Skip to main content
Erschienen in: Cardiovascular Toxicology 3/2021

19.10.2020 | Atrial Fibrillation

Cardiohemodynamic and Arrhythmogenic Effects of the Anti-Atrial Fibrillatory Compound Vanoxerine in Halothane-Anesthetized Dogs

verfasst von: Mihoko Hagiwara-Nagasawa, Ryuichi Kambayashi, Ai Goto, Yoshio Nunoi, Hiroko Izumi-Nakaseko, Yoshinori Takei, Akio Matsumoto, Atsushi Sugiyama

Erschienen in: Cardiovascular Toxicology | Ausgabe 3/2021

Einloggen, um Zugang zu erhalten

Abstract

While vanoxerine (GBR-12909) is a synaptosomal dopamine uptake inhibitor, it also suppresses IKr, INa and ICa,L in vitro. Based on these profiles on ionic currents, vanoxerine has been developed as a candidate compound for treating atrial fibrillation. To investigate electropharmacological profiles, vanoxerine dihydrochloride was intravenously administered at 0.03 and 0.3 mg/kg to halothane-anesthetized dogs (n = 4), possibly providing subtherapeutic and therapeutic concentrations, respectively. The low dose increased the heart rate and cardiac output, whereas it prolonged the ventricular refractoriness. The high dose decreased the heart rate but increased the total peripheral vascular resistance, whereas it delayed the ventricular repolarization and increased the atrial refractoriness in addition to further enhancing the ventricular refractoriness. The extent of increase in the refractoriness in the atrium was 0.8 times of that in the ventricle. The high dose also prolonged the early and late repolarization periods of the ventricle as well as the terminal repolarization period. Meanwhile, no significant change was detected in the mean blood pressure, ventricular contraction, preload to the left ventricle, or the intra-atrial, intra-ventricular or atrioventricular conductions. The high dose can be considered to inhibit IKr, but it may not suppress INa or ICa in the in situ heart, partly explaining its poor atrial selectivity for increasing refractoriness. The prolongation of early repolarization period may reflect enhancement of net inward current, providing potential risk for intracellular Ca2+ overload. Thus, vanoxerine may provide both trigger and substrate toward torsade de pointes, which would make the drug less promising as an anti-atrial fibrillatory drug.
Literatur
1.
Zurück zum Zitat Andersen, P. H. (1989). The dopamine inhibitor GBR 12909: selectivity and molecular mechanism of action. European Journal of Pharmacology, 166, 493–504.CrossRef Andersen, P. H. (1989). The dopamine inhibitor GBR 12909: selectivity and molecular mechanism of action. European Journal of Pharmacology, 166, 493–504.CrossRef
2.
Zurück zum Zitat Preti, A. (2000). Vanoxerine national institute on drug abuse. Current Opinion in Investigational Drugs, 1, 241–51.PubMed Preti, A. (2000). Vanoxerine national institute on drug abuse. Current Opinion in Investigational Drugs, 1, 241–51.PubMed
3.
Zurück zum Zitat Obejero-Paz, C. A., Bruening-Wright, A., Kramer, J., Hawryluk, P., Tatalovic, M., Dittrich, H. C., et al. (2015). Quantitative profiling of the effects of vanoxerine on human cardiac ion channels and its application to cardiac risk. Scientific Reports., 5, 17623.CrossRef Obejero-Paz, C. A., Bruening-Wright, A., Kramer, J., Hawryluk, P., Tatalovic, M., Dittrich, H. C., et al. (2015). Quantitative profiling of the effects of vanoxerine on human cardiac ion channels and its application to cardiac risk. Scientific Reports., 5, 17623.CrossRef
