extracellular matrix accumulation in diabetic nephropathy by the advanced glycation end product cross-link breaker ALT-711 via a protein kinase C-alpha-dependent pathway. Diabetes, 53, 2921–2930.PubMedCrossRef
5.
Zurück zum Zitat Corman, B., Duriez, M., Poitevin, P., Heudes, D., Bruneval, P., Tedgui, A., et al. (1998). Aminoguanidine prevents age-related arterial stiffening and cardiac hypertrophy. Proceedings of the National Academy of Sciences of the United States of America, 95, 1301–1306.PubMedCrossRef Corman, B., Duriez, M., Poitevin, P., Heudes, D., Bruneval, P., Tedgui, A., et al. (1998). Aminoguanidine prevents age-related arterial stiffening and cardiac hypertrophy. Proceedings of the National Academy of Sciences of the United States of America, 95, 1301–1306.PubMedCrossRef
6.
Zurück zum Zitat Hartog, J. W., Voors, A. A., Bakker, S. J., Smit, A. J., & van Veldhuisen, D. J. (2007). Advanced glycation end-products (AGEs) and heart failure: Pathophysiology and clinical implications. European Journal of Heart Failure, 9, 1146–1155.PubMedCrossRef Hartog, J. W., Voors, A. A., Bakker, S. J., Smit, A. J., & van Veldhuisen, D. J. (2007). Advanced glycation end-products (AGEs) and heart failure: Pathophysiology and clinical implications. European Journal of Heart Failure, 9, 1146–1155.PubMedCrossRef
7.
Zurück zum Zitat Huang, J. S., Guh, J. Y., Hung, W. C., Yang, M. L., Lai, Y. H., Chen, H. C., et al. (1999). Role of the Janus kinase (JAK)/signal transducters and activators of transcription (STAT) cascade in advanced glycation end-product-induced cellular mitogenesis in NRK-49F cells. The Biochemical Journal, 342(Pt 1), 231–238.PubMedCrossRef Huang, J. S., Guh, J. Y., Hung, W. C., Yang, M. L., Lai, Y. H., Chen, H. C., et al. (1999). Role of the Janus kinase (JAK)/signal transducters and activators of transcription (STAT) cascade in advanced glycation end-product-induced cellular mitogenesis in NRK-49F cells. The Biochemical Journal, 342(Pt 1), 231–238.PubMedCrossRef
8.
Zurück zum Zitat Lohwasser, C., Neureiter, D., Popov, Y., Bauer, M., & Schuppan, D. (2009). Role of the receptor for advanced glycation end products in hepatic fibrosis. World Journal of Gastroenterology, 15, 5789–5798.PubMedCrossRef Lohwasser, C., Neureiter, D., Popov, Y., Bauer, M., & Schuppan, D. (2009). Role of the receptor for advanced glycation end products in hepatic fibrosis. World Journal of Gastroenterology, 15, 5789–5798.PubMedCrossRef
9.
Zurück zum Zitat Bierhaus, A., Chevion, S., Chevion, M., Hofmann, M., Quehenberger, P., Illmer, T., et al. (1997). Advanced glycation end product-induced activation of NF-kappaB is suppressed by alpha-lipoic acid in cultured endothelial cells. Diabetes, 46, 1481–1490.PubMedCrossRef Bierhaus, A., Chevion, S., Chevion, M., Hofmann, M., Quehenberger, P., Illmer, T., et al. (1997). Advanced glycation end product-induced activation of NF-kappaB is suppressed by alpha-lipoic acid in cultured endothelial cells. Diabetes, 46, 1481–1490.PubMedCrossRef
10.
Zurück zum Zitat Schmidt, A. M., Mora, R., Cao, R., Yan, S. D., Brett, J., Ramakrishnan, R., et al. (1994). The endothelial cell binding site for advanced glycation end products consists of a complex: An integral membrane protein and a lactoferrin-like polypeptide. The Journal of Biological Chemistry, 269, 9882–9888.PubMed Schmidt, A. M., Mora, R., Cao, R., Yan, S. D., Brett, J., Ramakrishnan, R., et al. (1994). The endothelial cell binding site for advanced glycation end products consists of a complex: An integral membrane protein and a lactoferrin-like polypeptide. The Journal of Biological Chemistry, 269, 9882–9888.PubMed
11.
