Skip to main content
Erschienen in: Cardiovascular Toxicology 4/2014

01.12.2014

Serum–Glucocorticoid Regulated Kinase 1 Regulates Macrophage Recruitment and Activation Contributing to Monocrotaline-Induced Pulmonary Arterial Hypertension

verfasst von: Xin Xi, Shuang Liu, Hongtao Shi, Min Yang, Yongfen Qi, Jian Wang, Jie Du

Erschienen in: Cardiovascular Toxicology | Ausgabe 4/2014

Einloggen, um Zugang zu erhalten

Abstract

Sustained inflammation is associated with pulmonary vascular remodeling and arterial hypertension (PAH). Serum–glucocorticoid regulated kinase 1 (SGK1) has been shown to participate in vascular remodeling, but its role in inflammation-associated PAH remains unknown. In this study, the importance of SGK1 expression and activation was investigated on monocrotaline (MCT)-induced PAH, an inflammation-associated experimental model of PAH used in mice and rats. The expression of SGK1 in the lungs of rats with MCT-induced PAH was significantly increased. Furthermore, SGK1 knockout mice were resistant to MCT-induced PAH and showed less elevation of right ventricular systolic pressure and right ventricular hypertrophy and showed reduced pulmonary vascular remodeling in response to MCT injection. Administering the SGK1 inhibitor, EMD638683, to rats also prevented the development of MCT-induced PAH. The expression of SGK1 was shown to take place primarily in alveolar macrophages. EMD638683 treatment suppressed macrophage infiltration and inhibited the proliferation of pulmonary arterial smooth muscle cells (PASMCs) in the lungs of rats with MCT-induced PAH. Co-culture of bone marrow-derived macrophages (BMDMs) from wild-type (WT) mice promoted proliferation of PASMC in vitro, whereas BMDMs from either SGK1 knockout mice or WT mice with EMD638683 treatment failed to induce this response. Collectively, the present results demonstrated that SGK1 is important to the regulation of macrophage activation that contributes to the development of PAH; thus, SGK1 may be a potential therapeutic target for the treatment of PAH.
Literatur
1.
Zurück zum Zitat Schermuly, R. T., Ghofrani, H. A., Wilkins, M. R., & Grimminger, F. (2011). Mechanisms of disease: pulmonary arterial hypertension. Nature Review Cardiology, 8, 443–455.CrossRef Schermuly, R. T., Ghofrani, H. A., Wilkins, M. R., & Grimminger, F. (2011). Mechanisms of disease: pulmonary arterial hypertension. Nature Review Cardiology, 8, 443–455.CrossRef
2.
Zurück zum Zitat Galie, N., Hoeper, M. M., Humbert, M., Torbicki, A., Vachiery, J. L., et al. (2009). Guidelines for the diagnosis and treatment of pulmonary hypertension. European Respiratory Journal, 34, 1219–1263.PubMedCrossRef Galie, N., Hoeper, M. M., Humbert, M., Torbicki, A., Vachiery, J. L., et al. (2009). Guidelines for the diagnosis and treatment of pulmonary hypertension. European Respiratory Journal, 34, 1219–1263.PubMedCrossRef
3.
Zurück zum Zitat Galie, N., Palazzini, M., & Manes, A. (2010). Pulmonary arterial hypertension: From the kingdom of the near-dead to multiple clinical trial meta-analyses. European Heart Journal, 31, 2080–2086.PubMedCrossRefPubMedCentral Galie, N., Palazzini, M., & Manes, A. (2010). Pulmonary arterial hypertension: From the kingdom of the near-dead to multiple clinical trial meta-analyses. European Heart Journal, 31, 2080–2086.PubMedCrossRefPubMedCentral
4.
Zurück zum Zitat Wilkins, M. R. (2012). Pulmonary hypertension: the science behind the disease spectrum. European Respiratory Reviews, 21, 19–26.CrossRef Wilkins, M. R. (2012). Pulmonary hypertension: the science behind the disease spectrum. European Respiratory Reviews, 21, 19–26.CrossRef
5.