4.
Zurück zum Zitat Lacerda, A. E., Kuryshev, Y. A., Yan, G. X., Waldo, A. L., & Brown, A. M. (2010). Vanoxerine: Cellular mechanism of a new antiarrhythmic. Journal of Cardiovascular Electrophysiology, 21, 301–10.CrossRef Lacerda, A. E., Kuryshev, Y. A., Yan, G. X., Waldo, A. L., & Brown, A. M. (2010). Vanoxerine: Cellular mechanism of a new antiarrhythmic. Journal of Cardiovascular Electrophysiology, 21, 301–10.CrossRef
5.
Zurück zum Zitat Matsumoto, N., Khrestian, C. M., Ryu, K., Lacerda, A. E., Brown, A. M., & Waldo, A. L. (2010). Vanoxerine, a new drug for terminating atrial fibrillation and flutter. Journal of Cardiovascular Electrophysiology, 21, 311–9.CrossRef Matsumoto, N., Khrestian, C. M., Ryu, K., Lacerda, A. E., Brown, A. M., & Waldo, A. L. (2010). Vanoxerine, a new drug for terminating atrial fibrillation and flutter. Journal of Cardiovascular Electrophysiology, 21, 311–9.CrossRef
6.
Zurück zum Zitat Dittrich, H. C., Feld, G. K., Bahnson, T. D., Camm, A. J., Golitsyn, S., Katz, A., et al. (2015). COR-ART: A multicenter, randomized, double-blind, placebo-controlled dose-ranging study to evaluate single oral doses of vanoxerine for conversion of recent-onset atrial fibrillation or flutter to normal sinus rhythm. Heart Rhythm., 12, 1105–12.CrossRef Dittrich, H. C., Feld, G. K., Bahnson, T. D., Camm, A. J., Golitsyn, S., Katz, A., et al. (2015). COR-ART: A multicenter, randomized, double-blind, placebo-controlled dose-ranging study to evaluate single oral doses of vanoxerine for conversion of recent-onset atrial fibrillation or flutter to normal sinus rhythm. Heart Rhythm., 12, 1105–12.CrossRef
7.
Zurück zum Zitat Piccini, J. P., Pritchett, E. L., Davison, B. A., Cotter, G., Wiener, L. E., Koch, G., et al. (2016). Randomized, double-blind, placebo-controlled study to evaluate the safety and efficacy of a single oral dose of vanoxerine for the conversion of subjects with recent onset atrial fibrillation or flutter to normal sinus rhythm: RESTORE SR. Heart Rhythm., 13, 1777–83.CrossRef Piccini, J. P., Pritchett, E. L., Davison, B. A., Cotter, G., Wiener, L. E., Koch, G., et al. (2016). Randomized, double-blind, placebo-controlled study to evaluate the safety and efficacy of a single oral dose of vanoxerine for the conversion of subjects with recent onset atrial fibrillation or flutter to normal sinus rhythm: RESTORE SR. Heart Rhythm., 13, 1777–83.CrossRef
8.
Zurück zum Zitat Sugiyama, A. (2008). Sensitive and reliable proarrhythmia in vivo animal models for predicting drug-induced torsades de pointes in patients with remodelled hearts. British Journal of Pharmacology, 154, 1528–37.CrossRef Sugiyama, A. (2008). Sensitive and reliable proarrhythmia in vivo animal models for predicting drug-induced torsades de pointes in patients with remodelled hearts. British Journal of Pharmacology, 154, 1528–37.CrossRef
9.