Zurück zum Zitat Lander, H. M., Tauras, J. M., Ogiste, J. S., Hori, O., Moss, R. A., & Schmidt, A. M. (1997). Activation of the receptor for advanced glycation end products triggers a p21(ras)-dependent mitogen-activated protein kinase pathway regulated by oxidant stress. The Journal of Biological Chemistry, 272, 17810–17814.PubMedCrossRef Lander, H. M., Tauras, J. M., Ogiste, J. S., Hori, O., Moss, R. A., & Schmidt, A. M. (1997). Activation of the receptor for advanced glycation end products triggers a p21(ras)-dependent mitogen-activated protein kinase pathway regulated by oxidant stress. The Journal of Biological Chemistry, 272, 17810–17814.PubMedCrossRef
12.
Zurück zum Zitat Stern, D., Yan, S. D., Yan, S. F., & Schmidt, A. M. (2002). Receptor for advanced glycation endproducts: A multiligand receptor magnifying cell stress in diverse pathologic settings. Advanced Drug Delivery Reviews, 54, 1615–1625.PubMedCrossRef Stern, D., Yan, S. D., Yan, S. F., & Schmidt, A. M. (2002). Receptor for advanced glycation endproducts: A multiligand receptor magnifying cell stress in diverse pathologic settings. Advanced Drug Delivery Reviews, 54, 1615–1625.PubMedCrossRef
13.
Zurück zum Zitat Jagan, S., Ramakrishnan, G., Anandakumar, P., Kamaraj, S., & Devaki, T. (2008). Antiproliferative potential of gallic acid against diethylnitrosamine-induced rat hepatocellular carcinoma. Molecular and Cellular Biochemistry, 319, 51–59.PubMedCrossRef Jagan, S., Ramakrishnan, G., Anandakumar, P., Kamaraj, S., & Devaki, T. (2008). Antiproliferative potential of gallic acid against diethylnitrosamine-induced rat hepatocellular carcinoma. Molecular and Cellular Biochemistry, 319, 51–59.PubMedCrossRef
14.
Zurück zum Zitat Pal, C., Bindu, S., Dey, S., Alam, A., Goyal, M., Iqbal, M. S., et al. (2010). Gallic acid prevents nonsteroidal anti-inflammatory drug-induced gastropathy in rat by blocking oxidative stress and apoptosis. Free Radical Biology and Medicine, 49, 258–267.PubMedCrossRef Pal, C., Bindu, S., Dey, S., Alam, A., Goyal, M., Iqbal, M. S., et al. (2010). Gallic acid prevents nonsteroidal anti-inflammatory drug-induced gastropathy in rat by blocking oxidative stress and apoptosis. Free Radical Biology and Medicine, 49, 258–267.PubMedCrossRef
15.
Zurück zum Zitat Priscilla, D. H., & Prince, P. S. (2009). Cardioprotective effect of gallic acid on cardiac troponin-T, cardiac marker enzymes, lipid peroxidation products and antioxidants in experimentally induced myocardial infarction in Wistar rats. Chemico-Biological Interactions, 179, 118–124.PubMedCrossRef Priscilla, D. H., & Prince, P. S. (2009). Cardioprotective effect of gallic acid on cardiac troponin-T, cardiac marker enzymes, lipid peroxidation products and antioxidants in experimentally induced myocardial infarction in Wistar rats. Chemico-Biological Interactions, 179, 118–124.PubMedCrossRef
16.
Zurück zum Zitat Umadevi, S., Gopi, V., Simna, S. P., Parthasarathy, A., Yousuf, S. M., & Elangovan, V. (2012). Studies on the cardio protective role of gallic acid against AGE-induced cell proliferation and oxidative stress in H9C2 (2-1) cells. Cardiovascular Toxicology, 12, 304–311.PubMedCrossRef Umadevi, S., Gopi, V., Simna, S. P., Parthasarathy, A., Yousuf, S. M., & Elangovan, V. (2012). Studies on the cardio protective role of gallic acid against AGE-induced cell proliferation and oxidative stress in H9C2 (2-1) cells. Cardiovascular Toxicology, 12, 304–311.PubMedCrossRef
17.