Zurück zum Zitat Stacher, E., Graham, B. B., Hunt, J. M., Gandjeva, A., Groshong, S. D., et al. (2012). Modern age pathology of pulmonary arterial hypertension. American Journal of Respiratory and Critical Care Medicine, 186, 261–272.PubMedCrossRefPubMedCentral Stacher, E., Graham, B. B., Hunt, J. M., Gandjeva, A., Groshong, S. D., et al. (2012). Modern age pathology of pulmonary arterial hypertension. American Journal of Respiratory and Critical Care Medicine, 186, 261–272.PubMedCrossRefPubMedCentral
6.
Zurück zum Zitat Morrell, N. W., Adnot, S., Archer, S. L., Dupuis, J., Jones, P. L., et al. (2009). Cellular and molecular basis of pulmonary arterial hypertension. Journal of the American College of Cardiology, 54, S20–S31.PubMedCrossRefPubMedCentral Morrell, N. W., Adnot, S., Archer, S. L., Dupuis, J., Jones, P. L., et al. (2009). Cellular and molecular basis of pulmonary arterial hypertension. Journal of the American College of Cardiology, 54, S20–S31.PubMedCrossRefPubMedCentral
7.
Zurück zum Zitat Archer, S. L., Weir, E. K., & Wilkins, M. R. (2010). Basic science of pulmonary arterial hypertension for clinicians: New concepts and experimental therapies. Circulation, 121, 2045–2066.PubMedCrossRefPubMedCentral Archer, S. L., Weir, E. K., & Wilkins, M. R. (2010). Basic science of pulmonary arterial hypertension for clinicians: New concepts and experimental therapies. Circulation, 121, 2045–2066.PubMedCrossRefPubMedCentral
8.
Zurück zum Zitat El Chami, H., & Hassoun, P. M. (2012). Immune and inflammatory mechanisms in pulmonary arterial hypertension. Progress in Cardiovascular Diseases, 55, 218–228.PubMedCrossRefPubMedCentral El Chami, H., & Hassoun, P. M. (2012). Immune and inflammatory mechanisms in pulmonary arterial hypertension. Progress in Cardiovascular Diseases, 55, 218–228.PubMedCrossRefPubMedCentral
9.
Zurück zum Zitat Marsboom, G., Toth, P. T., Ryan, J. J., Hong, Z., Wu, X., et al. (2012). Dynamin-related protein 1-mediated mitochondrial mitotic fission permits hyperproliferation of vascular smooth muscle cells and offers a novel therapeutic target in pulmonary hypertension. Circulation Research, 110, 1484–1497.PubMedCrossRefPubMedCentral Marsboom, G., Toth, P. T., Ryan, J. J., Hong, Z., Wu, X., et al. (2012). Dynamin-related protein 1-mediated mitochondrial mitotic fission permits hyperproliferation of vascular smooth muscle cells and offers a novel therapeutic target in pulmonary hypertension. Circulation Research, 110, 1484–1497.PubMedCrossRefPubMedCentral
10.
Zurück zum Zitat Savai, R., Pullamsetti, S. S., Kolbe, J., Bieniek, E., Voswinckel, R., et al. (2012). Immune and inflammatory cell involvement in the pathology of idiopathic pulmonary arterial hypertension. American Journal of Respiratory and Critical Care Medicine, 186, 897–908.PubMedCrossRef Savai, R., Pullamsetti, S. S., Kolbe, J., Bieniek, E., Voswinckel, R., et al. (2012). Immune and inflammatory cell involvement in the pathology of idiopathic pulmonary arterial hypertension. American Journal of Respiratory and Critical Care Medicine, 186, 897–908.PubMedCrossRef
11.