Zurück zum Zitat Motokawa, Y., Nakamura, Y., Hagiwara-Nagasawa, M., Goto, A., Chiba, K., Lubna, N. J., et al. (2018). In vivo analysis of the anti-atrial fibrillatory, proarrhythmic and cardiodepressive profiles of dronedarone as a guide for safety pharmacological evaluation of antiarrhythmic drugs. Cardiovascular Toxicology., 18, 242–51.CrossRef Motokawa, Y., Nakamura, Y., Hagiwara-Nagasawa, M., Goto, A., Chiba, K., Lubna, N. J., et al. (2018). In vivo analysis of the anti-atrial fibrillatory, proarrhythmic and cardiodepressive profiles of dronedarone as a guide for safety pharmacological evaluation of antiarrhythmic drugs. Cardiovascular Toxicology., 18, 242–51.CrossRef
10.
Zurück zum Zitat Johannesen, L., Vicente, J., Mason, J. W., Sanabria, C., Waite-Labott, K., Hong, M., et al. (2014). Differentiating drug-induced multichannel block on the electrocardiogram: randomized study of dofetilide, quinidine, ranolazine, and verapamil. Clinical Pharmacology & Therapeutics, 96, 549–58.CrossRef Johannesen, L., Vicente, J., Mason, J. W., Sanabria, C., Waite-Labott, K., Hong, M., et al. (2014). Differentiating drug-induced multichannel block on the electrocardiogram: randomized study of dofetilide, quinidine, ranolazine, and verapamil. Clinical Pharmacology & Therapeutics, 96, 549–58.CrossRef
11.
Zurück zum Zitat Nagueh, S. F., Sun, H., Kopelen, H. A., Middleton, K. J., & Khoury, D. S. (2001). Hemodynamic determinants of the mitral annulus diastolic velocities by tissue Doppler. Journal of the American College of Cardiology, 37, 278–85.CrossRef Nagueh, S. F., Sun, H., Kopelen, H. A., Middleton, K. J., & Khoury, D. S. (2001). Hemodynamic determinants of the mitral annulus diastolic velocities by tissue Doppler. Journal of the American College of Cardiology, 37, 278–85.CrossRef
12.
Zurück zum Zitat Van de Water, A., Verheyen, J., Xhonneux, R., & Reneman, R. S. (1989). An improved method to correct the QT interval of the electrocardiogram for changes in heart rate. Journal of Pharmacology Methods., 22, 207–17.CrossRef Van de Water, A., Verheyen, J., Xhonneux, R., & Reneman, R. S. (1989). An improved method to correct the QT interval of the electrocardiogram for changes in heart rate. Journal of Pharmacology Methods., 22, 207–17.CrossRef
13.
Zurück zum Zitat Ingwersen, S. H., Mant, T. G., & Larsen, J. J. (1993). Food intake increases the relative oral bioavailability of vanoxerine. British Journal of Clinical Pharmacology, 35, 308–10.CrossRef Ingwersen, S. H., Mant, T. G., & Larsen, J. J. (1993). Food intake increases the relative oral bioavailability of vanoxerine. British Journal of Clinical Pharmacology, 35, 308–10.CrossRef
14.
Zurück zum Zitat Søgaard, U., Michalow, J., Butler, B., Lund Laursen, A., Ingersen, S. H., Skrumsager, B. K., et al. (1990). A tolerance study of single and multiple dosing of the selective dopamine uptake inhibitor GBR 12909 in healthy subjects. International Clinical Psychopharmacology, 5, 237–51.CrossRef Søgaard, U., Michalow, J., Butler, B., Lund Laursen, A., Ingersen, S. H., Skrumsager, B. K., et al. (1990). A tolerance study of single and multiple dosing of the selective dopamine uptake inhibitor GBR 12909 in healthy subjects. International Clinical Psychopharmacology, 5, 237–51.CrossRef
15.
Zurück zum Zitat Sugiyama, A., Satoh, Y., & Hashimoto, K. (2001a). In vivo canine model comparison of cardiohemodynamic and electrophysiological effects of a new antipsychotic drug aripiprazole (OPC-14597) to haloperidol. Toxicology and Applied Pharmacology, 173, 120–8.CrossRef Sugiyama, A., Satoh, Y., & Hashimoto, K. (2001a). In vivo canine model comparison of cardiohemodynamic and electrophysiological effects of a new antipsychotic drug aripiprazole (OPC-14597) to haloperidol. Toxicology and Applied Pharmacology, 173, 120–8.CrossRef