Zurück zum Zitat Andreea, S. I., Marieta, C., & Anca, D. (2008). AGEs and glucose levels modulate type I and III procollagen mRNA synthesis in dermal fibroblasts cells culture. Experimental Diabetes Research, 2008, 473603.PubMedCrossRef Andreea, S. I., Marieta, C., & Anca, D. (2008). AGEs and glucose levels modulate type I and III procollagen mRNA synthesis in dermal fibroblasts cells culture. Experimental Diabetes Research, 2008, 473603.PubMedCrossRef
18.
Zurück zum Zitat Stathopoulou, K., Beis, I., & Gaitanaki, C. (2008). MAPK signaling pathways are needed for survival of H9c2 cardiac myoblasts under extracellular alkalosis. American Journal of Physiology, Heart and Circulatory Physiology, 295, H1319–H1329.CrossRef Stathopoulou, K., Beis, I., & Gaitanaki, C. (2008). MAPK signaling pathways are needed for survival of H9c2 cardiac myoblasts under extracellular alkalosis. American Journal of Physiology, Heart and Circulatory Physiology, 295, H1319–H1329.CrossRef
19.
Zurück zum Zitat Lee, H. B., Yu, M. R., Yang, Y., Jiang, Z., & Ha, H. (2003). Reactive oxygen species-regulated signaling pathways in diabetic nephropathy. Journal of the American Society of Nephrology, 14, S241–S245.PubMedCrossRef Lee, H. B., Yu, M. R., Yang, Y., Jiang, Z., & Ha, H. (2003). Reactive oxygen species-regulated signaling pathways in diabetic nephropathy. Journal of the American Society of Nephrology, 14, S241–S245.PubMedCrossRef
20.
Zurück zum Zitat Pamplona, R. (2008). Membrane phospholipids, lipoxidative damage and molecular integrity: a causal role in aging and longevity. Biochimica et Biophysica Acta, 1777, 1249–1262.PubMedCrossRef Pamplona, R. (2008). Membrane phospholipids, lipoxidative damage and molecular integrity: a causal role in aging and longevity. Biochimica et Biophysica Acta, 1777, 1249–1262.PubMedCrossRef
21.
Zurück zum Zitat Ambati, J., Ambati, B. K., Yoo, S. H., Ianchulev, S., & Adamis, A. P. (2003). Age-related macular degeneration: Etiology, pathogenesis, and therapeutic strategies. Survey of Ophthalmology, 48, 257–293.PubMedCrossRef Ambati, J., Ambati, B. K., Yoo, S. H., Ianchulev, S., & Adamis, A. P. (2003). Age-related macular degeneration: Etiology, pathogenesis, and therapeutic strategies. Survey of Ophthalmology, 48, 257–293.PubMedCrossRef
22.
Zurück zum Zitat Lee, S. J., & Lee, K. W. (2007). Protective effect of (-)-epigallocatechin gallate against advanced glycation endproducts-induced injury in neuronal cells. Biological and Pharmaceutical Bulletin, 30, 1369–1373.PubMedCrossRef Lee, S. J., & Lee, K. W. (2007). Protective effect of (-)-epigallocatechin gallate against advanced glycation endproducts-induced injury in neuronal cells. Biological and Pharmaceutical Bulletin, 30, 1369–1373.PubMedCrossRef
23.
Zurück zum Zitat Nakagawa, T., Yokozawa, T., Terasawa, K., Shu, S., & Juneja, L. R. (2002). Protective activity of green tea against free radical- and glucose-mediated protein damage. Journal of Agricultural and Food Chemistry, 50, 2418–2422.PubMedCrossRef Nakagawa, T., Yokozawa, T., Terasawa, K., Shu, S., & Juneja, L. R. (2002). Protective activity of green tea against free radical- and glucose-mediated protein damage. Journal of Agricultural and Food Chemistry, 50, 2418–2422.PubMedCrossRef
24.