Zurück zum Zitat Burke, D. L., Frid, M. G., Kunrath, C. L., Karoor, V., Anwar, A., et al. (2009). Sustained hypoxia promotes the development of a pulmonary artery-specific chronic inflammatory microenvironment. American Journal of Physiology. Lung Cellular and Molecular Physiology, 297, L238–L250.PubMedCrossRefPubMedCentral Burke, D. L., Frid, M. G., Kunrath, C. L., Karoor, V., Anwar, A., et al. (2009). Sustained hypoxia promotes the development of a pulmonary artery-specific chronic inflammatory microenvironment. American Journal of Physiology. Lung Cellular and Molecular Physiology, 297, L238–L250.PubMedCrossRefPubMedCentral
12.
Zurück zum Zitat Gomez-Arroyo, J. G., Farkas, L., Alhussaini, A. A., Farkas, D., Kraskauskas, D., et al. (2012). The monocrotaline model of pulmonary hypertension in perspective. American Journal of Physiology. Lung Cellular and Molecular Physiology, 302, L363–L369.PubMedCrossRef Gomez-Arroyo, J. G., Farkas, L., Alhussaini, A. A., Farkas, D., Kraskauskas, D., et al. (2012). The monocrotaline model of pulmonary hypertension in perspective. American Journal of Physiology. Lung Cellular and Molecular Physiology, 302, L363–L369.PubMedCrossRef
13.
Zurück zum Zitat Pinto, R. F., Higuchi Mde, L., & Aiello, V. D. (2004). Decreased numbers of T-lymphocytes and predominance of recently recruited macrophages in the walls of peripheral pulmonary arteries from 26 patients with pulmonary hypertension secondary to congenital cardiac shunts. Cardiovascular Pathology, 13, 268–275.PubMedCrossRef Pinto, R. F., Higuchi Mde, L., & Aiello, V. D. (2004). Decreased numbers of T-lymphocytes and predominance of recently recruited macrophages in the walls of peripheral pulmonary arteries from 26 patients with pulmonary hypertension secondary to congenital cardiac shunts. Cardiovascular Pathology, 13, 268–275.PubMedCrossRef
14.
Zurück zum Zitat Vergadi, E., Chang, M. S., Lee, C., Liang, O. D., Liu, X., et al. (2011). Early macrophage recruitment and alternative activation are critical for the later development of hypoxia-induced pulmonary hypertension. Circulation, 123, 1986–1995.PubMedCrossRefPubMedCentral Vergadi, E., Chang, M. S., Lee, C., Liang, O. D., Liu, X., et al. (2011). Early macrophage recruitment and alternative activation are critical for the later development of hypoxia-induced pulmonary hypertension. Circulation, 123, 1986–1995.PubMedCrossRefPubMedCentral
15.
Zurück zum Zitat Sahara, M., Sata, M., Morita, T., Nakamura, K., Hirata, Y., et al. (2007). Diverse contribution of bone marrow-derived cells to vascular remodeling associated with pulmonary arterial hypertension and arterial neointimal formation. Circulation, 115, 509–517.PubMedCrossRef Sahara, M., Sata, M., Morita, T., Nakamura, K., Hirata, Y., et al. (2007). Diverse contribution of bone marrow-derived cells to vascular remodeling associated with pulmonary arterial hypertension and arterial neointimal formation. Circulation, 115, 509–517.PubMedCrossRef
16.
Zurück zum Zitat Tian, W., Jiang, X., Tamosiuniene, R., Sung, Y. K., Qian, J., et al. (2013). Blocking macrophage leukotriene b4 prevents endothelial injury and reverses pulmonary hypertension. Science Translational Medicine, 5, 200ra117.PubMedCrossRefPubMedCentral Tian, W., Jiang, X., Tamosiuniene, R., Sung, Y. K., Qian, J., et al. (2013). Blocking macrophage leukotriene b4 prevents endothelial injury and reverses pulmonary hypertension. Science Translational Medicine, 5, 200ra117.PubMedCrossRefPubMedCentral
17.