16.
Zurück zum Zitat Sugiyama, A., Satoh, Y., & Hashimoto, K. (2001b). Electrophysiologic effects of a new phosphodiesterase III inhibitor, toborinone (OPC-18790), assessed in an in vivo canine model. Journal of Cardiovascular Pharmacology, 38, 268–77.CrossRef Sugiyama, A., Satoh, Y., & Hashimoto, K. (2001b). Electrophysiologic effects of a new phosphodiesterase III inhibitor, toborinone (OPC-18790), assessed in an in vivo canine model. Journal of Cardiovascular Pharmacology, 38, 268–77.CrossRef
17.
Zurück zum Zitat Sugiyama, A., Satoh, Y., Shiina, H., Takahara, A., Yoneyama, M., & Hashimoto, K. (2001). Cardiac electrophysiologic and hemodynamic effects of sildenafil, a PDE5 inhibitor, in anesthetized dogs. Journal of Cardiovascular Pharmacology, 38, 940–6.CrossRef Sugiyama, A., Satoh, Y., Shiina, H., Takahara, A., Yoneyama, M., & Hashimoto, K. (2001). Cardiac electrophysiologic and hemodynamic effects of sildenafil, a PDE5 inhibitor, in anesthetized dogs. Journal of Cardiovascular Pharmacology, 38, 940–6.CrossRef
18.
Zurück zum Zitat Satoh, Y., Sugiyama, A., Takahara, A., & Hashimoto, K. (2004). Electropharmacological and proarrhythmic effects of a class III antiarrhythmic drug nifekalant hydrochloride assessed using the in vivo canine models. Journal of Cardiovascular Pharmacology, 43, 715–23.CrossRef Satoh, Y., Sugiyama, A., Takahara, A., & Hashimoto, K. (2004). Electropharmacological and proarrhythmic effects of a class III antiarrhythmic drug nifekalant hydrochloride assessed using the in vivo canine models. Journal of Cardiovascular Pharmacology, 43, 715–23.CrossRef
19.
Zurück zum Zitat Ando, K., Sugiyama, A., Takahara, A., Satoh, Y., Ishizaka, T., Nakamura, Y., et al. (2007). Analysis of proarrhythmic potential of antipsychotics risperidone and olanzapine in anesthetized dogs. European Journal of Pharmacology, 558, 151–8.CrossRef Ando, K., Sugiyama, A., Takahara, A., Satoh, Y., Ishizaka, T., Nakamura, Y., et al. (2007). Analysis of proarrhythmic potential of antipsychotics risperidone and olanzapine in anesthetized dogs. European Journal of Pharmacology, 558, 151–8.CrossRef
20.
Zurück zum Zitat Ando, K., Nakamura, Y., Hagiwara-Nagasawa, M., Harada, H., Miyamoto, H., Inamura, N., et al. (2018). Comparison of electropharmacological effects between terfenadine and its active derivative fexofenadine using a cross-over study in the halothane-anesthetized dogs to analyze variability of pharmacodynamic and pharmacokinetic profiles of terfenadine and torsadogenic risk of fexofenadine. The Journal of Toxicological Sciences, 43, 183–92.CrossRef Ando, K., Nakamura, Y., Hagiwara-Nagasawa, M., Harada, H., Miyamoto, H., Inamura, N., et al. (2018). Comparison of electropharmacological effects between terfenadine and its active derivative fexofenadine using a cross-over study in the halothane-anesthetized dogs to analyze variability of pharmacodynamic and pharmacokinetic profiles of terfenadine and torsadogenic risk of fexofenadine. The Journal of Toxicological Sciences, 43, 183–92.CrossRef
21.