Zurück zum Zitat Peters, C. A., Freeman, M. R., Fernandez, C. A., Shepard, J., Wiederschain, D. G., & Moses, M. A. (1997). Dysregulated proteolytic balance as the basis of excess extracellular matrix in fibrotic disease. The American Journal of Physiology, 272, R1960–R1965.PubMed Peters, C. A., Freeman, M. R., Fernandez, C. A., Shepard, J., Wiederschain, D. G., & Moses, M. A. (1997). Dysregulated proteolytic balance as the basis of excess extracellular matrix in fibrotic disease. The American Journal of Physiology, 272, R1960–R1965.PubMed
25.
Zurück zum Zitat Steed, M. M., Tyagi, N., Sen, U., Schuschke, D. A., Joshua, I. G., & Tyagi, S. C. (2010). Functional consequences of the collagen/elastin switch in vascular remodeling in hyperhomocysteinemic wild-type, eNOS-/-, and iNOS-/- mice. American journal of physiology, Lung Cellular and Molecular Physiology, 299, L301–L311.CrossRef Steed, M. M., Tyagi, N., Sen, U., Schuschke, D. A., Joshua, I. G., & Tyagi, S. C. (2010). Functional consequences of the collagen/elastin switch in vascular remodeling in hyperhomocysteinemic wild-type, eNOS-/-, and iNOS-/- mice. American journal of physiology, Lung Cellular and Molecular Physiology, 299, L301–L311.CrossRef
26.
Zurück zum Zitat Camelliti, P., Borg, T. K., & Kohl, P. (2005). Structural and functional characterisation of cardiac fibroblasts. Cardiovascular Research, 65, 40–51.PubMedCrossRef Camelliti, P., Borg, T. K., & Kohl, P. (2005). Structural and functional characterisation of cardiac fibroblasts. Cardiovascular Research, 65, 40–51.PubMedCrossRef
27.
Zurück zum Zitat Death, A. K., Fisher, E. J., McGrath, K. C., & Yue, D. K. (2003). High glucose alters matrix metalloproteinase expression in two key vascular cells: Potential impact on atherosclerosis in diabetes. Atherosclerosis, 168, 263–269.PubMedCrossRef Death, A. K., Fisher, E. J., McGrath, K. C., & Yue, D. K. (2003). High glucose alters matrix metalloproteinase expression in two key vascular cells: Potential impact on atherosclerosis in diabetes. Atherosclerosis, 168, 263–269.PubMedCrossRef
28.
Zurück zum Zitat Tarallo, S., Beltramo, E., Berrone, E., Dentelli, P., & Porta, M. (2010). Effects of high glucose and thiamine on the balance between matrix metalloproteinases and their tissue inhibitors in vascular cells. Acta Diabetologica, 47, 105–111.PubMedCrossRef Tarallo, S., Beltramo, E., Berrone, E., Dentelli, P., & Porta, M. (2010). Effects of high glucose and thiamine on the balance between matrix metalloproteinases and their tissue inhibitors in vascular cells. Acta Diabetologica, 47, 105–111.PubMedCrossRef
29.
Zurück zum Zitat Thallas-Bonke, V., Thorpe, S. R., Coughlan, M. T., Fukami, K., Yap, F. Y., Sourris, K. C., et al. (2008). Inhibition of NADPH oxidase prevents advanced glycation end product-mediated damage in diabetic nephropathy through a protein kinase C-alpha-dependent pathway. Diabetes, 57, 460–469.PubMedCrossRef Thallas-Bonke, V., Thorpe, S. R., Coughlan, M. T., Fukami, K., Yap, F. Y., Sourris, K. C., et al. (2008). Inhibition of NADPH oxidase prevents advanced glycation end product-mediated damage in diabetic nephropathy through a protein kinase C-alpha-dependent pathway. Diabetes, 57, 460–469.PubMedCrossRef
30.
Zurück zum Zitat Li, J. H., Huang, X. R., Zhu, H. J., Johnson, R., & Lan, H. Y. (2003). Role of TGF-beta signaling in extracellular matrix production under high glucose conditions. Kidney International, 63, 2010–2019.PubMedCrossRef Li, J. H., Huang, X. R., Zhu, H. J., Johnson, R., & Lan, H. Y. (2003). Role of TGF-beta signaling in extracellular matrix production under high glucose conditions. Kidney International, 63, 2010–2019.PubMedCrossRef
31.