Zurück zum Zitat Talati, M., West, J., Blackwell, T. R., Loyd, J. E., & Meyrick, B. (2010). BMPR2 mutation alters the lung macrophage endothelin-1 cascade in a mouse model and patients with heritable pulmonary artery hypertension. American Journal of Physiology. Lung Cellular and Molecular Physiology, 299, L363–L373.PubMedCrossRefPubMedCentral Talati, M., West, J., Blackwell, T. R., Loyd, J. E., & Meyrick, B. (2010). BMPR2 mutation alters the lung macrophage endothelin-1 cascade in a mouse model and patients with heritable pulmonary artery hypertension. American Journal of Physiology. Lung Cellular and Molecular Physiology, 299, L363–L373.PubMedCrossRefPubMedCentral
18.
Zurück zum Zitat Frid, M. G., Brunetti, J. A., Burke, D. L., Carpenter, T. C., Davie, N. J., et al. (2006). Hypoxia-induced pulmonary vascular remodeling requires recruitment of circulating mesenchymal precursors of a monocyte/macrophage lineage. American Journal of Pathology, 168, 659–669.PubMedCrossRefPubMedCentral Frid, M. G., Brunetti, J. A., Burke, D. L., Carpenter, T. C., Davie, N. J., et al. (2006). Hypoxia-induced pulmonary vascular remodeling requires recruitment of circulating mesenchymal precursors of a monocyte/macrophage lineage. American Journal of Pathology, 168, 659–669.PubMedCrossRefPubMedCentral
19.
Zurück zum Zitat Chung, J. H., Jeon, H. J., Hong, S. Y., da Lee, L., Lee, K. H., et al. (2012). Palmitate promotes the paracrine effects of macrophages on vascular smooth muscle cells: The role of bone morphogenetic proteins. PLoS ONE, 7, e29100.PubMedCrossRefPubMedCentral Chung, J. H., Jeon, H. J., Hong, S. Y., da Lee, L., Lee, K. H., et al. (2012). Palmitate promotes the paracrine effects of macrophages on vascular smooth muscle cells: The role of bone morphogenetic proteins. PLoS ONE, 7, e29100.PubMedCrossRefPubMedCentral
20.
Zurück zum Zitat Lee, M. J., Kim, M. Y., Heo, S. C., Kwon, Y. W., Kim, Y. M., et al. (2012). Macrophages regulate smooth muscle differentiation of mesenchymal stem cells via a prostaglandin F(2)alpha-mediated paracrine mechanism. Arteriosclerosis, Thrombosis, and Vascular Biology, 32, 2733–2740.PubMedCrossRef Lee, M. J., Kim, M. Y., Heo, S. C., Kwon, Y. W., Kim, Y. M., et al. (2012). Macrophages regulate smooth muscle differentiation of mesenchymal stem cells via a prostaglandin F(2)alpha-mediated paracrine mechanism. Arteriosclerosis, Thrombosis, and Vascular Biology, 32, 2733–2740.PubMedCrossRef
21.
Zurück zum Zitat Webster, M. K., Goya, L., Ge, Y., Maiyar, A. C., & Firestone, G. L. (1993). Characterization of sgk, a novel member of the serine/threonine protein kinase gene family which is transcriptionally induced by glucocorticoids and serum. Molecular and Cellular Biology, 13, 2031–2040.PubMedPubMedCentral Webster, M. K., Goya, L., Ge, Y., Maiyar, A. C., & Firestone, G. L. (1993). Characterization of sgk, a novel member of the serine/threonine protein kinase gene family which is transcriptionally induced by glucocorticoids and serum. Molecular and Cellular Biology, 13, 2031–2040.PubMedPubMedCentral
22.
Zurück zum Zitat Lang, F., Artunc, F., & Vallon, V. (2009). The physiological impact of the serum and glucocorticoid-inducible kinase SGK1. Current Opinion in Nephrology and Hypertension, 18, 439–448.PubMedCrossRefPubMedCentral Lang, F., Artunc, F., & Vallon, V. (2009). The physiological impact of the serum and glucocorticoid-inducible kinase SGK1. Current Opinion in Nephrology and Hypertension, 18, 439–448.PubMedCrossRefPubMedCentral
23.