Zurück zum Zitat Felker, G. M., & Teerlink, J. R. (2019). Diagnosis and management of acute heart failure. In D. P. Zipes, P. Libby, R. O. Bonow, D. L. Mann, & G. F. Tomaselli (Eds.), Braunwald’s Heart Disease (Vol. 1, pp. 462–89). Philadelphia: Elsevier. Felker, G. M., & Teerlink, J. R. (2019). Diagnosis and management of acute heart failure. In D. P. Zipes, P. Libby, R. O. Bonow, D. L. Mann, & G. F. Tomaselli (Eds.), Braunwald’s Heart Disease (Vol. 1, pp. 462–89). Philadelphia: Elsevier.
22.
Zurück zum Zitat Kitahara, K., Nakamura, Y., Tsuneoka, Y., Adachi-Akahane, S., Tanaka, H., Yamazaki, H., et al. (2013). Cardiohemodynamic and electrophysiological effects of anti-influenza drug oseltamivir in vivo and in vitro. Cardiovascular Toxicology, 13, 234–43.CrossRef Kitahara, K., Nakamura, Y., Tsuneoka, Y., Adachi-Akahane, S., Tanaka, H., Yamazaki, H., et al. (2013). Cardiohemodynamic and electrophysiological effects of anti-influenza drug oseltamivir in vivo and in vitro. Cardiovascular Toxicology, 13, 234–43.CrossRef
23.
Zurück zum Zitat Izumi-Nakaseko, H., Nakamura, Y., Cao, X., Ohara, H., Yamazaki, Y., Ueda, N., et al. (2014). Effects of selective IKr channel blockade by E-4031 on ventricular electro-mechanical relationship in the halothane-anesthetized dogs. European Journal of Pharmacology, 740, 263–70.CrossRef Izumi-Nakaseko, H., Nakamura, Y., Cao, X., Ohara, H., Yamazaki, Y., Ueda, N., et al. (2014). Effects of selective IKr channel blockade by E-4031 on ventricular electro-mechanical relationship in the halothane-anesthetized dogs. European Journal of Pharmacology, 740, 263–70.CrossRef
24.
Zurück zum Zitat Sugiyama, A., & Hashimoto, K. (1998). Effects of gastrointestinal prokinetic agents, TKS159 and cisapride, on the in situ canine heart assessed by cardiohemodynamic and electrophysiological monitoring. Toxicology and Applied Pharmacology, 152, 261–9.CrossRef Sugiyama, A., & Hashimoto, K. (1998). Effects of gastrointestinal prokinetic agents, TKS159 and cisapride, on the in situ canine heart assessed by cardiohemodynamic and electrophysiological monitoring. Toxicology and Applied Pharmacology, 152, 261–9.CrossRef
25.
Zurück zum Zitat Satoh, Y., Sugiyama, A., Tamura, K., & Hashimoto, K. (1999). Effects of a class III antiarrhythmic drug, dofetilide, on the in situ canine heart assessed by the simultaneous monitoring of hemodynamic and electrophysiological parameters. The Japanese Journal of Pharmacology, 81, 79–85.CrossRef Satoh, Y., Sugiyama, A., Tamura, K., & Hashimoto, K. (1999). Effects of a class III antiarrhythmic drug, dofetilide, on the in situ canine heart assessed by the simultaneous monitoring of hemodynamic and electrophysiological parameters. The Japanese Journal of Pharmacology, 81, 79–85.CrossRef
Metadaten
Titel
Cardiohemodynamic and Arrhythmogenic Effects of the Anti-Atrial Fibrillatory Compound Vanoxerine in Halothane-Anesthetized Dogs
verfasst von
Mihoko Hagiwara-Nagasawa
Ryuichi Kambayashi
Ai Goto
Yoshio Nunoi
Hiroko Izumi-Nakaseko
Yoshinori Takei
Akio Matsumoto
Atsushi Sugiyama
Publikationsdatum
19.10.2020
Verlag
Springer US
Schlagwort
Atrial Fibrillation
Erschienen in
Cardiovascular Toxicology / Ausgabe 3/2021
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-020-09612-3

Weitere Artikel der Ausgabe 3/2021

Cardiovascular Toxicology 3/2021 Zur Ausgabe