Zurück zum Zitat Ihn, H. (2002). Pathogenesis of fibrosis: Role of TGF-beta and CTGF. Current Opinion in Rheumatology, 14, 681–685.PubMedCrossRef Ihn, H. (2002). Pathogenesis of fibrosis: Role of TGF-beta and CTGF. Current Opinion in Rheumatology, 14, 681–685.PubMedCrossRef
32.
Zurück zum Zitat Khan, R., & Sheppard, R. (2006). Fibrosis in heart disease: Understanding the role of transforming growth factor-beta in cardiomyopathy, valvular disease and arrhythmia. Immunology, 118, 10–24.PubMedCrossRef Khan, R., & Sheppard, R. (2006). Fibrosis in heart disease: Understanding the role of transforming growth factor-beta in cardiomyopathy, valvular disease and arrhythmia. Immunology, 118, 10–24.PubMedCrossRef
33.
Zurück zum Zitat Lassegue, B., & Clempus, R. E. (2003). Vascular NAD(P)H oxidases: Specific features, expression, and regulation. American Journal of Physiology, Regulatory, Integrative and Comparative Physiology, 285, R277–R297. Lassegue, B., & Clempus, R. E. (2003). Vascular NAD(P)H oxidases: Specific features, expression, and regulation. American Journal of Physiology, Regulatory, Integrative and Comparative Physiology, 285, R277–R297.
34.
Zurück zum Zitat Sangle, G. V., Zhao, R., Mizuno, T. M., & Shen, G. X. (2010). Involvement of RAGE, NADPH oxidase, and Ras/Raf-1 pathway in glycated LDL-induced expression of heat shock factor-1 and plasminogen activator inhibitor-1 in vascular endothelial cells. Endocrinology, 151, 4455–4466.PubMedCrossRef Sangle, G. V., Zhao, R., Mizuno, T. M., & Shen, G. X. (2010). Involvement of RAGE, NADPH oxidase, and Ras/Raf-1 pathway in glycated LDL-induced expression of heat shock factor-1 and plasminogen activator inhibitor-1 in vascular endothelial cells. Endocrinology, 151, 4455–4466.PubMedCrossRef
35.
Zurück zum Zitat Bedard, K., & Krause, K. H. (2007). The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology. Physiological Reviews, 87, 245–313.PubMedCrossRef Bedard, K., & Krause, K. H. (2007). The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology. Physiological Reviews, 87, 245–313.PubMedCrossRef
36.
Zurück zum Zitat San Martin, A., Foncea, R., Laurindo, F. R., Ebensperger, R., Griendling, K. K., & Leighton, F. (2007). Nox1-based NADPH oxidase-derived superoxide is required for VSMC activation by advanced glycation end-products. Free Radical Biology and Medicine, 42, 1671–1679.PubMedCrossRef San Martin, A., Foncea, R., Laurindo, F. R., Ebensperger, R., Griendling, K. K., & Leighton, F. (2007). Nox1-based NADPH oxidase-derived superoxide is required for VSMC activation by advanced glycation end-products. Free Radical Biology and Medicine, 42, 1671–1679.PubMedCrossRef
37.
Zurück zum Zitat Zafari, A. M., Ushio-Fukai, M., Akers, M., Yin, Q., Shah, A., Harrison, D. G., et al. (1998). Role of NADH/NADPH oxidase-derived H2O2 in angiotensin II-induced vascular hypertrophy. Hypertension, 32, 488–495.PubMedCrossRef Zafari, A. M., Ushio-Fukai, M., Akers, M., Yin, Q., Shah, A., Harrison, D. G., et al. (1998). Role of NADH/NADPH oxidase-derived H2O2 in angiotensin II-induced vascular hypertrophy. Hypertension, 32, 488–495.PubMedCrossRef
38.
Zurück zum Zitat Pacher, P., Beckman, J. S., & Liaudet, L. (2007). Nitric oxide and peroxynitrite in health and disease. Physiological Reviews, 87, 315–424.PubMedCrossRef Pacher, P., Beckman, J. S., & Liaudet, L. (2007). Nitric oxide and peroxynitrite in health and disease. Physiological Reviews, 87, 315–424.PubMedCrossRef
39.