Zurück zum Zitat Cheng, J., Wang, Y., Ma, Y., Chan, B. T., Yang, M., et al. (2010). The mechanical stress-activated serum-, glucocorticoid-regulated kinase 1 contributes to neointima formation in vein grafts. Circulation Research, 107, 1265–1274.PubMedCrossRef Cheng, J., Wang, Y., Ma, Y., Chan, B. T., Yang, M., et al. (2010). The mechanical stress-activated serum-, glucocorticoid-regulated kinase 1 contributes to neointima formation in vein grafts. Circulation Research, 107, 1265–1274.PubMedCrossRef
24.
Zurück zum Zitat Yang, M., Zheng, J., Miao, Y., Wang, Y., Cui, W., et al. (2012). Serum–glucocorticoid regulated kinase 1 regulates alternatively activated macrophage polarization contributing to angiotensin II-induced inflammation and cardiac fibrosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 32, 1675–1686.PubMedCrossRef Yang, M., Zheng, J., Miao, Y., Wang, Y., Cui, W., et al. (2012). Serum–glucocorticoid regulated kinase 1 regulates alternatively activated macrophage polarization contributing to angiotensin II-induced inflammation and cardiac fibrosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 32, 1675–1686.PubMedCrossRef
25.
Zurück zum Zitat BelAiba, R. S., Djordjevic, T., Bonello, S., Artunc, F., Lang, F., et al. (2006). The serum- and glucocorticoid-inducible kinase Sgk-1 is involved in pulmonary vascular remodeling: Role in redox-sensitive regulation of tissue factor by thrombin. Circulation Research, 98, 828–836.PubMedCrossRef BelAiba, R. S., Djordjevic, T., Bonello, S., Artunc, F., Lang, F., et al. (2006). The serum- and glucocorticoid-inducible kinase Sgk-1 is involved in pulmonary vascular remodeling: Role in redox-sensitive regulation of tissue factor by thrombin. Circulation Research, 98, 828–836.PubMedCrossRef
26.
Zurück zum Zitat Ackermann, T. F., Boini, K. M., Beier, N., Scholz, W., Fuchss, T., et al. (2011). EMD638683, a novel SGK inhibitor with antihypertensive potency. Cellular Physiology and Biochemistry, 28, 137–146.PubMedCrossRef Ackermann, T. F., Boini, K. M., Beier, N., Scholz, W., Fuchss, T., et al. (2011). EMD638683, a novel SGK inhibitor with antihypertensive potency. Cellular Physiology and Biochemistry, 28, 137–146.PubMedCrossRef
27.
Zurück zum Zitat Schermuly, R. T., Dony, E., Ghofrani, H. A., Pullamsetti, S., Savai, R., et al. (2005). Reversal of experimental pulmonary hypertension by PDGF inhibition. Journal of Clinical Investigation, 115, 2811–2821.PubMedCrossRefPubMedCentral Schermuly, R. T., Dony, E., Ghofrani, H. A., Pullamsetti, S., Savai, R., et al. (2005). Reversal of experimental pulmonary hypertension by PDGF inhibition. Journal of Clinical Investigation, 115, 2811–2821.PubMedCrossRefPubMedCentral
28.
Zurück zum Zitat Yamazato, Y., Ferreira, A. J., Hong, K. H., Sriramula, S., Francis, J., et al. (2009). Prevention of pulmonary hypertension by angiotensin-converting enzyme 2 gene transfer. Hypertension, 54, 365–371.PubMedCrossRefPubMedCentral Yamazato, Y., Ferreira, A. J., Hong, K. H., Sriramula, S., Francis, J., et al. (2009). Prevention of pulmonary hypertension by angiotensin-converting enzyme 2 gene transfer. Hypertension, 54, 365–371.PubMedCrossRefPubMedCentral
29.
Zurück zum Zitat Wang, J., Jiang, Q., Wan, L., Yang, K., Zhang, Y., et al. (2013). Sodium tanshinone IIA sulfonate inhibits canonical transient receptor potential expression in pulmonary arterial smooth muscle from pulmonary hypertensive rats. American Journal of Respiratory Cell and Molecular Biology, 48, 125–134.PubMedCrossRefPubMedCentral Wang, J., Jiang, Q., Wan, L., Yang, K., Zhang, Y., et al. (2013). Sodium tanshinone IIA sulfonate inhibits canonical transient receptor potential expression in pulmonary arterial smooth muscle from pulmonary hypertensive rats. American Journal of Respiratory Cell and Molecular Biology, 48, 125–134.PubMedCrossRefPubMedCentral
30.
Zurück zum Zitat Li, Y., Zhang, C., Wu, Y., Han, Y., Cui, W., et al. (2012). Interleukin-12p35 deletion promotes CD4 T-cell-dependent macrophage differentiation and enhances angiotensin II-Induced cardiac fibrosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 32, 1662–1674.PubMedCrossRef Li, Y., Zhang, C., Wu, Y., Han, Y., Cui, W., et al. (2012). Interleukin-12p35 deletion promotes CD4 T-cell-dependent macrophage differentiation and enhances angiotensin II-Induced cardiac fibrosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 32, 1662–1674.PubMedCrossRef
31.
Zurück zum Zitat Zhang, Y., Wang, Y., Liu, Y., Wang, N., Qi, Y., et al. (2013). Kruppel-like factor 4 transcriptionally regulates TGF-beta1 and contributes to cardiac myofibroblast differentiation. PLoS ONE, 8, e63424.PubMedCrossRefPubMedCentral Zhang, Y., Wang, Y., Liu, Y., Wang, N., Qi, Y., et al. (2013). Kruppel-like factor 4 transcriptionally regulates TGF-beta1 and contributes to cardiac myofibroblast differentiation. PLoS ONE, 8, e63424.PubMedCrossRefPubMedCentral
32.
Zurück zum Zitat Price, L. C., Wort, S. J., Perros, F., Dorfmuller, P., Huertas, A., et al. (2012). Inflammation in pulmonary arterial hypertension. Chest, 141, 210–221.PubMedCrossRef Price, L. C., Wort, S. J., Perros, F., Dorfmuller, P., Huertas, A., et al. (2012). Inflammation in pulmonary arterial hypertension. Chest, 141, 210–221.PubMedCrossRef
33.
Zurück zum Zitat Meng, F., Yamagiwa, Y., Taffetani, S., Han, J., & Patel, T. (2005). IL-6 activates serum and glucocorticoid kinase via p38alpha mitogen-activated protein kinase pathway. American Journal of Physiology. Cell Physiology, 289, C971–C981.PubMedCrossRefPubMedCentral Meng, F., Yamagiwa, Y., Taffetani, S., Han, J., & Patel, T. (2005). IL-6 activates serum and glucocorticoid kinase via p38alpha mitogen-activated protein kinase pathway. American Journal of Physiology. Cell Physiology, 289, C971–C981.PubMedCrossRefPubMedCentral
34.
Zurück zum Zitat Saad, S., Agapiou, D. J., Chen, X. M., Stevens, V., & Pollock, C. A. (2009). The role of Sgk-1 in the upregulation of transport proteins by PPAR-{gamma} agonists in human proximal tubule cells. Nephrology, Dialysis, Transplantation, 24, 1130–1141.PubMedCrossRef Saad, S., Agapiou, D. J., Chen, X. M., Stevens, V., & Pollock, C. A. (2009). The role of Sgk-1 in the upregulation of transport proteins by PPAR-{gamma} agonists in human proximal tubule cells. Nephrology, Dialysis, Transplantation, 24, 1130–1141.PubMedCrossRef
35.
Zurück zum Zitat Waerntges, S., Klingel, K., Weigert, C., Fillon, S., Buck, M., et al. (2002). Excessive transcription of the human serum and glucocorticoid dependent kinase hSGK1 in lung fibrosis. Cellular Physiology and Biochemistry, 12, 135–142.PubMedCrossRef Waerntges, S., Klingel, K., Weigert, C., Fillon, S., Buck, M., et al. (2002). Excessive transcription of the human serum and glucocorticoid dependent kinase hSGK1 in lung fibrosis. Cellular Physiology and Biochemistry, 12, 135–142.PubMedCrossRef
36.