Zurück zum Zitat Ricciardolo, F. L., Sterk, P. J., Gaston, B., & Folkerts, G. (2004). Nitric oxide in health and disease of the respiratory system. Physiological Reviews, 84, 731–765.PubMedCrossRef Ricciardolo, F. L., Sterk, P. J., Gaston, B., & Folkerts, G. (2004). Nitric oxide in health and disease of the respiratory system. Physiological Reviews, 84, 731–765.PubMedCrossRef
40.
Zurück zum Zitat Gao, X., Belmadani, S., Picchi, A., Xu, X., Potter, B. J., Tewari-Singh, N., et al. (2007). Tumor necrosis factor-alpha induces endothelial dysfunction in Lepr(db) mice. Circulation, 115, 245–254.PubMedCrossRef Gao, X., Belmadani, S., Picchi, A., Xu, X., Potter, B. J., Tewari-Singh, N., et al. (2007). Tumor necrosis factor-alpha induces endothelial dysfunction in Lepr(db) mice. Circulation, 115, 245–254.PubMedCrossRef
41.
Zurück zum Zitat Csiszar, A., & Ungvari, Z. (2008). Endothelial dysfunction and vascular inflammation in type 2 diabetes: Interaction of AGE/RAGE and TNF-alpha signaling. American Journal of Physiology, Heart and Circulatory Physiology, 295, H475–H476.CrossRef Csiszar, A., & Ungvari, Z. (2008). Endothelial dysfunction and vascular inflammation in type 2 diabetes: Interaction of AGE/RAGE and TNF-alpha signaling. American Journal of Physiology, Heart and Circulatory Physiology, 295, H475–H476.CrossRef
42.
Zurück zum Zitat Mamputu, J. C., & Renier, G. (2004). Advanced glycation end-products increase monocyte adhesion to retinal endothelial cells through vascular endothelial growth factor-induced ICAM-1 expression: Inhibitory effect of antioxidants. Journal of Leukocyte Biology, 75, 1062–1069.PubMedCrossRef Mamputu, J. C., & Renier, G. (2004). Advanced glycation end-products increase monocyte adhesion to retinal endothelial cells through vascular endothelial growth factor-induced ICAM-1 expression: Inhibitory effect of antioxidants. Journal of Leukocyte Biology, 75, 1062–1069.PubMedCrossRef
43.
Zurück zum Zitat Brownlee, M. (1995). Advanced protein glycosylation in diabetes and aging. Annual Review of Medicine, 46, 223–234.PubMedCrossRef Brownlee, M. (1995). Advanced protein glycosylation in diabetes and aging. Annual Review of Medicine, 46, 223–234.PubMedCrossRef
44.
Zurück zum Zitat Brownlee, M., Cerami, A., & Vlassara, H. (1988). Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. The New England journal of medicine, 318, 1315–1321.PubMedCrossRef Brownlee, M., Cerami, A., & Vlassara, H. (1988). Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. The New England journal of medicine, 318, 1315–1321.PubMedCrossRef
45.
Zurück zum Zitat Park, S., Yoon, S. J., Tae, H. J., & Shim, C. Y. (2011). RAGE and cardiovascular disease. Frontiers in Bioscience: A Journal and Virtual Library, 16, 486–497.CrossRef Park, S., Yoon, S. J., Tae, H. J., & Shim, C. Y. (2011). RAGE and cardiovascular disease. Frontiers in Bioscience: A Journal and Virtual Library, 16, 486–497.CrossRef
46.
Zurück zum Zitat Forbes, J. M., Coughlan, M. T., & Cooper, M. E. (2008). Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes, 57, 1446–1454.PubMedCrossRef Forbes, J. M., Coughlan, M. T., & Cooper, M. E. (2008). Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes, 57, 1446–1454.PubMedCrossRef
47.
Zurück zum Zitat Brasier, A. R. (2010). The nuclear factor-kappaB-interleukin-6 signalling pathway mediating vascular inflammation. Cardiovascular Research, 86, 211–218.PubMedCrossRef Brasier, A. R. (2010). The nuclear factor-kappaB-interleukin-6 signalling pathway mediating vascular inflammation. Cardiovascular Research, 86, 211–218.PubMedCrossRef
48.