Zurück zum Zitat Voelkl, J., Pasham, V., Ahmed, M. S., Walker, B., Szteyn, K., et al. (2013). Sgk1-dependent stimulation of cardiac Na+/H+ exchanger Nhe1 by dexamethasone. Cellular Physiology and Biochemistry, 32, 25–38.PubMedCrossRef Voelkl, J., Pasham, V., Ahmed, M. S., Walker, B., Szteyn, K., et al. (2013). Sgk1-dependent stimulation of cardiac Na+/H+ exchanger Nhe1 by dexamethasone. Cellular Physiology and Biochemistry, 32, 25–38.PubMedCrossRef
37.
Zurück zum Zitat Towhid, S. T., Liu, G. L., Ackermann, T. F., Beier, N., Scholz, W., et al. (2013). Inhibition of colonic tumor growth by the selective SGK inhibitor EMD638683. Cellular Physiology and Biochemistry, 32, 838–848.PubMedCrossRef Towhid, S. T., Liu, G. L., Ackermann, T. F., Beier, N., Scholz, W., et al. (2013). Inhibition of colonic tumor growth by the selective SGK inhibitor EMD638683. Cellular Physiology and Biochemistry, 32, 838–848.PubMedCrossRef
38.
Zurück zum Zitat Liu, G., Alzoubi, K., Umbach, A. T., Pelzl, L., Borst, O., et al. (2014). Upregulation of store operated ca channel orai1, stimulation of Ca entry and triggering of cell membrane scrambling in platelets by mineralocorticoid DOCA. Kidney and Blood Pressure Research, 38, 21–30.CrossRef Liu, G., Alzoubi, K., Umbach, A. T., Pelzl, L., Borst, O., et al. (2014). Upregulation of store operated ca channel orai1, stimulation of Ca entry and triggering of cell membrane scrambling in platelets by mineralocorticoid DOCA. Kidney and Blood Pressure Research, 38, 21–30.CrossRef
39.
Zurück zum Zitat Lang, F., Bohmer, C., Palmada, M., Seebohm, G., Strutz-Seebohm, N., et al. (2006). (Patho)physiological significance of the serum- and glucocorticoid-inducible kinase isoforms. Physiological Reviews, 86, 1151–1178.PubMedCrossRef Lang, F., Bohmer, C., Palmada, M., Seebohm, G., Strutz-Seebohm, N., et al. (2006). (Patho)physiological significance of the serum- and glucocorticoid-inducible kinase isoforms. Physiological Reviews, 86, 1151–1178.PubMedCrossRef
40.
Zurück zum Zitat Zhang, L., Cui, R., Cheng, X., & Du, J. (2005). Antiapoptotic effect of serum and glucocorticoid-inducible protein kinase is mediated by novel mechanism activating I[kgr]B kinase. Cancer Research, 65, 457–464.PubMed Zhang, L., Cui, R., Cheng, X., & Du, J. (2005). Antiapoptotic effect of serum and glucocorticoid-inducible protein kinase is mediated by novel mechanism activating I[kgr]B kinase. Cancer Research, 65, 457–464.PubMed
Metadaten
Titel
Serum–Glucocorticoid Regulated Kinase 1 Regulates Macrophage Recruitment and Activation Contributing to Monocrotaline-Induced Pulmonary Arterial Hypertension
verfasst von
Xin Xi
Shuang Liu
Hongtao Shi
Min Yang
Yongfen Qi
Jian Wang
Jie Du
Publikationsdatum
01.12.2014
Verlag
Springer US
Erschienen in
Cardiovascular Toxicology / Ausgabe 4/2014
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-014-9260-4

Weitere Artikel der Ausgabe 4/2014

Cardiovascular Toxicology 4/2014 Zur Ausgabe