Zurück zum Zitat Frier, B. C., Noble, E. G., & Locke, M. (2008). Diabetes-induced atrophy is associated with a muscle-specific alteration in NF-kappaB activation and expression. Cell Stress and Chaperones, 13, 287–296.PubMedCrossRef Frier, B. C., Noble, E. G., & Locke, M. (2008). Diabetes-induced atrophy is associated with a muscle-specific alteration in NF-kappaB activation and expression. Cell Stress and Chaperones, 13, 287–296.PubMedCrossRef
49.
Zurück zum Zitat Van der Heiden, K., Cuhlmann, S., le Luong, A., Zakkar, M., & Evans, P. C. (2010). Role of nuclear factor kappaB in cardiovascular health and disease. Clinical Science, 118, 593–605. (London, England: 1979).PubMedCrossRef Van der Heiden, K., Cuhlmann, S., le Luong, A., Zakkar, M., & Evans, P. C. (2010). Role of nuclear factor kappaB in cardiovascular health and disease. Clinical Science, 118, 593–605. (London, England: 1979).PubMedCrossRef
50.
Zurück zum Zitat Evans, J. L., Goldfine, I. D., Maddux, B. A., & Grodsky, G. M. (2002). Oxidative stress and stress-activated signaling pathways: A unifying hypothesis of type 2 diabetes. Endocrine Reviews, 23, 599–622.PubMedCrossRef Evans, J. L., Goldfine, I. D., Maddux, B. A., & Grodsky, G. M. (2002). Oxidative stress and stress-activated signaling pathways: A unifying hypothesis of type 2 diabetes. Endocrine Reviews, 23, 599–622.PubMedCrossRef
51.
Zurück zum Zitat Zhang, W., & Liu, H. T. (2002). MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Research, 12, 9–18.PubMedCrossRef Zhang, W., & Liu, H. T. (2002). MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Research, 12, 9–18.PubMedCrossRef
52.
Zurück zum Zitat Roux, P. P., & Blenis, J. (2004). ERK and p38 MAPK-activated protein kinases: A family of protein kinases with diverse biological functions. Microbiology and Molecular Biology Reviews, 68, 320–344.PubMedCrossRef Roux, P. P., & Blenis, J. (2004). ERK and p38 MAPK-activated protein kinases: A family of protein kinases with diverse biological functions. Microbiology and Molecular Biology Reviews, 68, 320–344.PubMedCrossRef
53.
Zurück zum Zitat Oeckinghaus, A., Hayden, M. S., & Ghosh, S. (2011). Crosstalk in NF-kappaB signaling pathways. Nature Immunology, 12, 695–708.PubMedCrossRef Oeckinghaus, A., Hayden, M. S., & Ghosh, S. (2011). Crosstalk in NF-kappaB signaling pathways. Nature Immunology, 12, 695–708.PubMedCrossRef
54.
Zurück zum Zitat Li, S. Y., Sigmon, V. K., Babcock, S. A., & Ren, J. (2007). Advanced glycation endproduct induces ROS accumulation, apoptosis, MAP kinase activation and nuclear O-GlcNAcylation in human cardiac myocytes. Life Sciences, 80, 1051–1056.PubMedCrossRef Li, S. Y., Sigmon, V. K., Babcock, S. A., & Ren, J. (2007). Advanced glycation endproduct induces ROS accumulation, apoptosis, MAP kinase activation and nuclear O-GlcNAcylation in human cardiac myocytes. Life Sciences, 80, 1051–1056.PubMedCrossRef
Metadaten
Titel
Inhibitory Effect of Gallic Acid on Advanced Glycation End Products Induced Up-Regulation of Inflammatory Cytokines and Matrix Proteins in H9C2 (2-1) Cells
verfasst von
Subramanian Umadevi
Venkatachalam Gopi
Elangovan Vellaichamy
Publikationsdatum
01.12.2013
Verlag
Springer US
Erschienen in
Cardiovascular Toxicology / Ausgabe 4/2013
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-013-9222-2

Weitere Artikel der Ausgabe 4/2013

Cardiovascular Toxicology 4/2013 Zur Ausgabe